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Abstract. The core method [6] provides a way of translating logic programs into a
multilayer perceptron computing least models of the programs. In [7], a variant of
the core method for three valued Łukasiewicz logic and its applicability to cognitive
modelling were introduced. Building on these results, the present paper provides a
modified core suitable for supervised learning, implements and executes supervised
learning with the backpropagation algorithm and, finally, constructs a rule extrac-
tion method in order to close the neural-symbolic cycle.
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1 Introduction

The field of neural-symbolic integration attempts to bridge the gap between symbolic
and sub-symbolic AI. The former encompasses explicit knowledge representation, logic
programming and search-based problem solving techniques. While still being very much
alive in expert systems managing and reasoning over vast quantities of symbolic data, the
paradigm has great difficulty learning from, and finding structure in sets of noisy data.
Unfortunately this means that whole classes of problems which are integral to a common
conception of intelligence, such as image and voice recognition, can hardly be addressed
using symbolic AI. Sub-symbolic AI (often also called “connectionist AI”) on the other
hand refers to a variety of methods for learning from data, with artificial neural networks
(ANN) as one of the most prominent families of approaches. But while the learning of
simple logical dependencies from data is achieved with relative ease, the process becomes
increasingly difficult when higher-order concepts are involved [3]. Additionally, because
knowledge in sub-symbolic systems is represented in a distributed fashion that is hard
to interpret from an outside perspective, providing background knowledge in a format
that the respective algorithms can use is challenging. Both problems often become trivial
when tackled with symbolic systems.

Much stands to be gained from a unification of the two paradigms that could cancel out
their respective weak spots and highlight their strengths. The neural-symbolic approach to
integration centres around the concept of the neural-symbolic cycle (Figure 1). The cycle
contains two reasoning systems. One is symbol-based, employing available expert knowl-
edge, and the other is a connectionist system or ANN, learning from data. The challenge
of interfacing these systems is twofold. Coming from the symbolic side, the first task is



Fig. 1: The neural-symbolic cycle (from [1]).

to find a way of translating the existing symbolic knowledge into the connectionist sys-
tem. Secondly, one needs to devise methods for extracting the information gained by the
connectionist system through learning and convert it back into a clean symbolic format.

The core method [6] has been developed as a neural-symbolic system for, among oth-
ers, propositional modal [4] and covered first-order logic programs [2]. It provides a way
of translating logic programs into a type of multilayer perceptron (MLP) which, embed-
ded in the core architecture, computes least models of these programs. In [7], a variant of
the core method for three-valued Łukasiewicz logic [8] and its applicability to cognitive
modelling tasks is discussed. One of the unsolved tasks there is an expansion of the corre-
sponding architecture to allow training via the backpropagation algorithm [9]. Further, the
application of rule extraction methods should allow closure of the neural symbolic cycle.
The work reported in this paper provides a modified core suitable for supervised learning,
implements and executes supervised learning with the backpropagation algorithm and, fi-
nally, constructs a rule extraction method.3 Section 2 describes basic theory and methods,
after which Section 3 offers details of the actual project. Results are given in Section 4,
and Section 5 concludes the paper.

2 Foundations

Łukasiewicz logic programs The connective definitions for Łukasiewicz logic [8] are
provided in Figure 2. Conventionally, an interpretation assigns one of the three values >,
⊥ and u to each atom in the Universe U . An interpretation can, thus, be defined as a tuple
I = 〈I>, I⊥〉, where I> is a set containing all atoms assigned the value > and I⊥ contains
all atoms assigned ⊥. No atom is in both sets and those assigned u are in neither set. One
can speak of an empty interpretation when I>∪ I⊥ =∅ and a partial interpretation when
I>∪ I⊥ (U . I is a model of a formula G, iff I(G) =>.

A logic program is defined as a finite set of clauses of the form A← B1∧B2∧ . . .∧Bn
where the head of the clause, A, is an atom and the Bi, with 1 ≤ i ≤ n, in the body are
either literals, > or ⊥. Clauses of the form A← > and A← ⊥ are called positive and
negative facts respectively.

