
A Description Logic of Change

Alessandro Artale University of Bolzano, IT artale@inf.unibz.it
Carsten Lutz University of Dresden, DE clu@tcs.inf.tu-dresden.de
David Toman University of Waterloo, CA david@uwaterloo.ca

Abstract

We combine the modal logic S5 with the description logic (DL) ALCQI.
In this way, we obtain a multi-dimensional DL, S5ALCQI , whose purpose
is reasoning about change. S5ALCQI is capable of expressing that concepts
and roles change over time, but cannot discriminate between changes in
the past and in the future. Our main technical result is that S5ALCQI
concept satisfiability with respect to terminologies of general concepts in-
clusions (GCIs) is decidable and 2-ExpTime-hard. We also provide a
scenario based on temporal conceptual models with timestamping con-
straints in which the logic can be used.

1 Introduction

An important application of Temporal Description Logics (TDLs) is the rep-
resentation of and reasoning about temporal conceptual models [1, 3, 4]. The
general idea is that such models are translated into an appropriate TDL, and
that TDL reasoning is then used to detect inconsistencies and implicit IS-A re-
lations in the temporal model [2, 4, 6]. However, a serious obstacle for putting
this general idea to work is posed by the fact that, for many natural temporal
conceptual formalisms and their associated TDLs, reasoning turns out to be
undecidable.

The most prominent witness of this problem is constituted by temporal
entity-relationship (TER) models used to design temporal databases [8]. TERs
are classical ER data models extended with two classes of constraints that model
the temporal behavior of an application domain [13], i.e., evolution constraints—
to govern object migration, i.e., the inability, possibility, and necessity of objects
to change membership from one entity to another—and timestamping—to dis-
tinguish between temporal and atemporal components of a TER model.

In this paper, we are interested in devising a logic able to fully capture TER
with timestamping constraints and study its computational properties. Indeed,

timestamping are temporal constructs supported by almost all temporal concep-
tual models proposed in the literature [10, 11, 13, 14]. It has be implemented
either by marking entities (i.e., classes), relationships and attributes as snapshot
or temporary, or leaving them un-marked. Then, objects belong to a snapshot
entity either never or at all times, no object may belong to a temporary entity
at all times, and there are no (temporal) assumptions about instances of un-
marked entities. The meaning of timestamps for relationships and attributes is
analogous.

It has been observed in [4] that TER models with timestamping and evo-
lution constraints can be translated into the TDL DLRUS . In the same paper,
undecidability of DLRUS was established. Later, it was shown in [1] that these
computational problems are not due to the translation to description logics: even
direct reasoning with the (less powerful) TER models is undecidable. There ap-
pear to be two ways around this problem. First, one can restrict timestamping.
Indeed, it has been shown in [4] that giving up timestamping of both relation-
ships and attributes (in the sense that all relationships and attributes are left
un-marked) re-establishes decidability of DLRUS , and thus also of TER models
with both restricted timestamping and evolution constraints. Second, one can
allow for full timestamping but avoiding evolution constraints.

This second alternative is pursued in the current paper. We devise a multi-
dimensional description logic S5ALCQI that is obtained by combining modal S5
with the standard DL ALCQI. The S5 modality can be applied to both con-
cepts and roles but not in front of axioms—terminological axioms are interpreted
globally. This logic may be viewed as a description logic of change, as it allows
to state that concept and role memberships change in time, but does not allow
to discriminate between changes in the past and changes in the future. We show
that TER models with full timestamping (i.e., timestamping on entities, rela-
tionships and attributes) but without evolution constraints can be captured by
S5ALCQI terminologies. The main result of this paper is to show that reason-
ing in S5ALCQI is decidable and 2-ExpTime-hard. While a decidability result
was obtained for the simpler modal DL, S5-ALC [9], this is the first time that
the more complex S5ALCQI is showed to have a decidable reasoning problem.
Thus, dropping evolution constraints indeed recovers decidability. However, it
is surprising that adding change, a rather weak form of temporality, pushes the
complexity of ALCQI from ExpTime-complete to 2-ExpTime-hard.

