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Abstract. The threat-sensitive predator avoidance hypothesis states that preys 

are able to assess the level of danger of the environment by using direct and in-

direct predator cues. The existence of a neural system which determines this 

ability has been studied in many animal species like minnows, mosquitoes and 

wood frogs. What is still under debate is the role of evolution and learning for 

the emergence of this assessment system. We propose a bio-inspired computing 

model of how risk management can arise as a result of both factors and prove 

its impact on fitness in simulated robotic agents equipped with recurrent neural 

networks and evolved with genetic algorithm. The agents are trained and tested 

in environments with different level of danger and their performances are ana-

lyzed and compared. 

Keywords. Risk assessment · Threat sensitivity · Bio-inspired computing · Re-

current Neural Networks · Evolution 

1 Introduction 

Potential threats are signaled by uncertain or ambiguous cues and differ from active 

threats in that they do not require an immediate interaction with their source but grad-

ed behavioral adjustments. However, once the state of vigilance has been heightened, 

there is no positive evidence that the risk was eliminated [1]. 

The presence of a defensive system that allows organisms to detect and assess po-

tential threats has been extensively studied by ethological psychologists, ethologists 

and neuroscientists, and it has been labeled in different ways, like "security motiva-

tion system" [2], "hazard management system" [3] or "risk assessment system" [4]. 

This mechanism is thought to have been shaped throughout the evolution in order to 

allow individual preys to respond appropriately to the degree of predatory threat. As 

stated by the threat-sensitive predator avoidance hypothesis, animals need to trade-off 

antipredator responses against other activities such as feeding or territorial defense 

and they can do so by altering their avoidance behavior according to the magnitude of 
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the danger [5]. Animals are also able to detect temporal variation in the risk of preda-

tion. These changes over time can occur seasonally, daily or periodically and affect 

the prey’s adaptation and fitness. The idea that preys are able to optimally adjust their 

behavior across different states of threat is called “risk allocation hypothesis” [6]. 

The cues of the presence of a danger can be direct (such as visual, tactile or audito-

ry) or indirect (e.g. odor); while the former type signals unambiguously that the threat 

is near, the latter needs to be carefully processed by the animal in order to allow the 

right behavioral decision [7]. The absence of direct cues does not constitute a proof of 

the absence of a threat. As Woody proposes, only an internal signal of security – or, in 

humans, a subjective conviction or feeling – can allow the termination of defensive 

behaviors [8][2].  

1.1 Antipredator Behavior and Uncertainty 

The ability of preys to respond appropriately to dangerous situations and to specific 

predators is fundamental for the species’ survival and adaptation. Since animals expe-

rience a huge variety of situations, the debate about how they learn to recognize po-

tential predators is still open. Many studies proved the existence of an innate recogni-

tion mechanism for predators in mammals, amphibians and fishes, but other species 

exhibited it only as a result of learning [9]. Scheurer, in his study, proved that steel-

head trout who had no experience of their common predator Dolly Varden for 15 

generations, exhibited genetic threat responses when exposed to their odor again [10]. 

An evidence of the importance of learning for other species, instead, is represented by 

the case of goldfish, as showed by Zhao and colleagues. [11]. In their study, groups of 

goldfishes were conditioned to the presence of predator with different concentrations 

of its odor. Those which were conditioned in the most dangerous environment (high-

est concentration) resulted in a an overall higher survivability when compared with 

other groups. 

The assessment of predation risk is complicated by the variability of danger across 

space and time, and of the predator itself. The threat level may vary according to the 

day/night shift, seasonal changes, growth or environment [6][12]. This leads to a high 

level of uncertainty that preys need to face when assessing the risk and deciding be-

havior. Ferrari et al. showed that fathead minnows are able to continuously update 

their perception of risk based on their most recent experience with the predator, dis-

proving the hypothesis that they may average the risk of their past learning experienc-

es [13,14]. This species, in fact, used only the last information acquired to shape the 

intensity of their threat response. Wood frogs, as demonstrated by Ferrari et al., are 

also able to associate the level of risk with the time of day: the defensive response 

towards the specific predators was significantly higher when the hours of the exposi-

tion were matching those of the conditioning [15,16]. 

1.2 Neural Circuits of Threat Sensitivity 

The circuit of threat perception in the brain has been extensively studied in both hu-

mans and animals. Potential and active threats, in fact, are processed by the same 



regions and antipredator behavior is often associated with the emotion of fear. Fear 

has been the most studied affective state, due to the simplicity of eliciting it in rodents 

and other animals. There is also a strong similarity in the response patterns to threats 

among mammalians. 