These logic programs are interpreted under weak completion. The bodies of all clauses
with the same head are concatenated as a disjunction into one body. The resulting formu-

3 The present paper is a summary of [5]. Full details including conceptual derivations of algo-
rithms, pseudo codes, and proofs of relevant theoretical statements can be found there.



∧ > u ⊥
> > u ⊥
u u u ⊥
⊥ ⊥ ⊥ ⊥

∨ > u ⊥
> > > >
u > u u
⊥ > u ⊥

¬
> ⊥
u u
⊥ >

→ > u ⊥
> > u ⊥
u > > u
⊥ > > >

↔ > u ⊥
> > u ⊥
u u > u
⊥ ⊥ u >

Fig. 2: Connective definitions for Łukasiewicz logic.

las consist of one implication per head. Next, all← are replaced with ↔. Atoms which
are heads in clauses whose bodies all evaluate as ⊥ are now ⊥ as well. Concatenating all
clauses into one conjunction creates a single formula representing the weakly completed
program. Weak completion adds non-monotonicity to Łukasiewicz logic. Atoms evaluat-
ing as ⊥ because all associated bodies evaluated as ⊥, can become > when adding an-
other clause without contradiction. Also, weakly completed Łukasiewicz logic programs
are never contradictory and have at least one model [7].

Models for such a logic program P can be computed through a consequence operator
ΦP. Starting from an empty interpretation I, the immediate consequence ΦP(I) is calcu-
lated as a new interpretation and this process is iterated, until I = ΦP(I) and a fixed point
is reached. As shown in [7], least models of Łukasiewicz logic under weak completion are
identical to the least fixed points of the Stenning-van-Lambalgen consequence operator
ΦSvL,P from [10], which is defined as follows:

ΦSvL,P(I) = 〈J>,J⊥〉, where
J> = {A | ∃(A← body) ∈ P : I(body) =>} and
J⊥ = {A | ∃(A← body) ∈ P ∧ ∀(A← body) ∈ P : I(body) =⊥}

In [7] an algorithm is provided which translates the ΦSvL,P consequence operator of
a program into a 3-layer feed-forward network, which computes the same function. This
network may then be used on multiple iterations until a fixed point is reached.

Hölldobler’s core method The following account of the core architecture chooses a
different perspective than the one in [7]. It aims at a better understanding of the core
structure with regard to required modifications (in particular the introduction of sigmoidal
activation units).

In both input and output layer of the network, each atom A of the program is repre-
sented by two neurones. Activation in the first one indicates A =>, in the second A =⊥.
If neither neurone is active, then A = u. The core does not allow for both neurones to be
active in the same iteration. The input layer also contains one neurone each, representing
> and ⊥, which are always active. Each program clause—or rather each clause body—
is represented by two neurones 〈h>,h⊥〉 in the hidden layer. Whether a clause’s body is
mapped to >, ⊥ or u is encoded in the same way as used for the atoms.

All connections between the layers of the core serve the function of logic gates. An
h> neurone is connected to one input layer neurone for each conjunct in the clause body
it represents. If the conjunct is an atom A it connects to A>, if it is a negated atom ¬A it
connects to A⊥, and if the conjunct is > it connects to that unit. Weights and threshold
are set to form an ’and’-gate (h> is activated if all input neurones fire). If a conjunct is ⊥,
no connection is formed, but for the sake of the logic gate this is treated as a connection
to an inactive unit, preventing the clause neurone from ever firing. Respectively, an h⊥



neurone connects to A⊥ neurones where A is a conjunct, and A> neurones where ¬A is
one. In case a conjunct is ⊥, h> connects to the ⊥ neurone, and if a conjunct is > then no
connection is formed. Weights and threshold are set to form an ’or’-gate (h⊥ is activated
if one or more input neurones fire). Clause bodies are represented as > if and only if all
their conjuncts are mapped to >, and as ⊥ if and only if one or more conjuncts are ⊥.