2 The Logic S5ALCQI

The logic S5ALCQI is a combination of the epistemic modal logic S5 and the de-
scription logic ALCQI. It is similar in spirit to the multi-dimensional descrip-
tion logics proposed, e.g., in [9, 16]. Let NC and NR be disjoint and countably

infinite sets of concept names and role names. We assume that NR is parti-
tioned into two countably infinite sets Nglo and Nloc of global role names and
local role names. The set ROL of roles is defined as {r, r−, ♦r, ♦r−, �r, �r−},
with r ∈ NR. The set of concepts CON is defined inductively: NC ⊆ CON; if
C, D ∈ CON, r ∈ ROL, and n ∈ N, then the following are also in CON: ¬C,
C uD, (> n r C), and ♦C. A TBox is a finite set of general concept inclusions
(GCIs) C v D with C, D ∈ CON.

The concept constructors C t D, ∃r.C, (6 n r C), (= n r C), ∀r.C, �C,
>, and ⊥ are defined as abbreviations in the usual way. Concerning roles, note
that we allow only single applications of boxes and diamonds, while inverse
is applicable only to role names. It is easily seen that any role obtained by
nesting modal operators and inverse in an arbitrary way can be converted into an
equivalent role in this restricted form: multiple temporal operators are absorbed
and inverse commutes over temporal operators [5].

An S5ALCQI-interpretation I is a pair (W, I) with W a non-empty set of
worlds and I a function assigning to each w ∈ W an ALCQI-interpretation
I(w) = (∆, ·I,w), where the domain ∆ is a non-empty set and ·I,w is a function
mapping each A ∈ NC to a subset AI,w ⊆ ∆ and each r ∈ NR to a relation
rI,w ⊆ ∆ ×∆, such that if r ∈ Nglo, then rI,w = rI,v for all w, v ∈ W . We can
extend the mapping ·I,w to complex roles and concepts as follows:

(r−)I,w := {(y, x) ∈ ∆×∆ | (x, y) ∈ rI,w}
(♦r)I,w := {(x, y) ∈ ∆×∆ | ∃v ∈ W : (x, y) ∈ rI,v}
(�r)I,w := {(x, y) ∈ ∆×∆ | ∀v ∈ W : (x, y) ∈ rI,v}
(¬C)I,w := ∆ \ CI,w

(C uD)I,w := CI,w ∩DI,w

(> n r C)I,w := {x ∈ ∆ |]{y ∈ ∆ | (x, y) ∈ rI,w and y ∈ CI,w} ≥ n}
(♦C)I,w := {x ∈ ∆ | ∃v ∈ W : x ∈ CI,v}

An S5ALCQI-interpretation I = (W, I) is a model of a TBox T iff it satisfies
CI,w ⊆ DI,w for all C v D ∈ T and w ∈ W . It is a model of a concept C if
CI,w 6= ∅ for some w ∈ W .

Note that S5ALCQI does not have the finite model property: there are con-
cepts and TBoxes that are only satisfiable in models with both an infinite set
of worlds and an infinite domain. For example, this is true for the concept ¬C
w.r.t. the TBox {¬C v ♦C, C v ∃r.¬C, ¬C v ∀r.¬C}, where r ∈ Nglo.

3 Capturing Conceptual Schemas

It is known that the TDL ALCQIUS is able to capture the temporal concep-
tual model ERV T , a TER model that supports timestamping and evolution

constraints, IS-A links, disjointness and covering constraints, participation con-
straints [3]. In ERV T , timestamping is implemented using a marking approach
as sketched in the introduction. Since the translation of atemporal constructs
is similar to the one using ALCQIUS the reader must refer to [3] for full de-
tails and examples. In the following, after recalling the translation of atemporal
constructs, we show that S5ALCQI is sufficient to capture the fragment of ERV T

that has timestamping as the only temporal construct.
When translating ERV T to TDLs, entities E—denoting sets of abstract

objects—are mapped into concept names AE while attributes P—denoting func-
tions associating mandatory concrete properties to entities—are mapped into
roles names rP that are enforced to be interpreted as total functions using GCIs:
> v (= 1 rP >). In S5ALCQI , un-marked entities and attributes need no special
treatment, while entities and attributes being of type snapshot or temporary
can be expressed as follows:

AE v �AE snapshot entity
AE v ♦¬AE temporary entity
AE v ∃�rP .> snapshot attribute
AE v ∀�rP .⊥ temporary attribute

