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Abstract
Adverse events detection is critical in many fields,
e.g., adverse drug event (ADE) detection in medi-
cal field. ADE is an unexpected and harmful con-
sequence of drug usage. Many researchers found
that identifying the correlation between the use of
drugs and adverse events from biomedical literature
can contribute a lot to drug safety monitoring. In
this paper, we propose a novel approach based on
biomedical literature to detect ADE. We first con-
struct a graph using candidate ADE extracted from
biomedical literature, and then propose a method
to select critical vertices from the graph as core
vertices with a clustering algorithm to group these
core vertices to build subgraphs. Lastly, the cor-
relations between drugs and events are calculated
based on the subgraphs for ADE detection. Exper-
iments show that our approach is highly feasible.

1 Introduction
Adverse events detection, such as adverse drug event (ADE)
detection, is very important in drug safety assessment. It en-
compasses all scientific and data gathering activities relating
to the detection, assessment, and understanding of adverse
events of medical products through the product life cycle
[Saless, 2005]. ADE refers to any unfortunate medical and
health events that occur during the course of drug treatment,
and this event does not necessarily have a causal relationship
with drug therapy [Liu et al., 2016; Cai et al., 2017]. ADE
might be caused by several drugs interacting with each other
when administered concomitantly. Though drug standards
are guided for the production and usage of drugs, it will still
lead to the occurrence of ADE even if we obey the criteria
drug standards.

As we all know, traditionally drug safety monitoring re-
lies on data from spontaneous reporting systems (SRS), such
as the US Food and Drug Administration’ (FDA) Adverse
Event Reporting System (FAERS), which contains reports of
suspected ADE submitted by health care providers, manu-
factures, and patients. However, FAERS data do have some
limitations. For example, FDA does not receive reports for
every adverse event or medication error that occurs in a prod-
uct. Therefore, FAERS data is not sufficient to calculate the

incidence of an adverse event or medication error in the U.S.
population.

Since there is no sufficient medical data or authoritative ev-
idence to identify the correlations between drugs and adverse
events quickly, it is challenging but extremely necessary to
detect ADE effectively using other methods. In this paper,
we focus on using the data extracted from biomedical liter-
ature according to [Winnenburg and Shah, 2016]. We pro-
pose a novel graph-based approach called G-ADE to detect
ADE. In G-ADE, we first construct a graph using candidate
ADE extracted from biomedical literature. We then propose
a novel method to select important vertices from the graph
as core vertices, and design an algorithm using these core
vertices for clustering in order to build a set of subgraphs.
This step is our main contribution in this paper because find-
ing core vertices in a graph has been proved extremely use-
ful for later processing [Yang et al., 2016; Min et al., 2009;
Yang et al., 2017; Yang and Chow, 2014]. Lastly, the cor-
relation between each drug-event pair is calculated based on
the subgraphs we constructed in the previous step to identify
ADE. We have also perform a few experiments to validate our
work using a gold standard of drug-adverse event correlations
spanning 159 drugs and four events.

The rest of this paper is organized as follows. In Section
2, we describe details of G-ADE including a core vertices se-
lection algorithm with subgraphs generation. In Section 3, we
describe our experiments with evaluation methods and result
analysis, and compare G-ADE with other methods. We also
conclude and discuss this study in Section 4.

2 Proposed Approach
The overview of G-ADE is described in Figure 1. The process
can be summarized as follows. Firstly, we extract all associ-
ated pairs between all adverse events and drugs from MED-
LINE according to [Winnenburg and Shah, 2016], and use
these pairs as basic knowledge to construct a fully connected
drug-event graph. These pairs represent a list of potential
ADE to be validated. Secondly, we propose a core vertices
selection algorithm to select core vertices in the drug-event
graph we built. Thirdly, we adopt an algorithm to generate
a set of subgraphs based on the core vertices obtained in the
previous step based on the idea from [Min et al., 2009] for
the purpose of key information extraction. Finally, we con-
nect all the subgraphs into a graph that in fact is a smaller size

41



of the original graph, and compute the similarity of all drug-
event pairs based on this new graph. If the drug-event pair’s
similarity is higher than the threshold we set up, we will rec-
ognize it as ADE. We will introduce the details of each step
in the following sections.

Figure 1: Overview of G-ADE

2.1 Core Vertices Selection
As we described earlier, the key is to select critical vertices as
core vertices in order to construct subgraphs. We propose a
method that computes each vertex’s importance based on vec-
tors generated by DeepWalk [Perozzi et al., 2014]. DeepWalk
has been proved successfully in social networks and graph
analysis. It learns the latent representations by modeling a
stream of short random walk, and then encodes it in a con-
tinuous vector space with low dimensions. In our purposed
method, we apply DeepWalk to the drug-event graph to get
a 64-dimensions vectors for each vertex. Let G = (V,E) to
be the drug-event graph, v 2 V , which represents a drug or
an event. H is the set of neighbor vertices of v, Hi 2 H , n
is the number of the neighbor vertices. We have Equation (1)
to compute the score of importance for each vertex. The core
vertices selection algorithm to adopt the score is described in
Algorithm 1.