In the output layer, each neurone has one connection for each clause in which the
associated atom appears as head. A> neurones are connected to the h> neurones of the
associated clauses, forming an ’or’-gate, and A⊥ neurones are connected to the h⊥ neu-
rones, forming an ’and’-gate. Thus, atoms are > when one or more associated clauses are
>, and ⊥ when all associated clauses are ⊥.

The logic gates are implemented such that all connection weights in the network have
the same value ω > 0 and ’or’-gate thresholds are at 0.5 ·ω, while ’and’-gate thresholds
equal to (l− 0.5) ·ω, where l is the number of incoming connections. All neurones use
the Heaviside activation function, emitting 1 if the received activation meets or exceeds
the threshold and 0 otherwise. A fixed point is computed by feeding the network’s output
back into the input layer until it equals the previous output.

The backpropagation algorithm The general derivation of the backpropagation algo-
rithm [9] is fairly abstract and holds for different cost and activation functions. In what fol-
lows a logistical cost function J(w)= 1

m ∑
m
i=1[y

(i) loghw(x(i))+(1−y(i)) log(1−hw(x(i)))],
with w the vector of weights and hw(x(i)) the network output for sample input x(i) as com-
pared to sample output y(i), has been used with the standard sigmoid as activation function.
The implementation applies on-line training which better accommodates the large varia-
tions in sample size encountered in different cores. Also, the algorithm as implemented
in the experimental code uses momentum, i.e. saves the weight adjustment terms in each
iteration and adds a fraction of them to the weight adjustment in the next iteration. This
tends to speed up convergence by preventing fluctuation of the weights to some extent
and also leads to some robustness against small local optima.

3 Theory and implementation of learning cores

Before supervised learning can be attempted in cores, three problems have to be ad-
dressed. The core architecture must reach fixed points to compute results. While the ex-
istence of these fixed points has been proven for translated programs, this result does
not generalise to cores whose weights have changed over the learning process. The first
task, therefore, is to ensure the existence of fixed points throughout the learning process.
In addition, a differentiable activation function must be introduced, while preserving the
core’s semantics. The backpropagation algorithm relies on the computation of derivatives
of the cost function which includes the activation functions of the network. The Heaviside
function is not differentiable and must be replaced. Lastly, one must decide, what kinds of
samples will be used for supervised learning. The core, as it was proposed by Hölldobler
is only capable of computing the least fixed point, when starting from an empty interpre-
tation. If one wants to capture any of the structure of the program, more than one sample
is needed for training.



Ensuring a fixed point with unipolar weights: Convergence to a fixed point is essen-
tial for the core method and has to be ensured also throughout the changes in the network
during the learning period. Therefore, the network has been restricted to unipolar weights.
When limiting all non-bias weights to positive values, there are no inhibitory connections
and thus the activation of the network will monotonically increase on every iteration until
it plateaus at a fixed point. The elimination of inhibitory units of course reduces the mod-
elling capacity. Still, since the translation of logic programs into cores itself only uses
positive weights every Łukasiewicz logic program can be learned using these simpler
unipolar networks.

Unipolarity is achieved by using the sigmoid function as activation function while
squaring all weights except for the bias ones, i.e. sig(z) = 1/(1+e−z) where z = w0 ·x0 +
∑i>0(

1
2 (wi)

2 · xi). To preserve the previous behaviour of cores, all non-bias weights are
replaced by their respective square root after the translation algorithm has been applied.
With this measure, the translation algorithm can ignore the modification and act as if it
was the standard sigmoid so long as it only sets positive weights.