Relationships—denoting n-ary relations between abstract objects—are trans-
lated by reification, i.e., each n-ary relationship R is translated into a concept
name AR with n global role names r1, . . . , rn. Intuitively, for each instance
x ∈ AI,w

R , the tuple (y1, . . . , yn) with (x, yi) ∈ rI,w
i is a tuple in the relationship

R at time point w. To ensure that every instance of AR gives rise to a unique
tuple in R, we use GCIs > v (= 1 ri >), for 1 ≤ i ≤ n. Now, to capture snap-
shot relationships, we simply put AR v �AR, while for temporary relationships,
we put AR v ♦¬AR.

Note that, the latter GCI does not fully capture temporary relationships. As
an example, consider the interpretation I = ({w1, w2}, I), with ∆ = {a, a′, b, c},
AI,w1

R = {a}, AI,w2

R = {a′}, rI,w1

1 = {(a, b)}, rI,w1

2 = {(a, c)}, rI,w2

1 = {(a′, b)},
and rI,w2

2 = {(a′, c)}. Although the GCI AR v ♦¬AR (expressing temporary
relationships) is satisfied, (b, c) is constantly in the temporary relationship R.
This is due to a mismatch between the models of an ERV T schema and the mod-
els of its translation into S5ALCQI . In particulars, in models of ERV T , tuples
belonging to relationships are unique while in models of the reified translation
there may be two distinct objects connected through the ri global roles to the
same objects, thus representing the same tuple, e.g., the distinct objects a, a′ in
the above interpretation. Then, S5ALCQI models verifying the above situation
do not correspond directly to an ERV T model. However, similarly to [7], it is
possible to show that: (i) there are so called safe models of S5ALCQI that are
in one-to-one correspondence with ERV T models, (ii) every satisfiable S5ALCQI
concept is also satisfied in a safe model. Since we are interested in reasoning

about ERV T schemas we can thus forget about non-safe models. An S5ALCQI
interpretation I = (W, I) is safe for an ERV T schema if, for every n-ary rela-
tionship R reified with the global functional roles ri, and every w ∈ W we have
the following:

∀x, y, x1, . . . , xn∈∆ : ¬((x, x1) ∈ rI,w
1 ∧ (y, x1) ∈ rI,w

1 ∧ . . . ∧
(x, xn) ∈ rI,w

n ∧ (y, xn) ∈ rI,w
n).

It is not hard to see that: (1) the model in the example above is not safe, (2)
given a safe model, the above GCI for temporary relationships correctly capture
the safety property.

4 Decidability of Reasoning in S5ALCQI

We show that the satisfiability problem is decidable for S5ALCQI . For simplicity,
throughout this section we assume that only local role names are used. This
can be done w.l.o.g. since global role names can be simulated by �r, where r
is a fresh local role name. To prove decidability, we start with devising tree
abstractions of S5ALCQI models. Then we show how, given a concept C0 and
TBox T , we can construct a looping tree automaton accepting exactly the tree
abstractions of models of C0 and T .

Let C0 and T be a concept and a TBox whose satisfiability is to be decided.
We first introduce the following notation. For roles r, we use Inv(r) to denote
r− if r ∈ NR, s if r = s−, ♦Inv(s) if r = ♦s, and �Inv(s) if r = �s. We use
rol(C0, T) to denote the smallest set that contains all roles used in C0 and T , and
that is closed under Inv. We use cl(C0, T) to denote the smallest set containing
all sub-concepts appearing in C0 and T closed under negation, if C ∈ cl(C0, T)
and “¬” is not the top level operator in C, then ¬C ∈ cl(C0, T).

4.1 Tree Abstractions of S5ALCQI models

The goal of this section is to develop tree abstractions of general S5ALCQI models:
for a given model I of C0 and T , we develop a tree abstraction called (C0, T)-tree.
The root node corresponds to the object that realizes C0 in I, descendants of the
root correspond to further objects in I that can be reached by traversing roles
in some S5 world staring from the root object. For the abstractions to capture
the essence of the S5ALCQI models, we need to attach additional information to
the nodes of the tree and to constrain the parent-child relationships. To this
end we develop the notions of an extended quasistate and matching successor.
In the rest of this section we formalize the above intuition.