The structures primarily involved in the activation of responses to threatening 

stimuli are the amygdala, crucial for processing every aspect of the emotion of fear 

[17,18] and its connection to the hippocampus, which links threat sensation to episod-

ic memory determining the association [19]. These direct and immediate signals from 

the amygdala are also responsible of the incredibly fast processing and response of the 

organisms to fearful stimuli, allowing higher chance of survival. The conscious per-

ception of danger is mediated by the medial prefrontal cortex while physiological 

responses are a result of the activation of the hypothalamic-pituitary-adrenal axis, 

which controls the level of ADH and ACTH, determining the secretion of cortisol 

[20].  

1.3 Threat Sensitivity and Psychopathology 

The importance of the risk assessment system and sensitivity to danger is extremely 

high in terms of adaptation, especially since this mechanism plays a key role for the 

presentation of anxious arousal and heightened vigilance. The prolonged activation of 

behavioral defense circuits can, in fact, result in a pathological response to threat, 

causing the birth of disorders as generalized anxiety and depression [21]. Attentional 

biases to threat stimuli can be the trigger of anxiety disorders since these cognitive 

distortions can lead to hyper-arousability and overestimation of the harmfulness of the 

environment [22,23]. For example, anxious individuals detect threatening cues and 

stimuli faster than controls [24]. 

Defensive behavior is not cost free for humans and animals, and, in particular, 

avoidance behaviors can cause restricted or limited access to fundamental resources 

like food, social activity, exploration [20]. Therefore, a persistent activation of a sys-

tem designed for a short-term response is considered a maladaptive strategy [21]. 

Chronic stress is also related to permanent damage to the hippocampus [25]. 

1.4 Risk Allocation and Minimum Behavioral Response Threshold  

In juvenile cichlids, the defensive response is a function of the concentration of preda-

tor cues experienced. Brown et al., in fact, demonstrated that the intensity of the de-

fensive behavior was stronger if the alarm cue concentration was higher and weaker if 

this concentration was lower. Other than that, the minimum stimulus concentration 

able to evoke the antipredator behavior was lower if the cichlids had been exposed to 

higher concentration in the days before the test, and higher if the cichlids had been 

previously exposed to a lower concentration, therefore showing a higher tolerance to 

the alarm cues. These results support both the risk allocation and the threat sensitive 

predator avoidance hypothesis. The minimum concentration needed to elicit an overt 

response was labeled  “minimum behavioral response threshold” [26]. 



In our study we aim at investigating the emergence of threat sensitivity by using 

simulated robots embedded with a recurrent neural network (RNN) and evolved with 

standard genetic algorithm. The neural network architecture allows the agents to col-

lect information from the environment and try to determine whether is safe or not. 

Other than that, we test the risk allocation hypothesis by varying the level of danger 

throughout both generations and single trials, analyzing the difference in behavior of 

the robots in each condition.  

2 Materials and Methods 

The framework we used for carrying out the robot simulations represents a modifica-

tion of the experimental setting described in a preliminary study [27]. Simulated 

agents equipped with different neural network architectures were evolved to learn to 

discriminate dangerous stimuli from safe ones on a whiteboard in different conditions. 

We showed the effectiveness of the methodology and analyzed the avoiding behavior 

exhibited by the robots in terms of fitness and performance. 

The software used for simulating the environment and the robots is Evorobot*, an 

open source simulator which allows to train and test neural networks embedded in 

physical robots and then to transfer the result of the simulation in a real environment 

[28]. The agent structure we selected takes its features from the iCub, a humanoid 

robot commonly used for experiments in the fields of cognitive science and modeled 

to reproduce the behavior of a three-years old child. In our case, we integrated in our 

system just its visual apparatus and pointing abilities. The visual system of the robot 

is composed by a pan-tilt camera, and its simulated version is based on the prototype 

of an artificial retina described by Floreano et al. [29]. The camera is able to perceive 

an area of 100x100px, discriminating stimuli of different luminance, and is allowed to 

integrate an additional 12 d.o.f zooming feature which we disabled for our task. The 

environment is composed of a squared whiteboard (400x400px) which the robot is 

free to explore during each trial. On the board, there are 16 randomly positioned stim-

uli, represented by red circles, which can be dangerous or safe to touch, according to 

the condition. The robot is allowed to perform 2 actions with its hand: touch – which 

should be used only to pick up a safe stimulus – or swipe – to discard a dangerous 

stimulus. If it makes the right action expected on the stimulus presented, it gains fit-

ness; if it does not, it loses time in terms of life steps. 