Preserving core semantics: With the introduction of sigmoidal activation to the net-
work, the range of possible activations for each neurone changes from 0 and 1 to the
interval ]0,1[. To ensure compatibility with the core architecture, the network’s output is
discretised by rounding it half up to 0 or 1. A fixed point is reached when this rounded
output is equal to the input of the current iteration. Within the network, however, an inter-
val [A+,1] is defined where all activation values in that interval are considered as firing,
and another interval [0,A−] of activations is regarded as not firing. Both intervals must
be disjoint (A− < A+) and it must be ensured that no activations in the interval ]A−,A+[
are produced. The approach of using logic gates can be maintained, but must deal with
the following complications. The output of non-firing neurones can take on values up to
A−, thus an ’or’-gate must ensure that it won’t fire even if all connected neurones send an
activation of A− each, while at the same time guaranteeing that it will fire if only one neu-
rone sends activation A+. Similarly ’and’-gates should fire when all connected neurones
send A+, but not if all but one send an activation of 1 and the last one sends A−. These
constraints can only be satisfied with suitable A− and A+.

In the core, both A− and A+ are determined by the value of ω. If ω is large, A− and
A+ approach respectively 0 and 1. For a small ω, both values lie close to 1/2. In [5], it
has been shown that the semantics of the network are preserved if ω > 2log(2deg− 1),
where deg is the maximum in-degree among neurones in the output layer.

Fixed point calculation with initial activation: The original core architecture serves to
compute fixed points for a given logic program and no additional input. For training a
network which captures the functionality of the program, more samples are required. It
seems like an obvious choice to generate additional samples for possible interpretations of
the atoms. There are 3n possible interpretations for a set of ternary logic formulas P with
n atoms. What additional inferences P allows, based on a partial interpretation, provides
information about P, and having this information for all 3n interpretations specifies P to
its semantic equivalence class.

C-interpretation: A naı̈ve approach for using such partial interpretations in a core is
to enforce them as the base activation while running the core, and see what additional



inferences are drawn before reaching a fixed point. This is achieved by adding the inter-
pretation to every starting activation on the first iteration as well as to the output at the end
of every iteration.Unfortunately, determining the value of an atom from the outset while
leaving the program as is, takes away both the non-monotonicity and the property of non-
contradiction of weakly completed logic programs. On the plus side, only few changes
to the core are necessary to accommodate this interpretation, which will from now on be
referred to as C-interpretation.

Ł-interpretation: In order to preserve the semantics of weakly completed Łukasie-
wicz logic, an alternative Ł-interpretation is proposed. It seems more adequate to model
different interpretations in such a way that they represent logic programs in their own
right. As such, setting an atom A to > or ⊥ in the interpretation should have the same
effect as adding a positive or negative fact to the program. Doing this preserves the im-
portant property that the Stenning-van-Lambalgen consequence operator always reaches
a model. Going with the interpretation as adding clauses to the program, the most intuitive
approach would be adding neurones to the hidden layer of the core which represent these
rules. Unfortunately, this introduces several major problems especially with regard to the
learning mechanism. It therefore seems more promising to adjust the way in which the
inputs to the network are generated and outputs are interpreted. Given weak completion
negative facts like A←⊥ only affect the program if there is no other clause with head A
in the program. In this case A will be set to ⊥ and keep this value, as there is no other
clause to change it. This can be modelled in the core by checking the in-degree of the
atom’s associated output unit in the network. If the in-degree is 0, A is set to ⊥ in the
input to the network on every iteration as well as on the final output, which in the neural
net means the activation of the neurones corresponding to A is (0,1). For positive facts
of the type A←>, A will be true independently of the rest of the program. This means
A should be set to > on all inputs as well as the final output, i.e. the activation is set to
(1,0). Because the clause is part of the interpretation and not translated into the network,
the network will still produce activation in the A⊥ output neurone, whenever all program
clauses with A in the head are false. The contradiction is resolved by setting the activation
of the A⊥ neurone in the output to 0 on all inputs and the final output.

C*-interpretation: Additionally, a form of Ł-interpretation without contradiction res-
olution will be tested. C*-interpretation can be trained better than Ł-interpretation but still
bears similarities. Training under C- and C*-interpretations performs so similarly that C-
interpretation will not be discussed separately in the empirical results.

All three interpretations generate the same output for empty interpretations. Further-
more all non-contradictory models under C*-interpretation are equivalent to the Ł-inter-
pretation under the same input.