We first introduce types and quasistates. Intuitively, a type describes the
concept memberships of a domain element x ∈ ∆ in a single S5 world.

Definition 1 (Type). A type t for C0, T is a subset of cl(C0, T) such that

¬C ∈ t iff C 6∈ t for all ¬C ∈ cl(C0, T)

C uD ∈ t iff C ∈ t and D ∈ t for all C uD ∈ cl(C0, T)

C ∈ t implies D ∈ t for all C v D ∈ T

We use tp(C0, T) to denote the set of all types for C0, T . To describe the concept
memberships of a domain element in all S5 worlds, we use quasistates:

Definition 2 (Quasistate). Let W be a set and f : W → tp(C0, T) a function
such that for all w ∈ W we have:

♦C ∈ f(w) iff C ∈ f(v) for some v ∈ W .

We call the pair (W, f) a quasistate witness and the set {f(v) | v ∈ W} a
quasistate.

In particular, quasistates capture constraints implied by the S5 modalities on
concept membership of an object in all worlds. To check whether a set of
types, {t1, . . . , tn}, is a quasistate we simply check whether the pair (W, f),
with W = {t1, . . . , tn} and f the identity function is a quasistate witness. Note,
however, that each quasistate has many witnesses.

To abstract the role structure of a model we define the notion of an extended
quasistate. This abstraction is realized by a pair of quasistates in a (C0, T)-trees
and captures how two objects are related by a particular role.

Definition 3 (Extended Quasistate). Let W be a set, f, g : W → tp(C0, T),
and h : W → rol(C0, T) ∪ {ε} for ε 6∈ rol(C0, T) such that

1. (W, f) and (W, g) are quasistate witnesses;

2. if ♦r = h(w) for some w ∈ W , then r = h(v) for some v ∈ W ;

3. if r = h(w) for some w ∈ W , then ♦r = h(v) or r = h(v) for all v ∈ W ;

4. it is not the case that r = h(w) for all w ∈ W ;

5. if �r = h(w) for some w ∈ W , then �r = h(v) for all v ∈ W .

We call (W, f, g, h) an extended quasistate witness and the set of triples

Q(W, f, g, h) = {(f(v), g(v), h(v)) | v ∈ W}

an extended quasistate.

We say that Q(W, f, g, h) realizes a concept C if: C ∈ f(w) for some w ∈ W ;
we say that Q(W, f, g, h) is root if: h(w) = �ε for all w ∈ W .

The extended quasistates therefore enforce S5 modalities when applied to roles.
In thee tree-shaped model abstraction we also use extended quasistates capture
the idea that each object has exactly one parent: by convention we assume
that the object abstracted by f has a parent abstracted by g. The two objects
are connected by a role r that is abstracted by h in those worlds w in which
h(w) ∈ {r, �r}. For uniformity, we use the ε dummy role for the root object1.
We define an ordering between modalities of a basic role r as ♦r ≤ r ≤ �r, this
arrangement allows us to use a single role in the extended quasistate to capture
all the implied modalities. It is again immediate to verify whether a set of triples
forms an extended quasistate.

The last ingredient needed in the tree abstractions is the ability to properly
capture the effects of number restrictions. These constraints, given an object in a
model, impact what and how many other objects can be connected to this object
via roles (and in which worlds). In the tree abstraction this yields restrictions
on which extended quasistates can possibly be children of a given quasistate.
This intuition is captured by the notion of a matching successor:

Definition 4 (Matching Successor). Let W and O be sets, o an element
such that o 6∈ O; f, g : (O ∪ {o}) → W → tp(C0, T), and h : (O ∪ {o}) → W →
rol(C0, T) functions such that (W, f(p), g(p), h(p)) is an extended quasistate wit-
ness for all p ∈ O ∪ {o} and f(o) = g(p) for all p ∈ O. We call (W, O, o, f, g, h)
a matching successor witness if for all w ∈ W :

1. if (> n r C) ∈ f(o)(w) and C 6∈ g(o)(w) or Inv(r) 6≤ h(o)(w) then
|{p ∈ O | r ≤ h(p)(w), C ∈ f(p)(w)}| ≥ n,