The architecture of the fully connected RNN is shown in Fig 1. The input layer is 

composed by: 1) a 7x7 grid of 49 visual neurons responsible for the perception of the 

squared area of the retina (the retina does not have any foveal vision); 2) a sigmoidal 

unit signaling the accumulation of information regarding the safety of the situation; 3) 

a sigmoidal unit signaling the perceived danger in the environment; 3) a sigmoidal 

unit which signals the perception of time and increases its value as a function of the 

time steps inside each trial. The three sigmoidal units follow the function below: 

                                                                                                          

                                                                                                                                             

(1) 



 

 

In the case of safe and danger sensation units, X represents the total number of 

stimuli inside the board (maximum value X = 16), and x respectively the number of 

correct actions performed (discard the dangerous stimuli or pick the safe one) in the 

safe sensation unit or the incorrect actions performed (pick the dangerous stimuli or 

discard the safe one) in the danger sensation unit. The maximum value of x depends 

on the percentage of dangerous and safe stimuli in each trial. The parameters β and α 

are chosen so that F(0) ≈ 0, F(16) ≈ 1, and their value is β = 10,  α = 3.  

In the case of  time perception unit, X represents the total number of life steps T for 

each trial (maximum value X = 1000) , x represents the current life step t, and the 

parameters so that F(0) ≈ 0, F(1000) ≈ 1 are β = 10 and  α = 3. 

 

Fig. 1. A schematic representation of the fully connected architecture of the RNN used for the 

experiment 

 

The hidden layer is composed of 20 sigmoidal recurrent units while the output lay-

er consists of: 1) 2 neural units which control the pan/tilt movements of the visual 

exploration; 2) a motor unit for the “pick” action; 3) a motor unit for the “discard” 

action.  

The RNNs used in this experiment are trained using standard genetic algorithm 

with 2% mutation rate. For each condition, 10 populations of  robots were evolved for 

5000 generations and each of these generations was trained on 30 trials. Three differ-

ent conditions were selected to evolve the simulated robots: 1) a high risk/high reward 

condition; 2) medium risk/medium reward condition; 3) balanced risk and reward. In 



the high risk/high reward condition, the trials could contain either 100% dangerous 

stimuli or 100% safe stimuli. Half the generations (2500) contained 10 triplets com-

posed by 1/3 of 100% dangerous trials and 2/3 of 100% safe trials and the other half 

contained 10 triplets composed by 1/3 of 100% safe trials and 2/3 of 100% dangerous 

trials. In the medium risk/medium reward condition, the trials could contain 75% 

dangerous stimuli or 75% safe stimuli. Half the generations (2500) contained 10 tri-

plets composed by 1/3 of 75% dangerous trials and 2/3 of 75% safe trials and the 

other half contained 10 triplets composed by 1/3 of 75% safe trials and 2/3 of 75% 

dangerous trials. In the balanced condition, each trial contained 50% dangerous stimu-

li.  

During each trial, the robot could explore the board for a total T of 1000 time steps. 

In case it perceived a target, there were four possible outcomes: if the activation of the 

“pick” unit was over a threshold of 0.7, the stimulus was picked, the robot had a loss 

of 1 time step (t = t +1) and the stimulus disappeared; if the activation of the “discard” 

unit reached at least 0.7, the stimulus was discarded, the robot had a loss of 1 time 

step and the stimulus disappeared; if both the action units were over the threshold, the 

robot lost 1 time step; if none of the action units was activated, the stimulus was con-

sidered ignored. For each action unit over the threshold, if no target was perceived, 

the robot had a loss of one time step. 

If the robot performed the correct action on a stimulus, he gained a reward G as in 

(2), where β = 10 and α = 4.  

 

 

 (2) 

 

 

Since the reward was a function of the current step t, the robots needed to learn to 

recognize both the condition and the time when to perform the right action, trying to 

estimate the level of danger but also wait for the optimal time t to act on the stimuli. 