Backpropagation in cores: With the modified core it is now possible to create samples
and test the core’s capacity for learning. In the given set-up, two cores are used. The first
core is generated by translating the complete program into it and is subsequently run with
all possible inputs computing the desired outputs, the pairs of which will be used as train-
ing samples. Core number two is created based on a partial version of the program, where
some clauses have been deleted. Now the learning task is to train the second core with
samples from the first one and see whether it can learn the missing parts of the program.
It may take the core multiple iterations to reach a fixed point, but only the last one is used
for training. For a given sample, the core is run on the sample input and when reaching a



fixed point returns activation values of all the networks layers. Note that the activation of
the output layer is not the final output of the core, which may contain modifications from
interpretation or contradiction-resolution. The backpropagation algorithm is then applied
to the network with that activation.

Rule extraction: The proposed algorithm for extracting information from a core focuses
on C- and C*-interpretation. Through iterations the core’s activation increases monoton-
ically under these interpretations ensuring monotonicity with regard to interpretations.
While the number of possible interpretations rises exponentially with the number of
atoms, monotonicity allows for heavy pruning making a viable solution possible for rea-
sonable sample sizes.

The basic extraction algorithm: The algorithm extracts all minimal activating and all
maximal non-activating inputs for each output neurone of the network, which can then be
used to compute the logical rules generating this activation. In the following, the set of all
inputs to the network will be looked at as a partial order with the input vector of zeros as
bottom element and the vector of ones as top element. Input vectors are ordered in such a
way that v1 ≥ v2⇔∀i : v1[i]≥ v2[i].

For each output neurone separately, the algorithm traverses the space of all possible in-
terpretations by advancing alternatingly an upper and a lower boundary of interpretations
starting from top and bottom element. The new boundaries are generated by computing
all direct successors of each element of the existing boundary. For an element of the lower
boundary a direct successor is a copy of the element in which exactly one activation is
changed from 0 to 1. The direct successor of an element in the upper boundary, analo-
gously, has one active input less than that element. All inputs connected through a series
of direct successions will be called successors and the definition for predecessors follows
from this. An input in the lower boundary is said to be subsumed by an activating input if it
is a successor of that input, and is subsumed by a non-activating input if it is a predecessor
of that input. For subsumption in the upper boundary, successor and predecessor relations
are reversed. In either case, the target-activation produced by the subsumed input is equal
to, and therefore determined by, the other input. Whenever an activating input is found in
the lower boundary, which is not subsumed by an input already stored in the set of min-
imal activating inputs, it is added to that set. The progression through a lower boundary
ensures that all predecessors have already been checked and the one that has been found
is in fact minimal. Also, if all direct successors of a non-activating input are activating,
then that input is added to the list of maximal non-activating inputs. In the upper bound-
ary, relevant inputs are found in an analogous manner, where activation is the default. As
a result of the pruning mechanisms (discussed below) the algorithm terminates once the
two boundaries have passed by one another.

Pruning: Due to the monotonic nature of the space of possible inputs, once an acti-
vating input is found in the lower bound, none of its successors will be activating as well.
From the perspective of the lower boundary, minimal activating inputs will be called rules
and maximal non-activating inputs are called anti-rules. These terms are relative to the
boundary, such that rules in the lower boundary are anti-rules in the upper boundary and
vice versa. When a rule is discovered, all of its successors should be pruned as their values
will hold no new information. This must be ensured both in the current boundary (where
it is a rule) and the opposite boundary (where it is an anti-rule).



The algorithm refers to inputs as vertex objects. Alongside its input value and some
additional processing information, each vertex stores a memory array to keep track of the
direct successors it should generate and those that should be pruned. This array has one
entry for each neurone, which is 1 if switching the value of this input from 0 to 1 or vice
versa will generate a valid successor, 0 if the successor and all subsequent successors are
invalid, and -1 if the direct successor is invalid but later ones may be valid.