2. if (> n r C) ∈ f(o)(w), then |{p ∈ O | r ≤ h(p)(w), C ∈ f(p)(w)}| ≥ n−1,

3. if (> n r C) ∈ cl(T , C0), C ∈ g(o)(w), and Inv(r) ≤ h(o)(w), and
|{p ∈ O | r ≤ h(p)(w), C ∈ f(p)(w)}| ≥ n− 1 then (> n r C) ∈ f(o)(w),

4. if (> n r C) ∈ cl(T , C0) and |{p ∈ O | r ≤ h(p)(w), C ∈ f(p)(w)}| ≥ n
then (> n r C) ∈ f(o)(w),

We call the pair (Q(W, f(o), g(o), h(o)), {Q(W, f(p), g(p), h(p)) | p ∈ O}) a
matching successor. We say that two matching successor witnesses are equivalent
if they define the same matching successor.

1Note that each node in the abstraction is labeled by an extended quasistate describing
the corresponding object, its parent, and the role that connects them. This arrangement is
needed in order to keep track of how inverses interact with number restrictions and is similar
to the so-called double-blocking technique.

The intuition behind this definition is as follows: the object o stands for the
parent node and the set of objects O for all its children in the tree abstraction.
Each of these objects is labeled by an extended quasistate in a consistent way
(i.e., the parent parts of the extended quasistates labeling the children match
the quasistate attached to the parent). A matching successor witness is then a
witness that the extended quasistates attached to o and to all elements of O can
potentially be used to build a part of a model of C0 and T without violating
any constraints in T . Thus we can use matching successors to define the sought
after tree shaped abstraction of models of C0 and T .

Definition 5 ((C0, T)-tree). Let T = (n0, N,E) be an ordinal tree with root
n0 ∈ N and G a mapping of T ’s nodes to extended quasistates. We say that T
is a (C0, T)-tree if:

1. C0 is realized in G(n0),

2. G(n0) is root,

3. for all n ∈ N the pair (G(n), {G(m) | (n,m) ∈ E}) is a matching successor.

To be able to eventually construct a model from our abstraction we use the
following lemma that allows us to concatenate matching successor witnesses
along branches of such a tree abstraction:

Lemma 6. Let (W, O, o, f, g, h) be a matching successor witness for (q, Q) and
α an infinite cardinal. Then there is an equivalent matching successor witness
(W ′, O, o, f ′, g′, h′) such that

|{w ∈ W ′ | (f ′(p)(w), g′(p)(w), h′(p)(w)) is a constant triple}| = α

for all p ∈ O ∪ {o}.
This can always be achieved by replicating elements of W sufficiently many
times. These witnesses are convenient as whenever the associated extended
quasistate match they can be plugged one into the bottom of another just by
permuting the set W .

The intuitions behind Definitions 4 and 5 is as follows: when given a model
I of C0 and T , we use the object o ∈ ∆ that realizes C0 in I to define the
extended quasistate for the root of our tree abstraction; we then collect all the
extended quasistates for all successors of o in I and make them children of the
root quasistate. Repeating this construction yields a (C0, T)-tree: the children
of every node have been extracted from I and thus must satisfy the conditions
on matching successors (the witness comes from the model). Conversely, given
a (C0, T)-tree, we use the fact that for each matching successor, there must be
a witness. We use these witnesses, with the help of Lemma 6, to construct a
model by traversing the (C0, T)-tree top down while concatenating the matching
successor witnesses found along the branches. Thus the existence of a (C0, T)-
tree is equivalent to the existence of a (C0, T) model:

Theorem 7. C0 is satisfiable w.r.t. T iff there exists a (C0, T)-tree.

4.1.1 Decidability and Looping Tree Automata

To show decidability, we need to show existence of at least one (C0, T)-tree. We
proceed in two steps:

1. We need to determine whether (q, Q) is a matching successor for each
extended quasistate q and set of extended quasistates Q.

2. We need to show that the matching successors can be arranged into a tree
rooted by a node labeled by an extended quasistate realizing C0.

Thus, we first need to define a procedure that constructs all matching suc-
cessors given C0 and T . To show this, we need the following lemma, where
max(C0, T) :=

∑
(>m r C)∈cl(C0,T) m, and n = |cl(C0, T)|.