3 Results and discussion 

The evolution of the fitness curves of the best individual on 10 belonging to each of 

the three different conditions (high gain/risk, medium gain/risk and balanced 

gain/risk) is displayed in Figure 2. As shown, the highest reward was gained by the 

RNN trained in the high risk/gain condition. Of all the conditions, in fact, this was the 

only to provide the robot a certainty about the level of threat after a single encounter 

with the stimulus. Thanks to this certainty, robots did not refrain from continuing their 

exploration and activity like picking the safe stimuli. When the environmental cues 

are clear and unambiguous, the ability to discriminate dangerous from safe situation 

can get the best performance. The difference between the fitness curve of the certainty 

situation is significantly different than the other two (p = ,000 ), as shown in Table 1. 



 

Fig. 2. 1 Plot of the fitness functions during the evolution for each of the three training condi-

tions. 

Further investigation will try to test the “minimum behavioral response threshold” 

for the agents to determine the uncertainty which triggers the defensive behavior. 

Table 1. LSD Post hoc ANOVA for the fitness curves 

(I)  (J)  

Mean Dif-

ference (I-J) 

Std. Er-

ror Sig. 

Lower 

Bound 

High risk Medium risk ,6940* ,01695 ,000 ,6608 

Balanced risk ,7033* ,01695 ,000 ,6700 

Medium 

risk 

High risk -,6940* ,01695 ,000 -,7272 

Balanced risk ,0093 ,01695 ,585 -,0240 

Balanced 

risk 

Balanced risk -,7033* ,01695 ,000 -,7365 

Medium risk -,0093 ,01695 ,585 -,0425 

 

In the test phase, we analyzed the performance of the best individual for each of 

the conditions on 1000 trials, of which 50% belonged to the safe condition (with a 

percentage of safe items respectively of 100%, 75% and 50%) and 50% belonged to 

the dangerous condition (with a percentage of dangerous items respectively of 100%, 

75% and 50%). We aimed at investigating the difference in the response pattern 



among different time steps range. Therefore, we divided the 1000 time steps for each 

of the trial into 20 intervals of 50 steps and conducted LSD post hoc MANOVA on 

the means of correct and incorrect action performed on each stimuli of the 1000 trials 

for all the 50 intervals. We take in consideration for the analysis a comparison be-

tween early steps (t between 150 and 200) and late steps (t between 750 and 800). 

Table 2. Most relevant analysis of the LSD post hoc MANOVA of the certainty condition 

(High risk) 

DV (I)  (J)  

Mean Differ-

ence (I-J) Std. Error Sig. 

150-

200 

correct/safe correct/danger ,1996* ,02243 ,000 

incorrect/safe ,1877* ,02243 ,000 

incorrect/dang -,0439 ,02243 ,051 

correct/danger correct/safe -,1996* ,02243 ,000 

incorrect/safe -,0120 ,02243 ,594 

incorrect/dang -,2435* ,02243 ,000 

incorrect/safe correct/safe -,1877* ,02243 ,000 

correct/danger ,0120 ,02243 ,594 

incorrect/dang -,2316* ,02243 ,000 

incorrect/dang correct/safe ,0439 ,02243 ,051 

correct/danger ,2435* ,02243 ,000 

incorrect/safe ,2316* ,02243 ,000 

750-

800 

correct/safe correct/danger -,0398 ,19303 ,837 

incorrect/safe 4,4358* ,19303 ,000 

incorrect/dang 3,6858* ,19303 ,000 

correct/danger correct/safe ,0398 ,19303 ,837 

incorrect/safe 4,4756* ,19303 ,000 

incorrect/dang 3,7257* ,19303 ,000 

incorrect/safe correct/safe -4,4358* ,19303 ,000 

correct/danger -4,4756* ,19303 ,000 

incorrect/dang -,7500* ,19303 ,000 

incorrect/dang correct/safe -3,6858* ,19303 ,000 

correct/danger -3,7257* ,19303 ,000 

incorrect/safe ,7500* ,19303 ,000 



Table 3. Most relevant analysis of the LSD post hoc MANOVA of the uncertainty condition 

(medium risk) 

 

DV (I)  (J)  

Mean Differ-

ence (I-J) Std. Error Sig. 

