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Abstract. Highly optimized reasoning support for Description Logics (DLs) has been developed
during the past years. This paper presents our efforts to develop a reasoner suitable for mobile
devices, namely mobile phones.
This might become important upon the convergence of the mobile industry and the web, especially
the semantic web. Details of the implementation and current limitations provide explanations to
the differences in performance in comparison to one of the well-known desktop reasoners.

1 Motivation

Mobile phones have become an ubiquitous companion for many users. There are
western countries with more mobile contracts than inhabitants. The mobile industry
is pushing users to adopt modern 3G services, i.e. to use the mobile phone as a client
to messaging and news services. At the dawn of the semantic web we expect these
messages to be semantically annotated. The device should be able to sort out un-
wanted messages and reduce the penetration of the user to messages of interest. We
suggested a user profile and matchmaking in [6, 8] that copes with SPAM annotations.
More DL based approaches to matchmaking can be found in [9, 10].

Unlike [15] we consider privacy a major issue. Due to the nature of user profiles,
we would like to encourage users to keep their private data on their personal device.
This requires the mobile device to decide the matchmaking without support of exter-
nal reasoners. As a consequence we developed the reasoner Pocket KRHyper [7] that
runs on a mobile phone or similar devices.

The remainder of this paper presents some details of the software and hardware
environment, explains how the DL reasoning is performed, finally gives some fig-
ures on performance compared to RacerPro 1.91 that is one of the highly developed
desktop reasoners.

2 Environment

The environment of mobile phones poses several restrictions on the development of
the reasoner. Resources like computing power, memory and energy are tightly limited.
Although phones offer hundreds of MB for the storage of pictures, sounds, and ring-
tones the memory offered to applications is restricted to a few hundreds kB. This
is a hard limitation imposed by the manufacturer, that cannot be configured. Even

1 http://www.racer-systems.com



worse this small memory is used for the application code, the application data like
the ontology and the working set of the current computation. Consequently whenever
we had the choice between memory consumption or additional computation, we went
for the additional computation. Computing power is reduced by a factor of 50 to 100
compared to an average desktop PC.

The widest spread language on phones is JAVA 2 micro edition (J2ME)2. J2ME
is tailored for devices with limited resources. It offers a language comparable to stan-
dard JAVA 1.1.8. Unfortunately all modern container classes of JAVA2, that would
ease development and speed up execution, are missing.

3 Reasoning

The reasoning is based on a first-order model generating reasoner implementing the
hyper-tableaux calculus [1]. The use of a first-order tableaux may be a little surprise,
but turns out to be viable, as can be seen in section 4. The reasoning task offers a
timelimit and throwsExceptionsupon timing out or running into memory shortages.
Thus the application may react appropriately. The reasoner comes as a library to be
integrated into J2ME applications (midlets).

3.1 Translation

To use the FO reasoner for DL purposes the knowledge base is transformed into a
set of possibly disjunctive clauses. The approach is relational and preserves the open
world assumption. Although the result is a logic program, the restrictions of DLP [3]
do not apply.

The knowledge base is considered to be a finite set of axiomsCv D andC≡ D,
whereC, D are concepts of the DL ALC extended by inverse and transitive roles and
role hierarchies.

The transformation into sets of clauses introduces subconcepts to reduce the com-
plexity of the concept expression or axiom. As an example the axiom∃R.Cv∀S.∀T.D
is decomposed into∃R.Cv subi andsubi v ∀S.subj andsubj v ∀T.D to comply with
the transformation primitives. Table 1 gives the transformation primitives in abstract
DL syntax, a corresponding first order formula, and the generated clauses.

The clauses marked with * share variables in a disjunctive head, they are not
range-restricted. As an extension to previous work [12] Pocket KRHyper now han-
dles these clauses by generating all ground instances up to the given term weight.
Doing so often causes timeouts of the prover due to the limited resources. Clauses
marked with ** are suitable for reasoning tasks in acyclic terminologies. Decidability
commonly requires the tableau procedure to engage a blocking technique. The block-
ing techniques found in [4] may be adapted to the transformation as shown in [2].

2 http://java.sun.com/j2me/



description logicfirst order formula clauses
CuD v E ∀x.C(x)∧D(x)→ E(x) e(x) :- c(x), d(x).
CtD v E ∀x.C(x)∨D(x)→ E(x) e(x) :- c(x).

e(x) :- d(x).
C v ¬D ∀x.C(x)→¬D(x) false :- c(x), d(x).