Lemma 8. Let (W, O, o, f, g, h) be a matching successor witness for a match-
ing successor (q, Q). Then there is an equivalent matching successor witness
(W ′, O′, o, f ′, g′, h′) such that |O′| ≤ (max(C0, T)+1)·2n22n

and |W ′| ≤ 2|O
′|·(n+1).

Figure 1 illustrates why the bounded matching successor witness required by

o0 o1 · · · ol ol+1 · · · om−1 om · · ·
w t0 t1 tl tl+1 tm−1 tm tn tn+1 · · ·y w is replaced by {v0, . . . , vl}

v0 t0 tm tn tl+1 tm−1

v2 tm t1 tn tl+1 tm−1

...
...

vl tm tn tl tl+1 tm−1

Figure 1: Reducing the size of a Matching Successor Witness.

Lemma 8 must exist: consider that the objects o0, . . . , on+1 . . . ∈ O have been
assigned the same extended quasistate by the current witness and that there are
more than max(C0, T) + 1 of such objects. Now consider a world w depicted
on the top of the Figure. Assume that the (types of the) objects ol+1, . . . , on

are those needed to fulfill a number restriction in the (type of the) parent node
in w. These must be preserved in the new witness after removing superfluous

objects. The transformation is depicted in the lower half of the figure: we create
a set of worlds v0, . . . , vl with the same parent label and such that all the types
tl+1, . . . , tn are present in every of the new worlds. Hence the number restriction
in the parent’s type still holds. Moreover, the original type assigned to the
objects o0, . . . , ol is preserved in at least one of the new worlds. This guarantees
that, in the new witness, all the objects are still labeled by the same extended
quasiworld. Thus the new witness is equivalent to the original one. Applying
this procedure to every w ∈ W and every set of objects labeled with the same
extended quasiworld by the original witness removes all the superfluous objects
that were assigned the same extended quasistate; hence the bound holds for the
new witness. Thus we can test all matching successor candidates for witnesses
up to the size defined in Lemma 8—in 4-ExpTime we can check whether a pair
(q, Q) is a matching successor and there are at most 3-Exp of such candidates
to test.

What remains is to check whether a (C0, T)-tree can be constructed using
these matching successors: to this end we define a looping tree automaton AC0,T
that accepts exactly the C0, T -trees. To check satisfiability of C0 w.r.t. T , it then
suffices to check whether this looping automaton accepts at least one tree. We
show that this provides us with a decision procedure for satisfiability in S5ALCQI
as the emptiness problem for looping tree automata is decidable in time linear
in the size of the automaton [15].

Intuitively, we use the matching successors to define the transition relation
of AC0,T . Since in our case the trees do not have a constant branching degree, we
adopt a variant of a looping automaton on amorphous trees [12] (except in our
case we know the branching degree is bounded and thus the transition relation
can be represented finitely in a trivial way).

Definition 9 (Looping Tree Automaton). A looping tree automaton A =
(Q, M, I, δ) for an M -labeled tree is defined by a set Q of states, an alphabet
M , a set I ⊆ Q of initial states, and a transition relation δ ⊆ Q×M × 2Q.

A run of A on an M -labeled tree T = (rT, NT, ET) with a root rT is a mapping
τ : NT → Q such that τ(rT) ∈ I and (τ(α), T(α), {τ(β) | (α, β) ∈ ET}) ∈ δ for
all α ∈ NT. A looping automaton A accepts those M -labeled trees T for which
there exists a run of A on T.

We construct an automaton from C0 and T as follows:

Definition 10. Let C0 be a concept and T a S5ALCQI TBox. We denote with
nl(C0, T) the set of all extended quasistates for C0 and T . A looping automaton
AC0,T = (Q,M, I, δ) is defined by setting M = Q = nl(C0, T), I := {q ∈
Q | q realizes C0, q is root}, and δ to the set of those tuples (q, q, Q) such that
Q ∈ 2Q and (q, Q) is a matching successor for C0 and T .

The following lemma states that the obtained looping automata behaves as
expected.

Lemma 11. T is a C0, T -tree iff T is accepted by AC0,T .

The size of AC0,T depends on the size of C0 and T as there are only finitely many
matching successors as shown in Lemma 8. To construct the transition function
of the automaton, we also need to verify that the pair (q, Q) is a matching
successor. From Lemma 8, this can be done in 4-ExpTime. , we obtain that
the proposed algorithm for satisfiability in S5ALCQI runs in 4-ExpTime. A
lower bound can be established by reducing the word problem of exponentially
space-bounded, alternating Turing machines [5].