150-

200 

correct/safe correct/danger -,0283 ,01803 ,117 

incorrect/safe -,0440* ,01803 ,015 

incorrect/dang ,0269 ,01803 ,136 

correct/danger correct/safe ,0283 ,01803 ,117 

incorrect/safe -,0157 ,01803 ,384 

incorrect/dang ,0552* ,01803 ,002 

incorrect/safe correct/safe ,0440* ,01803 ,015 

correct/danger ,0157 ,01803 ,384 

incorrect/dang ,0709* ,01803 ,000 

incorrect/dang correct/safe -,0269 ,01803 ,136 

correct/danger -,0552* ,01803 ,002 

incorrect/safe -,0709* ,01803 ,000 

750-

800 

correct/safe correct/danger -4,4342* ,17596 ,000 

incorrect/safe -4,0604* ,17596 ,000 

incorrect/dang ,1238 ,17596 ,482 

correct/danger correct/safe 4,4342* ,17596 ,000 

incorrect/safe ,3738* ,17596 ,034 

incorrect/dang 4,5580* ,17596 ,000 

incorrect/safe correct/safe 4,0604* ,17596 ,000 

correct/danger -,3738* ,17596 ,034 

incorrect/dang 4,1842* ,17596 ,000 

incorrect/dang correct/safe -,1238 ,17596 ,482 

correct/danger -4,5580* ,17596 ,000 

incorrect/safe -4,1842* ,17596 ,000 

 

 

Supporting theories on animal species, the robots used earlier steps, in which the 

risk/gain was dramatically lower, to explore the environment, and as soon as the time 

steps increased a behavioral strategy emerged to face the danger. There is a strong 



pattern difference in the actions performed by the robots evolved in the situation of 

high risk and those evolved in the situation of medium risk.  

Table 4. Most relevant analysis of the LSD post hoc MANOVA of the robots evolved in 

certainty condition but tested in the uncertainty condition 

 

DV (I)  (J)  

Mean Differ-

ence (I-J) Std. Error Sig. 

150-

200 

correct/safe correct/danger ,1137* ,02230 ,000 

incorrect/safe ,0979* ,02230 ,000 

incorrect/dang -,0343 ,02230 ,124 

correct/danger correct/safe -,1137* ,02230 ,000 

incorrect/safe -,0158 ,02230 ,478 

incorrect/dang -,1480* ,02230 ,000 

incorrect/safe correct/safe -,0979* ,02230 ,000 

correct/danger ,0158 ,02230 ,478 

incorrect/dang -,1322* ,02230 ,000 

incorrect/dang correct/safe ,0343 ,02230 ,124 

correct/danger ,1480* ,02230 ,000 

incorrect/safe ,1322* ,02230 ,000 

750-

800 

correct/safe correct/danger -,1676 ,18645 ,369 

incorrect/safe 1,8640* ,18645 ,000 

incorrect/dang 1,5164* ,18645 ,000 

correct/danger correct/safe ,1676 ,18645 ,369 

incorrect/safe 2,0315* ,18645 ,000 

incorrect/dang 1,6840* ,18645 ,000 

incorrect/safe correct/safe -1,8640* ,18645 ,000 

correct/danger -2,0315* ,18645 ,000 

incorrect/dang -,3475 ,18645 ,062 

incorrect/dang correct/safe -1,5164* ,18645 ,000 

correct/danger -1,6840* ,18645 ,000 

incorrect/safe ,3475 ,18645 ,062 

 

 



As shown in Table 2 and Table 3, robots evolved and tested in the situation of high 

risk tended to activate the same neuron (pick) at the beginning, determining a non-

significant difference between the means of the safe stimuli picked and of the danger-

ous stimuli picked and vice versa between the dangerous stimuli discarded and the 

safe stimuli discarded (p > ,005). This data suggests that this population of robots 

began each trial by trying the same strategy and determining the outcome in order to 

disambiguate between safe and threatening situation. This pattern is absent in robots 

evolved in the uncertainty condition (medium risk), and we can explain this as a re-

duction of exploration steps. 

Analyzing the differences between late steps, we can see that while robots evolved 

in the situation of certainty inverted their activity patterns showing a correlation be-

tween the means of correct actions on dangerous stimuli and correct actions on safe 

stimuli, in the case of robots evolved in medium risk all the means are significantly 

different, apart from the difference between the means of the correct actions on safe 

stimuli and incorrect actions on dangerous stimuli, which can be interpreted as an 

effort to try to gain as much fitness as possible when encountering stimuli against a 

reduced exploration behavior. 