∃R.C v D ∀x∀y.R(x,y)∧C(y)→ D(x) d(x) :- c(y), r(x,y).
∀R.C v D ∀x.(∀y.R(x,y)→C(y))→ D(x) d(x); r(x,fR−C(x)). *

d(x) :- c(fR−C(x)).
C v DuE ∀x.C(x)→ D(x)∧E(x) e(x) :- c(x).

d(x) :- c(x).
C v DtE ∀x.C(x)→ D(x)∨E(x) e(x); d(x) :- c(x).
¬C v D ∀x.¬C(x)→ D(x) c(x); d(x). *

C v ∃R.D ∀x.C(x)→ (∃y.R(x,y)∧D(y)) d( fR−D(x)) :- c(x).
r(x, fR−D(x)) :- c(x). **

C v ∀R.D ∀x.C(x)→ (∀y.R(x,y)→ D(y)) d(y) :- c(x), r(x,y).
Rv S ∀x∀y.R(x,y)→ S(x,y) s(x,y) :- r(x,y)

R− ≡ S ∀x∀y.R(x,y)↔ S(y,x) s(y,x) :- r(x,y).
r(x,y) :- s(y,x).

R+ ∀x∀y∀z.R(x,y)∧R(y,z)→ R(x,z) r(x,z) :- r(x,y), r(y,z).
Table 1.Translation Primitives

The effective test for satisfiability of a conceptC inserts a single factC(a) into the
knowledge base.C is satisfiable if the Pocket KRHyper finds a model for the knowl-
edge base. A refutation indicates the unsatisfiability of the concept. Subsumption is
reduced to satisfiability.

3.2 Optimizations

Common to DL reasoners are many optimizations [5]. In the following section some
counterparts within the FO reasoner are presented.

Backjumping. Backjumping is a technique to reduce the unnecessary evaluation of
branches, that do not contribute to the clash in a branch. In hyper-tableaux the ’hyper’
eventually tracks back over multiple branching points to avoid the same.

Semantic Branching. This optimization is derived from DPLL. As hyper-tableaux
is also a descendant from DPLL a corresponding technique known as complement
splitting is in use. Semantic branching adds the complement of already inspected
branches to subsequent branches. This avoids the redundant inspection of clashed
terms. Different from semantic branching the complements of subsequent branches
are added to the branches, that are inspected first. Because of the symmetry the effect
is the same for cases where all branches are closed.

Boolean Constraint Propagation. The current mobile implementation of the hyper-
tableaux tries to choose the disjunctive clause for the next expansion, that will imme-
diately clash one of its branches. This is similar to BCP.



Lazy Unfolding. Beyond these optimizations a behavior similar to lazy unfolding is
introduced by the transformation step. All subexpressions are named, and the trans-
formation step tries to identify with already known subexpressions. The FO tableaux
will expand these subexpressions only if no clash has been found prior to expansion.

Absorption. Absorption is left to the preprocessing of the knowledge base. It absorbs
general concept inclusions (GCI) into the definition of concepts. For a DL tableaux
this reduces the number of disjunctive branches. Here absorption reduces the number
of cases, that require the enumeration of all ground instances, see section 4 for an
example.

Reducing Memory Consumption. Currently the J2ME environment does not offer
an preinstalled XML-parser. So we decided to use the lisp-like KRSS [11] syntax.
The lisp-parser is significantly smaller than an XML-parser.

The clausal knowledge base is partitioned. The knowledge base keeps track of
these parts by setting a mark at each such step, so it is possible to revert it to the state
it had before an update or query. This allows for the addition of clauses generated for
query processing and a subsequent removal of them. The repeated transformation of
unchanged DL axioms to clauses is avoided. The query related clauses are added and
retracted as required by the query processing.

Any form of indexing or caching requires additional memory. Because the mem-
ory constraints of the used platforms are tight, we dropped most of these enhance-
ments. Consequently the current solution does not scale (wrt. the size of the model to
search) as well as desktop reasoners.

3.3 Engineering

The development of a reasoning engine is a challenging and error-prone task. To cope
with these difficulties we adopted the idea of unit testing. Unit testing automates the
execution of (parts of) your software on predefined tests with known results. The ease
of use and high degree of automation enables the early detection of software glitches
and sideeffects of changes throughout the whole development cycle.

The tests are divided into a first-order part and a DL part. For the first-order rea-
soning kernel we used a subset of the TPTP [13]. These clausal problems are fed into
the reasoner and evaluated by the FO tableaux. The result of the reasoning process is
compared to the known result.