score =

nP
i=1

Distv,Hi

n
(1)

2.2 Personal Rank for Clustering
Once we have a list of core vertices, we adopt Personal
Rank(PR) [Haveliwala, 2003] algorithm to generate associ-
ated subgraphs. PR is a graph clustering algorithm based
on random walk [Haveliwala, 2003], which performs well in
recommendation system and social network [Li et al., 2012;
Shen et al., 2016]. The basic idea of PR is similar to PageR-
ank [Bianchini et al., 2005]. Firstly, the algorithm computes
the score of importance of each vertex in the network, and
then sorts each node according to the score of the importance.
Eventually, the algorithm outputs Top-N vertices. The score
of importance is defined in Equation (2):

PRi = (1�↵)ri+↵
X

j2ini

PRj

|outi|
, ri =

⇢
1 i = vcore
0 i 6= vcore,

(2)

Algorithm 1 Core Vertices Selection Algorithm

Require: G = (V,E), a drug-event graph, t, a threshold
used to filter

Ensure: List, a sorted list of core vertices
1: learns the vectors of the V , vectors are the DeepWalk

Vectors
2: for each v 2 V do
3: for each Hi 2 H do
4: compute Distv,Hi , the distance between v and

Hi using vectors
5: end for
6: compute v’score using Equation (1)
7: end for
8: sorted v by its score, and put v which score is higher than

t into List

Figure 2: Example of Personal Rank

where PRi represents the score of importance of vertex i,
↵ is the probability of walking, outi represents the out de-
gree of vertex i and inj represents the in degree of vertex j,
vcore represents the core vertex. As shown in Figure 2, we set
PR of core vertices(A,B,C) to 1 and other vertices(a,b,c,d)
to 0 initially. Therefore, we have PR(A) = PR(B) =

PR(C) = 1, and PR(a) = PR(b) = PR(c) = PR(d) = 0

in the beginning, then we starts to walk from the vertex with
PR 6= 0. The probability of walking is ↵, correspondingly,
the probability of stopping is 1� ↵. For example, the proba-
bility of walking from A to a or c is 0.5 as a and c share the
importance of A, that is PR(a) = PR(c) = PR(A) ⇤ 0.5.
The process then continues to walk with probability of ↵ or
stop and go back to A with probability of 1� ↵. The process
will keep running until the PR of each vertex is stable. We
select up to top-100 highest PR vertices that attached to each
core vertex to construct subgraphs. In other words, we will
get a set of clusters/subgraphs in the end of this process.

2.3 Mining Adverse Drug Events
As now we have a set of clusters(subgraphs), we next want
to transform all the clusters into a graph for further pro-
cessing. We define Sg is the set of clusters we got in the
previous step, and G = (V,E) is the original graph. If
Ga = (Va, Ea) and Gb = (Vb, Eb) are two clusters in Sg ,
we put Ga and Gb into a new graph if there is an edge be-
tween va and vb in G, and va 2 Va, vb 2 Vb. We con-
tinue this process until all possible clusters are checked, and
a new graph is generated eventually. We then calculate the
similarity between drug vertices and event vertices in this
new graph according to their associated vectors generated by
DeepWalk. Note that the reason we run DeepWalk again on
the graph to generate new vector for each vertex because the
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structure of the graph is changed. If two vertices’ associated
vectors are very similar, then means these two vertices has
very closed information in the graph [Perozzi et al., 2014;
Cunchao Tu, 2016; Yang and Liu, 2015; Zhu et al., 2016;
2012]. In other words, this drug-event pair has higher proba-
bility to be an ADE. Therefore, according to the similarity of
each pair, we can mine ADE from the graph if the similarity
of drug-event pair is higher than a certain threshold we set.

3 Experiments
In this section, we will introduce the evaluation we have done
on OMOP standard data set [Ryan et al., 2013]. The exper-
imental results show evidence of significant improvement of
our proposed approach over baseline methods.

3.1 Datasets
Literature Data Set
The data set used in this paper can be downloaded from the
website1. It consists of candidate ADE pairs extracted from
MeSH term indexes of all 366k articles in MEDLINE that
are indexed with certain combinations of MeSH terms and
qualifiers according to [Winnenburg and Shah, 2016]. The
creation of this data set is described in detail in [Winnenburg
et al., 2015]. We extract PMID-Drug pairs (paper id and drug)
and PMID-Event pairs (paper id and event) from data set. The
detail data set is shown in Table 1.

Name Number

Pmid 366k

Drug 3416

Event 1602

Pmid - Drug pairs 418k

Pmid - Event pairs 552k

Table 1: Experimental data set

Gold Standard Data Set
We evaluate the experimental performance against the drug
safety reference set established by the observational medical
outcome partnership (OMOP) [Ryan et al., 2013]. This set
contains 399 drug-outcome pairs, covering 183 drugs from
several drug classes and four significant and actively moni-
tored adverse event outcomes: acute myocardial infarction,
acute renal failure, acute liver injury, and upper gastrointesti-
nal bleeding. Here we only select the positive part that indi-
cates ADE as the ground truth to validate our approach. Note
that we have removed a few drugs that cannot be found in our
graph. The data set is shown in Table 2.