A test function checks whether a vertex is a rule or subsumed by an anti-rule. If the
vertex is a rule, the memory array is set to all zeros, so that no successors are generated
and the vertex is added to the set of found rules. If the vertex is subsumed by an anti-rule,
some—but not necessarily all—successors will be subsumed as well. In all places where
switching the input would generate a subsumed direct successor, the memory array is set
from 1 to -1. This information is employed in a successor function which creates the di-
rect successors of a given vertex, but also uses the step to exchange pruning information
among the successors. Firstly, the input vertex is tested again before each valid direct suc-
cessor of the vertex (as indicated by the memory array) is looked up; if it does not exist
yet, it is generated and tested. For each such successor which is a rule, the preceding ver-
tex’s memory is set to 0 at the index which was used to generate that successor, indicating
that this successor should not be investigated further. After completion, all the successors
are again traversed and all 0s from the vertex memory are copied into their respective
memories as well. Each successor receives information about all vertices with which it
shares a common direct predecessor.

When a rule is discovered, all of its direct predecessors will set the index in their
memory which generated this rule to 0 and pass this information on to all their successors.
If a vertex subsumed by the rule were to be generated, it would have to have a direct
predecessor which is not subsumed by the rule (or the problem propagates down until this
condition occurs). This predecessor, however, must be a successor of one of the rule’s
predecessors. Therefore it would not generate that vertex and it follows that no vertices
subsumed by rules are generated. Finally, the successor function also determines whether
the given vertex is an anti-rule. This is the case if the vertex is not subsumed by an anti-
rule (i.e. no entry in the memory is set to −1) and no generated successor has the same
target-activation value as the vertex. As rules trivially share these properties by having all
their successors pruned, they must be filtered out. This is done by checking for the right
target-activation given the vertex’s boundary, before adding it to the set of rules. In the
lower bound an anti-rule must be non-activating, and activating if it is in the upper bound.

Now, when the algorithm creates the two boundaries and traverses the partial order,
the pruning ensures no vertices that are subsumed by known rules are looked at. In do-
ing so, the anti-rule related pruning has to be handled with care: In general, all direct
successors of a vertex might be subsumed by some anti-rules. In this case, declaring all
direct successors invalid could hinder the generation of valid ones down the line. This is
solved by looking only at the first anti-rule found, rather than the whole set of subsuming
anti-rules. Apart from the trivial case where the anti-rule is the top or bottom element
(which ends the search as either all inputs are activating or none are), a single anti-rule
will not prune all successors of the vertex. The indices at which the anti-rule differs from
its predecessors (of which, barring the trivial cases, it has at least one) can be changed in
the vertex to generate valid successors.

While soundness and completeness of the extraction algorithm prior to pruning are
evident, in [5] it has been shown that both properties are also maintained with pruning.



4 Empirical results

The following exemplary test results are based on an implementation in JULIA.4 Figure 3
gives the first program in the format used by the implementation.←, ∧, and ¬ are encoded
as <-, & and - respectively. The partial program, consisting of clauses 1, 5 and 6, is
translated into a core and then trained on samples generated from the full program.

a <- b & -d & -e
b <- a
c <- b
d <- FF
e <- c & d
e <- -a & -b

(a) full program

a <- b & -d & -e
e <- c & d
e <- -a & -b

(b) partial program

Fig. 3: The program P1.

Comparison of C*- and Ł-interpretation The example program P1 illustrates that there
are cases in which the method yields good results under C*-interpretation. Training was
done with learning rate and momentum of 0.05 under C*-interpretation and 0.02 under
Ł-interpretation. During the learning process a number of parameters are measured and
reported for intermediate results after every 200 training steps (500 in later examples).
%corr indicates the percentage of correctly classified training samples, eTotal gives the
total number of errors (i.e. the number of incorrect rounded outputs over all output neu-
rones and all samples). costJ is the total value of the error cost function. If the learning
algorithm functions correctly, the cost function should steadily decline, followed by a
decrease of the total number of errors and an overall rise of the number of correctly clas-
sified samples. Since %corr does not differentiate between samples with just one error
and samples in which every single neurone is wrongly classified, the latter correlation
can be quite weak. Especially when the overall number of errors is still high, %corr may
even increase, as eTotal is reduced but more evenly distributed across the samples. A sim-
ilar distribution of errors may also happen in the relationship between cost function and
number of errors.