Theorem 12. Satisfiability in S5ALCQI is decidable and 2-ExpTime-hard.

This result holds regardless of whether numbers inside number restrictions are
coded in unary or in binary.

5 Conclusions

This work introduces the modal description logic S5ALCQI as a logic for repre-
senting and reasoning in temporal conceptual models with timestamping con-
straints only. S5ALCQI was shown to be decidable and 2-ExpTime-hard. This
is the first decidability result for reasoning in temporal schemas with full time-
stamping—i.e., timestamping for entities, relationships, and attributes.

This paper leaves out few interesting open problems for further investigation.
First, a tight complexity bound is not known. The gap between the 2-ExpTime-
hardness and the 4-ExpTime algorithm shown in this paper needs to be closed.
Second, we believe that the converse translation, from TER with full timestamp-
ing to S5ALCQI , is also possible. Once formally proved, this result would allow
us to characterize the complexity of reasoning over TER with timestamping.
Finally, we are interested in checking the limits of expressive power of S5ALCQI
w.r.t. various constraints have appeared in literature on temporal models other
than timestamping.

References
[1] A. Artale. Reasoning on temporal conceptual schemas with dynamic constraints.

In 11th Int. Symposium on Temporal Representation and Reasoning (TIME04).
IEEE Computer Society, 2004. Also in Proc. of DL’04.

[2] A. Artale and E. Franconi. Temporal ER modeling with description logics. In
Proc. of the Int. Conference on Conceptual Modeling (ER’99), volume 1728 of
Lecture Notes in Computer Science. Springer-Verlag, 1999.

[3] A. Artale, E. Franconi, and F. Mandreoli. Description logics for modelling dy-
namic information. In Jan Chomicki, Ron van der Meyden, and Gunter Saake,
editors, Logics for Emerging Applications of Databases. LNCS, Springer-Verlag,
2003.

[4] A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev. A temporal descrip-
tion logic for reasoning about conceptual schemas and queries. In Proc. of the
8th Joint European Conference on Logics in Artificial Intelligence (JELIA-02),
volume 2424 of LNAI, pages 98–110. Springer, 2002.

[5] A. Artale, C. Lutz, and D. Toman. A description logic of change. Technical report,
LTCS-Report 05-06, Technical University Dresden, 2002. see http://lat.inf.tu-
dresden.de/research/reports.html.

[6] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual
data modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, pages 229–263. Kluwer, 1998.

[7] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation
formalisms. J. of Artificial Intelligence Research, 11:199–240, 1999.

[8] J. Chomicki and D. Toman. Temporal Databases. In M. Fischer, D. Gabbay,
and L. Villa, editors, Handbook of Temporal Reasoning in Artificial Intelligence,
pages 429–467. Elsevier Foundations of Artificial Intelligence, 2005.

[9] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional
modal logics: theory and applications. Studies in Logic. Elsevier, 2003.

[10] H. Gregersen and J.S. Jensen. Conceptual modeling of time-varying information.
Technical Report TimeCenter TR-35, Aalborg University, Denmark, 1998.

[11] C. S. Jensen and R. T. Snodgrass. Temporal data management. IEEE Transac-
tions on Knowledge and Data Engineering, 111(1):36–44, 1999.

[12] O. Kupferman and M. Y. Vardi. On bounded specifications. In Proc. of the Int.
Conference on Logic for Programming and Automated Reasoning (LPAR’01),
LNAI, pages 24–38. Springer-Verlag, 2001.

[13] S. Spaccapietra, C. Parent, and E. Zimanyi. Modeling time from a conceptual per-
spective. In Int. Conf. on Information and Knowledge Management (CIKM98),
1998.

[14] C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptual modelling for-
malism for temporal database applications. Information Systems, 16(3):401–416,
1991.

[15] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of
programs. Journal of Computer and System Sciences, 32:183–221, 1986.

[16] F. Wolter and M. Zakharyaschev. Modal descriptiopn logics: modalizing roles.
Fundamentae Informaticae, 39:411–438, 1999.