1ftp://nlmpubs.nlm.nih.gov/online/mesh/2015/meshtrees/

Aggregation Outcome
Drugs

Positive Negative

Acute kidney injury 23 59

Acute liver injury 79 33

Acute myocardial infarction 33 61

GI bleed 24 62

Total 159 215

Table 2: OMOP data set

3.2 Baseline Methods
In order to evaluate the feasibility of G-ADE and the core
vertices selection algorithm, we use the following two meth-
ods(BG and CVTn) as the baseline methods.

* Basic Graph(BG): In this approach, We firstly con-
struct a graph using all candidate ADE extracted from
biomedical literature as described in Section 3.1. We
obtain the corresponding vector of event and drug
through the DeepWalk algorithm. Finally, their corre-
lations are calculated by cosine similarity, namely, basic
graph(BG).

* Core Vertices from Top n Nodes(CVTn): In this
method, we construct the graph using the same measure
as BG. We then simply select top N nodes as the core
vertices according to the degree of the node. We rebuild
new subgraphs using the core vertices with a clustering
algorithm. Lastly, the correlation/similarity between the
drug and the event is calculated based on the subgraphs.
We name it as CVTn.

3.3 Evaluation Standard
In the experiment, we calculate the similarity between event
and drug to according to the associated vector of each ver-
tex. The cosine similarity measure [On, 2008] between two
vectors is used that calculates the cosine of the angle between
them, and the cosine similarity formula is defined as:

SimilarityEvent,Drug =

����!
VEvent ⇥

���!
VDrug

||����!VEvent||⇥ ||���!VDrug||
(3)

The higher the similarity is, the more this event relates to
the drug. At the same time, we verify the accuracy of the stan-
dard data set by different thresholds. If the similarity between
drugs and events is higher than the threshold, we think they
are relevant. That is, the drug has an adverse effect on the
event. Therefore, we can calculate the predication accuracy
as: Accuracy = N/M , where N is the number of the drug-
even pair matched the ADE in OMOP and M is the number
of ADE in OMOP.
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Thr BG
CVTn G-ADE

PR K-means PR K-means
0.1 39.6% 42.1% 42.8% 50.3% 48.4%
0.2 74.8% 75.4% 76.1% 79.2% 78.0%
0.3 85.5% 86.8% 86.1% 91.1% 89.9%

Table 3: Prediction Accuracy in the OMOB data set.

3.4 Evaluation Results
The overall performance of G-ADE and two base-
lines(BG,CVTn) methods in terms of accuracy at different
thresholds using the OMOP data set as reference is summa-
rized in Table 3. Note that since the third step for clustering
of CVTn and G-ADE can both be replaced by other clustering
algorithms, e.g., K-means [Kanungo et al., 2002]. Therefore,
we have also provided the evaluation results produced by K-
means. In our experiments, we set K = 10 as this setting can
achieve the best performance on our dataset.

From the Table 3, we can clearly see that G-ADE outper-
forms the BG and CVTn methods with different clustering
algorithms (Personal Rank and K-means) at different thresh-
olds. Obviously, the prediction accuracy is improved for all
approaches with higher threshold. On the other hand, though
CVTn method performs better than the BG method but not
as good as G-ADE with both clustering algorithms, which
demonstrates that the core vertices selection plays an impor-
tant role to improve prediction accuracy. Overall, our pro-
posed approach based on core vertices selection and PG clus-
tering for the detection of adverse drug events is feasible as
91.1% prediction accuracy is achieved. Therefore, we can
conclude that through the core vertices selection and personal
rank clustering algorithm, the accuracy of adverse drug event
detection is effectively improved because the robust perfor-
mance is shown in our experiments.

4 Conclusions
Adverse drug event (ADE), defined as adverse patient out-
comes caused by medications, is a common issue but diffi-
cult to detect. In this paper, We propose an approach called
G-ADE based on biomedical literature to detect ADE. We
first construct a graph using candidate ADE extracted from
biomedical literature. We then propose a core vertices selec-
tion algorithm to select important vertices from the graph as
core vertices, and design a PR algorithm using the core ver-
tices for clustering to build subgraphs. Last but not least, the
correlation between the drug and the event is calculated using
the vector generated by DeepWalk based on the subgraphs. If
the correlation value is sufficiently high, we take this pair as
ADE. Our experimental results show that G-ADE performs
better than two baseline methods in a few scenarios. In the
future, we will pay more attention to build subgraphs on en-
semble different clustering methods to further improve the
performance and attempt to gain data from social networking
as this is where a lot of patients may talk about uncommon

side effects from medication and hence could lead to interest-
ing clinical results.
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