Starting with some ’benchmarks’ taken from the DIG page3 many own tests, that
focus on specific implementation details, were added to test the DL part. The results
in the following section are derived from scaled tests. The automation of the tests
includes the comparison of predefined results with the actual result of the reasoner.

3 http://dl.kr.org/dig/



test knowledge base comments
1 C≡C1; Ci vCi+1 test the propagation of individuals and the ability to

handle long branches
2 C≡C1; Ci vCi+1; Cm+1 v⊥ like test1 but not satisfiable; test refutations on long

branches
3 C≡ ∃R.C1; Ci v ∃R.Ci+1 test the handling of role successors
4 C≡ ∃R.C1; Ci v ∃R.Ci+1; Cm+1 v⊥ like test 3, but with a refutation at the end of the

branch
5 C≡ ∃R.C1; ∃R.Ci v ∃R.Ci+1 test the handling of role successors and concept in-

clusions
6 C≡ ∃R.C1; ∃R.Ci v ∃R.Ci+1; ∃R.Cm+1 v⊥ like test 5 with a closing inclusion
7 C≡ ∃R.C1; ∃R.Ci v ∃R.Ci+1; >v ∀R.¬Cm+1 like test 6 but with differently formulated closing,

that derives from a range restriction
8 C≡ ∃R.C1; ∃R.Ci v ∃R.Ci+1; >v ∀R.⊥ similar to test 7 but branches may be closed prior

to the evaluation of the inclusions
9 C≡ ∃R.C0; ∃R.Ci v ∃R.Ci+1; >v ∀R.⊥ this time the inclusions are not related to the defi-

nition of C. Still not satisfiable.
10 C≡ ∃R.C0; Ci+1u∀R.Ci+2 v ∃R.Ci ; Ci+1 v ∃R.Ci+2 this test demonstrates the effect of not range-

restricted clauses for FO model generators
11 C≡ ∃R.C0; Ci+1 v ∃R.Ci+2u (∃R.¬Ci+2t∃R.Ci) Absorption in a preprocessing step solves this prob-

lem
12 C≡ ∃R1.C1; Ri v Ri+1 test handling of role hierarchies
13 C≡ ∃R1.C1; Ri v Ri+1; >v ∀Rm+1.⊥ test refutation at the end of role hierarchies

Table 2.Testsuite

4 Comparison

Based on the test cases for DL reasoning a generator of tests was developed. These
tests are used in multiple sizes wrt. the number of axioms to offer a view into the
scalability of the reasoning solution. In the primary application of Pocket KRHyper
all models or refutations were computed in short branches of a tableaux (less than 25
proof steps) because the applications ontology was about 200 concepts large but not
so deeply nested.

To the best of my knowledge there are no competing reasoners on mobile phones.
So I decided to compare the performance with RacerPro 1.9. The JAVA-library is
compiled for the desktop version of JAVA (J2SE) without changes in the code. Conse-
quently all indexing and caching is still missing even though the desktop environment
would allow for the additional space. The integration of RacerPro into the automated
test routine uses its socket interface. The syntax of the test cases is compatible due to
the use of KRSS.

Out of more than 50 tests the following section describes about a dozen tests
to give an idea of the characteristics of Pocket KRHyper. The tests presented here
are limited to satisfiability tests with satisfiableand unsatisfiable concepts. This is
suitable to describe the behavior of subsumption tasks with positive and negative
outcome. Checking for subsumption and non-subsumption is not a trivial task for
all first-order reasoners, who are possibly better suited to find refutations than mod-
els [14].



4.1 Testsuite

All tests are scaled to the sizesm∈ {2,5,10,20,50}. Table 2 lists the tests, where
i ∈ {1,2, ...m} for the corresponding size.C possibly indexed are concepts,R possi-
bly indexed are roles. All 65 tests check for the satisfiability of conceptC. A JAVA
application runs all tests with Pocket KRHyper and RacerPro, compares the results
and collects the execution time in ms for the reasoning tasks. Some comments in
Table 2 indicate the targeted feature of the test.