A final analysis was conducted by testing the best individual evolved in the cer-

tainty condition in an environment with medium risk. The results of the LSD post hoc 

MANOVA are summarized in Table 4. The results indicated that the genetically 

evolved response patterns showed in the high risk environment was maintained, and 

the increased sensitivity towards the danger lead to a better performance, giving an 

evidence of the impact of an high arousal to danger in terms of fitness. This result is 

in accordance with the previously mentioned study conducted by Zhao et al. [11]. 

Further research will be addressed to find the danger threshold under which the en-

vironment stops eliciting the robots’ genetically learned pattern which lead to adapta-

tion in their environment. We aim also to find out the effect of the most recent envi-

ronment experienced by the robot on its defensive behavior. 

Finally, robots evolved with a danger level of 50% did not show any learned pat-

tern at all, since there was no cue on which to rely to try to disambiguate dangerous 

from safe environments and determine the potential presence of a threat. Post hoc 

analysis, which are not reported here for brevity, did not show any significant differ-

ence between correct/incorrect actions on safe/dangerous stimuli in each of the time 

step interval. 

4 Conclusion 

We proposed a computational model of the evolution of antipredator behavior in situ-

ations with various degree of danger using simulated robots embedded with RNNs 

and evolved with standard genetic algorithm. We demonstrated the importance of 

both innate and genetic factors for the emergence of an effective antipredator behav-

ior and higher survivability. We tested the threat-sensitive predator avoidance hypoth-

esis by evolving virtual robots in conditions of high risk/gain, medium risk/gain and 



balanced risk/gain, proving that in situation of uncertainty the agents refrained from 

exploring the environment and limited their actions on the environment. 

We also tested the risk allocation hypothesis, by testing robots in experimental 

conditions with a shift of threat/reward between the early steps of the trial and the late 

ones, proving that the agents evolved in the high risk environment were able to learn 

and adapt to this temporal shift. 

Finally, we compared the performance of agents evolved in certainty and uncer-

tainty conditions in a medium risk/gain environment, analyzing their differences. 

5 References 

1. Woody, E., & Boyer, P.: Threat-detection and precaution: Introduction to the special issue. 

Neuroscience & Biobehavioral Reviews, 35(4), 989-990 (2011). 

2. Woody, E. Z., & Szechtman, H.: Adaptation to potential threat: the evolution, neurobiolo-

gy, and psychopathology of the security motivation system. Neuroscience & Biobehavioral 

Reviews, 35(4), 1019-1033 (2011). 

3. Tooby, J., & Cosmides, L.: The evolved architecture of hazard management: Risk detec-

tion reasoning and the motivational computation of threat magnitudes. Behavioral and 

Brain Sciences, 29(06), 631-633 (2006). 

4. Blanchard, D. C., Griebel, G., Pobbe, R., & Blanchard, R. J.: Risk assessment as an 

evolved threat detection and analysis process. Neuroscience & Biobehavioral Reviews, 

35(4), 991-998 (2011). 

5. Helfman, G. S.: Threat-sensitive predator avoidance in damselfish-trumpetfish interac-

tions. Behavioral Ecology and Sociobiology, 24(1), 47-58 (1989). 

6. Lima, S. L., & Bednekoff, P. A.: Temporal variation in danger drives antipredator behav-

ior: the predation risk allocation hypothesis. The American Naturalist, 153(6), 649-659 

(1999). 

7. Kavaliers, M., & Choleris, E.: Antipredator responses and defensive behavior: ecological 

and ethological approaches for the neurosciences. Neuroscience & Biobehavioral Reviews, 

25(7), 577-586 (2001). 

8. Curio, E.: Proximate and developmental aspects of antipredator behavior. Advances in the 

Study of Behavior, 22, 135-238 (1993). 

9. Mirza, R. S., Ferrari, M. C., Kiesecker, J. M., & Chivers, D. P.: Responses of American 

toad tadpoles to predation cues: behavioural response thresholds, threat-sensitivity and ac-

quired predation recognition. Behaviour, 143(7), 877-889 (2006). 

10. Scheurer, J. A., Berejikian, B. A., Thrower, F. P., Ammann, E. R., & Flagg, T. A.: Innate 

predator recognition and fright response in related populations of Oncorhynchus mykiss 

under different predation pressure. Journal of Fish Biology, 70(4), 1057-1069 (2007). 

11. Zhao, X., Ferrar, M. C., & Chivers, D. P.: Threat-sensitive learning of predator odours by a 

prey fish. Behaviour, 143(9), 1103-1121 (2006). 