For the C- and C*-interpretation samples (Figure 4), training of P1 tends to converge
after two to three thousand iterations. Depending on the random initialisation, usually
one of two optima is reached, the first one being at around 80% correct classification, the
second one at 100%.

Under Łukasiewicz interpretation (Figure 5), the cost function can still be seen to
generally decrease before it starts to fluctuate. Choosing smaller learning rates remedies
the fluctuation to some extent, but in many cases the algorithm does not seem to converge
even for small learning rates. The graphs also show less correlation between the cost
function and the total number of errors. This can be attributed to the conflict resolution
mechanism active under Ł-interpretation, which may generate errors on the final output
that are not accounted for in the cost function.

4 The source code is available from http://github.com/Fr-d-rik/.

http://github.com/Fr-d-rik/
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Fig. 4: P1 training results under C*-interpretation.
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Fig. 5: P1 training results under Ł-interpretation.

The problem of hidden errors The program P2 (Figure 6) contains 8 atoms, three more
than the previous program. This adds 6 neurones to the network and increases the number
of training samples from 243 to 6561. The fluctuation in the plots (Figures 7 and 8) can
in part be explained by this fact. Steps of 500 samples make up less than 10% of the total
sample size and may at times lead the algorithm in different directions.

What is interesting about this example, is how the algorithm can be observed plum-
meting in overall performance in the first 500 training steps. This can be attributed to
two factors. Under the logistic cost function, which incentivises many smaller errors over
fewer large ones, distributing the error may serve to reduce the overall cost but increase
the total amount. Secondly, the backpropagation algorithm is based on the network out-
put. And as the final output is created only after all facts from the input, backpropagation
will perceive all misclassifications which are fixed by this final step. Correcting for these
errors will decrease the cost function, but does not increase the core’s performance. Un-
der Ł-interpretation, the contradiction resolution step contributes to this problem with an
additional layer of error correction invisible to the learning algorithm. Moreover, this step
cannot be modeled without inhibitory connections, which leaves the algorithm trying—
and failing—to correct an error that does not actually exist. There may be multiple reasons
for the weak performance under Ł-interpretation, but this is certainly one of them.

In this example, these shortcomings are underlined by the fact that the initial perfor-
mance from partial background knowledge is much better than the local optimum reached
through training.



a <- TT
b <- a & -c
d <- c
d <- e
f <- e & -b
f <- a & g & -d
h <- FF

(a) full program

a <- TT
b <- a & -c
f <- e & -b
f <- a & g & -d
h <- FF

(b) partial program

Fig. 6: The program P2.
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Fig. 7: P2 training results under C*-interpretation.
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Fig. 8: P2 training results under Ł-interpretation.

Core compression The program P3 (Figure 9) is a long chain of inferences. During train-
ing a phenomenon appears which can be observed in most trained cores. Looking at the
average number of core iterations over all samples (avgIt in Figure 10), the partial pro-
gram starts at 4.14 but immediately drops to around 2, changing very little thereafter. This
number includes the last iteration where input and output must be equal. Thus, in all but
few cases the inference is compressed into one iteration. In general, trained cores tend to
have fewer iterations on average than their translated counterparts. This can be explained



by the backpropagation algorithm not taking multiple iterations into account and optimis-
ing for correct output after just one iteration. This does not decrease the performance of
trained cores, but it suggests that they do not fully utilise the core-architecture.

b <- a
c <- b
d <- c
e <- d
f <- e
g <- f
g <- FF

(a) full program

b <- a
c <- b
d <- c
e <- d
f <- e
g <- FF

(b) partial program

Fig. 9: The program P3.
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Fig. 10: P3 training results under C*-interpretation.