The automated execution of these tests led to quite stable results wrt. the time
needed. Surprisingly only Racer had some glitches, where every now and then but
reproducible single tests performed quite bad beyond the time-limit of 1500ms. In
the calculation of the graphical representation (see Fig. 1) of the runtimes the median
of five runs was taken to eliminate this phenomenon. The times for the FO reasoner
include the transformation into clauses. Table 3 gives exact values, — indicates a
timeout. All times are in milliseconds taken on a contemporary personal computer
running WindowsXP with Java Runtime 1.5 (J2SE). Reasoners are Pocket KRHyper
via the library and RacerPro 1.9 via TCP-Socket. Due to limitations in precision all
runtimes below 10ms are presented as≤10ms.

4.2 Evaluation

Some weaknesses of the first-order approach are quite obvious. Test 10 is never solved
within the timelimit. This is a consequence of the necessary enumeration of ground
instances. The only solution to this problem is an improved preprocessing as test 11
indicates. As one might expect both tests are performing well with Racer. The only
surprise is the increased runtime for test 10 with size 5 compared to the same test
in size 10. An additional weakness is the scalability for tests 3 and 4. Following the
transformation steps, a lot of functions are used. Pocket KRHyper tries to reduce
the amount of storage and compares all new facts with existing ones in the current
branch. This comparison is carried out by a unification method. This method suffers
from the deeply nested functions and a lack of caching of intermediate results. In

test1 2 3 4 5 6 7 8 9 10 11 12 13
m reasoner
m=2 racer20 10 10 10 10 10 20 10 20 10 10 10 10

pKrh 30 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 — ≤ 10 ≤ 10 ≤ 10
m=5 racer20 10 20 20 20 30 20 10 20 90 20 10 20

pKrh ≤10 ≤ 10 20 30 10 11 ≤ 10 ≤ 10 ≤ 10 — ≤ 10 ≤ 10 ≤ 10
m=10 racer20 30 20 20 30 30 30 30 20 50 30 30 30

pKrh ≤10 ≤ 10 90 70 30 20 40 ≤ 10 30 — ≤ 10 ≤ 10 ≤ 10
m=20 racer50 40 40 40 50 50 50 71 40 90 60 40 41

pKrh 30 ≤ 10 701 681 100 100 130 ≤ 10 ≤ 10 — ≤ 10 20 20
m=50 racer91 100 90 90 90 100 100 90 90 241 170 90 90

pKrh 60 20 — — 981 1001 1402 20 20 — 140 40 60

Table 3.Runtimes in comparision of Pocket KRHyper and RacerPro 1.9
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Fig. 1.Runtimes in milliseconds, max. 250ms, timelimit 1500ms

contrast Racer scales well for these two problems up to sizes between 100 and 200.
Only above these limits Racer performs bad.

Besides these weaknesses the first-order model generation approach gives com-
petitive runtimes compared to a well established DL reasoner. For small test cases
(up to 10) and special cases (e.g. role hierarchies: test 12 and 13) the performance is
usually better than Racer. This is not to speak of superior performance, because Racer
is designed for a richer DL and has to maintain all indexes and caches, that will speed
up subsequent queries into the same TBox. One of Pocket KRHyper s nice features is
the symmetry of satisfiable and non-satisfiable problems or respectively subsumption
testing. The lack of scalability is most of all a consequence of the dropped indexing.
That was chosen deliberately because of the tightly limited memory in mobile phones.

Tests 8 and 9 demonstrate thelocal character of the FO tableaux and the transfor-
mation. The additional axioms in the knowledge base do not significantly influence
the time for answering the satisfiability. This is an important property for the suitabil-
ity into a resource scarce environment.

5 Conclusion

In this paper some details about the Pocket KRHyper approach to DL reasoning were
presented. Although the mobile reasoner was successful in its original application a
more thorough testing and comparison was due. Out of many tests 13 were described
in detail. For many other features like inverse roles or explicit disjuncts the compar-
ison revealed similar results. Overall the developed reasoner proved to be a useful
tool. The need to look into very specific details of the implementation and not into
the average capability or performance to solve problems motivated the disregard of
existing benchmarks.



Of course Racer is not the only competing system4. To ease our purposes Racer
supported the same syntax and I consider this a good basis for further developments.
Especially because Racer is going to implement the SWRL rule language I will re-
visit the comparison. Rules are a natural extension for the first-order reasoner. In fact
merely an interface has to be added. That was one of the reasons not to specialize
the reasoning procedure for DL purposes. Furthermore the transformation is likely
to include more features like normalizations and absorption in future versions. The
current version of Pocket KRHyper is available for download at sourceforge5.

Finally I would like to thank Racer-Systems for granting a license for the cur-
rent version. Compared to version 1.7 many improvements make a difference in this
comparison.
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