12. Brown, G. E., Ferrari, M. C., & Chivers, D. P.: Learning about danger: chemical alarm 

cues and threat-sensitive assessment of predation risk by fishes. Fish cognition and behav-

ior, 59-80 (2011). 

13. Ferrari, M. C., & Chivers, D. P.: Learning threat-sensitive predator avoidance: how do fat-

head minnows incorporate conflicting information?. Animal Behaviour, 71(1), 19-26 

(2006). 



14. Ferrari, M. C., Capitania-Kwok, T., & Chivers, D. P.: The role of learning in the acquisi-

tion of threat-sensitive responses to predator odours. Behavioral Ecology and Sociobiolo-

gy, 60(4), 522-527 (2006). 

15. Ferrari, M. C., & Chivers, D. P.: The ghost of predation future: threat-sensitive and tem-

poral assessment of risk by embryonic woodfrogs. Behavioral ecology and sociobiology, 

64(4), 549-555 (2010). 

16. Ferrari, M. C., & Chivers, D. P.: Temporal variability, threat sensitivity and conflicting in-

formation about the nature of risk: understanding the dynamics of tadpole antipredator be-

haviour. Animal Behaviour, 78(1), 11-16 (2009). 

17. Phillips, R. G., & LeDoux, J. E.: Differential contribution of amygdala and hippocampus 

to cued and contextual fear conditioning. Behavioral neuroscience, 106(2), 274 (1992). 

18. LeDoux, J.: The emotional brain, fear, and the amygdala. Cellular and molecular neurobi-

ology, 23(4-5), 727-738 (2003). 

19. Bishop, S. J.: Neurocognitive mechanisms of anxiety: an integrative account. Trends in 

cognitive sciences, 11(7), 307-316 (2007). 

20. O’Donovan, A., Slavich, G. M., Epel, E. S., & Neylan, T. C.: Exaggerated neurobiological 

sensitivity to threat as a mechanism linking anxiety with increased risk for diseases of ag-

ing. Neuroscience & Biobehavioral Reviews, 37(1), 96-108 (2013). 

21. Gilbert, P.: Evolutionary approaches to psychopathology: The role of natural defences. 

Australian and New Zealand Journal of Psychiatry, 35(1), 17-27 (2001). 

22. Levitan, R., Hasey, G., & Sloman, L.: Major depression and the involuntary defeat strate-

gy; biological correlates. Subordination and defeat: An evolutionary approach to mood 

disorders and their therapy, 95-114 (2000). 

23. Gilbert, P.: The evolved basis and adaptive functions of cognitive distortions. British Jour-

nal of Medical Psychology, 71(4), 447-463 (1998). 

24. MacLeod, C., Mathews, A., & Tata, P.: Attentional bias in emotional disorders. Journal of 

abnormal psychology, 95(1), 15 (1986). 

25. Lupien, S. J., de Leon, M., De Santi, S., Convit, A., Tarshish, C., Nair, Lupien, Sonia J., 

Mony de Leon, Susan De Santi, Antonio Convit, Chaim Tarshish, N. Px V. Nair, Mira 

Thakur, Bruce S. McEwen, Richard L. Hauger, and Michael J. Meaney.: Cortisol levels 

during human aging predict hippocampal atrophy and memory deficits. Nature neurosci-

ence, 1(1), 69-73 (1998). 

26. Brown, G. E., Rive, A. C., Ferrari, M. C., & Chivers, D. P.: The dynamic nature of 

antipredator behavior: prey fish integrate threat-sensitive antipredator responses within 

background levels of predation risk. Behavioral Ecology and Sociobiology, 61(1), 9-16 

(2006). 

27. Pacella, D., Gigliotta, O., & Miglino, O.: Studying the Evolutionary Basis of Emotions 

Through Adaptive Neuroagents: Preliminary Settings and Results. In Advances in Artifi-

cial Life and Evolutionary Computation (pp. 47-57). Springer International Publishing 

(2014). 

28. Nolfi, S., & Gigliotta, O.: Evorobot*. In Evolution of communication and language in em-

bodied agents (pp. 297-301). Springer Berlin Heidelberg (2010). 

29. Floreano D., Kato T., Marocco D., Sauser E.: Co-evolution of Active Vision and Feature 

Selection, Biological Cybernetics, vol  90, 218-228 (2003). 