Analysis through rule extraction The developed rule extraction method may be used
to take a look at individual neurones and their activation rules. This can be done both for
translated and trained cores to see what differences remain after training.

When the core was generated from the program P2 with two missing clauses d <-
c and d <- e and then trained, it turns out that the d> neurone’s activation rules in the
trained core match the full program. While learning was successful with regard to d>, d⊥

does not show any activation in the trained core, whereas the core containing the complete
translated program has an activation in d⊥ when both c⊥ and e⊥ are active. Also, other



inference structures have suffered damage. For instance, f> has three activation rules in
the core containing the complete program. In the trained core two rules are extracted, one
of which is wrong. This does not mean that the connections to the f> output neurone are
necessarily wrong. Due to the core’s multiple iterations, the activation patterns of different
neurones are highly interdependent and errors are hard to localise.

out(d>) a> a⊥ b> b⊥ c> c⊥ d> d⊥ e> e⊥ f> f⊥ g> g⊥ h> h⊥

translated 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
translated 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
translated 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

trained 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
trained 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
trained 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

out(f>) a> a⊥ b> b⊥ c> c⊥ d> d⊥ e> e⊥ f> f⊥ g> g⊥ h> h⊥

translated 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
translated 2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
translated 3 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0

trained 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
trained 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Fig. 11: Extracted minimal activating inputs of d> and f> in P2.

5 Discussion and outlook

In this project the applicability of the backpropagation algorithm to Łukasiewicz logic
cores has been investigated. In order to train the cores, sigmoidal activation units were
introduced along with the proposition of unipolar weights. As intermediate result, a train-
able core has been presented and a basic rule extraction algorithm has been proposed for
cores trained under C- or C*-interpretation. In the remainder of this section we first dis-
cuss several open questions, followed by potential future improvements for the approach.

Proof for last-iteration backpropagation: An MLP with a sufficient number of hidden
units is able to model the behaviour of the types of logic programs presented here, as is a
unipolar MLP embedded in the core structure. Still, it is less clear how a unipolar core can
be trained to reach this performance. Training the core only on the last iteration in which
the input equals the output does not take the core’s capacity for multiple iterations into
account. Also, the algorithm is only guaranteed to work as intended on inputs which are
fixed points. One sign that backpropagation may not be the method of choice for training
cores is that the average number of iterations in the core tends to decline rapidly over the
learning process before usually settling at around 2 (i.e., the minimum possible number
for all non-fixpoint inputs). Information about the program seems to be compressed in the
network leading to redundancy, rather than building on itself as seen in an untrained core.

Disparity between C* and Ł: As the empirical results indicate, Ł-interpretation is
harder to train than the C*-interpretation. Our hope is that this gap can be bridged at
a later point. In case this cannot be done in a satisfying manner, another route would



be to explore how much training a network on C*-interpretation samples can improve
performance on Ł-interpretation test sets. While C*-models are not generally equal to
Ł-models, their similarities might be sufficient to motivate learning on one interpretation
in order to improve performance on the other. Also, a method for generally translating
between Ł-model samples and their C*-model equivalents is still lacking.

Modified backpropagation for better results: The current on-line backpropagation al-
gorithm with momentum and standard gradient descent is sufficient to provide mostly
qualitative results. A quantitative analysis of how well a core can be trained requires a
better initialisation method for the weights of added neurones and running of multiple
initialisations. Performance can then be measured by means of cross-validation and com-
parison to other approaches with a sample size plausible for application scenarios.

Exploration of other optimisation methods: Most current difficulties likely stem from
the tight focus of backpropagation on the ANN, which fails to take the rest of the core
architecture into account. Evolutionary algorithms are likely a good fit, as they grant more
freedom in defining fitness criteria. These could, for example, incentivise a higher number
of iterations, preventing the network from condensing all information into one iteration.

Completion of the extraction algorithm: The current extraction method is missing a
translation of discovered rules into actual logic program clauses. Trained cores with less
than perfect classification may not represent a clean logic program, requiring a compro-
mise between completeness and soundness in constructing translation methods.
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