
A Repository for Pattern Governance Supporting
Capability Driven Development

Janis Kampars1, Janis Stirna2

1Information Technology Institute, Riga Technical University
Kalku iela 1, Riga, Latvia

Janis.Kampars@rtu.lv
2Department of Computer and Systems Sciences, Stockholm University,

Box 7003, Kista, 16407, Sweden
js@dsv.su.se

Abstract. Patterns have a great potential for improving various aspects of
Information System (IS) designs by reuse. While they have been routinely used
for conveying reusable design solutions in books and knowledge repositories,
there is an ongoing debate about their impact in practice. This is due to the fact
that insufficient efforts are devoted to elaborating effective solutions for
eliciting and documenting patterns, evaluating them, tracing IS designs back to
the applied patterns, and assisting the designer in choosing the right pattern in a
given contextual situation. These tasks need to be supported by advanced
pattern repositories that are able to manage patterns at runtime. The article
presents the usage of a Capability Pattern Repository (CPR) in support of an
approach for design and delivery of context dependent IS, namely, Capability
Driven Development (CDD). The CPR together with CDD provides a tool and
a method that support pattern governance for addressing both the design and
run-time of IS. The described approach is not bound to CDD and can be
adapted to support different types of patterns and development methodologies.

Key words: patterns, pattern evaluation, pattern performance, Capability
Driven Development

1 Introduction

The increased complexity of modern information systems (IS) and the dynamically
changing environment in which they operate motivate the need for improving
efficiency of IS design and maintenance. Much of the solutions that need to be
invoked once an organization needs to adjust its IS in order to react to certain external
or internal situational changes exists e.g. in the form of best practices, configurable
components, business services, business process variants. In this respect, patterns
have proven to be of value because they offer means for reusing existing know-how
(cf. for instance [1, 2, and 3]. The concept of pattern allows presenting reusable
designs, models, components, code fragments, etc. They assist at various stages of IS
development such as analysis, design, implementation, and maintenance.

A pattern is a proven reusable solution to a reoccurring problem. It has the potential
to substantially increase the quality of IS design and architecture as well as lowering
the costs by reusing tried-and-tested design and component implementations. Patterns
typically offer a general solution that needs to be tailored and adapted to the particular
application context. Applied patterns have a great potential for improving various
aspects of IS design although there is an ongoing debate concerning whether patterns
have a positive effect or should be used with caution, cf. for instance [4, 5]. Another
underexplored area is pattern storage and discovery, which becomes especially
important when dealing with a large numbers of patterns and when patterns are used
over time, which is when they become the most useful. A key aspects of supporting
the long-term patters use is the need to trace them to the IS that use them which is
cumbersome without a methodological and technological solutions. Such solutions
would significantly contribute to addressing the problem of pattern performance
evaluation.

Most of the currently available pattern evaluation studies are performed by
surveying the users, which can be subjective, hard to interpret, and involves
hypothetical usage situations. Nevertheless, patterns need to be documented and
applied under the correct contextual situation and their effectiveness in real
application cases should be measured. In this regard a recently completed FP7 project
“Capability as a Service in digital enterprises” (CaaS) has proposed a methodology
for context depended development and delivery of IS services, namely, Capability
Driven Development (CDD) [6]. More specifically, CDD uses capability notation to
capture and analyse the changing business context in design of information systems
and promotes the usage of patterns by providing the needed theoretical, technological
and methodological support. In the specification and design of services using business
planning as the baseline, capability is seen as an ability and capacity for an enterprise
to deliver value, either to customers or shareholders. According to CDD, a capability
is delivered based on existing organizational solutions that are captured and
represented by patterns. Capability patterns are enterprise-size components (e.g. code
fragments, web service definitions, business process models) carrying a software
solution for an organizational problem in a given business context, in both the design
and run-times [7]. A part of the CDD environment are patterns stored in a Capability
Pattern Repository (CPR) [8], where Pattern Performance Indicators (PPI) are
calculated based on the run-time capability Key Performance Indicator (KPI) values.
PPIs show to what extent does a pattern contributes to reaching the KPI target value.

The objective of this paper is to contribute to the challenges of pattern cataloging,
discovery, evaluation, and application by presenting the work on the Capability
Pattern Repository. Design science [9] principles have been chosen as the research
method for developing the main design artifacts of this paper, namely, (1) the CPR
and (2) the needed methodology for its use.. The developed CPR provides means for
more effective pattern storage, discovery, and evaluation. It can be customized to
support different kinds of patterns as well as used in conjunction with other
development methodologies. The functionality of the CPR will be evaluated by
demonstrating a sample pattern that is published in the CPR.

The rest of the paper is organized as follows. Section 2 gives an overview of the
CDD environment, the web services provided by the CPR, structure and lifecycle of a
capability pattern, and pattern evaluation approach. Section 3 provides an example of
using patterns for capability driven development. Section 4 concludes with a brief
overview of the results and outlines directions for future work.

2 The Role of Capability Pattern Repository in CDD

This section presents the Capability Pattern Repository. It is an integral part of CDD
from technological and methodological perspective. A more detailed description of
the CDD is given in [6] while previous version of the CPR and its role in CDD is
documented in [7].

2.1 Overview of the CDD Environment

An overview of the CDD environment from a perspective of pattern governance is
given in Fig. 1.

Capability	Pattern	
Repository

Capability	Design	Tool

Capability	
Navigation	
Application

Capability	
Context	Platform

Contextual	
data

Context	indicators	
and	KPIs

Recommendations

Pattern	
application

Pattern	
deployment

Capability	
Delivery	

Application

Capability	
adjustment

Capability	
deployment

Fig. 1. Overview of the CDD environment

Capability Design Tool (CDT) is an Eclipse based environment that is used to
model and implement both capability patterns and capabilities applying them. It is
integrated with the CPR using a group of REST web services. Both patterns and
capabilities applying them are published from the CDT to the CPR, allowing tracing
the capability back to applied patterns and vice versa. The CDT is integrated with the
Capability Navigation Application (CNA), which is the main means for separating
business logic from adaptation to contextual changes. Based on the contextual
information received from the Capability Context Platform (CCP), the CNA can
trigger changes in the Capability Delivery Application (CDA). During run-time the
CNA sends back statistical information to the CPR that is used for quantitative
evaluation of capability patterns.

2.2 Web Services Provided by the CPR

The main web services of CPR supporting effective governance of capability patterns
are listed in Table 1.

Table 1. An overview of CPR web services

Service Name Description
Capability
publishing

Publish capabilities from CDT user interface by providing a
universally unique identifier (UUID) of a CPR user, access
token, capability UUID, name, category and a base64 encoded
archived CDT project containing the implementation of the
capability.

Pattern publishing Publish capability patterns from CDT user interface by
providing a CPR user UUID, access token, pattern UUID,
name, category and a base64 encoded archived CDT project
containing the implementation of the pattern.

Context indicator
value update

To gather statistical information about the effectiveness of a
pattern it is important to be aware under which contextual
conditions it has been used. The data is updated by CNA
during run-time.

KPI value update In CDD patterns can be connected to KPIs, therefore KPI data
is needed for quantitative evaluation of capability patterns.
KPI data is sent by CNA during run-time.

Pattern search Patterns are typically searched from the CDT by providing
either the name of the pattern, its UUID or UUIDs of the
elements contained in the pattern.

Pattern
recommendations

This web service is used by the CNA by providing the UUIDs
of the capability and CNA (a company might choose to deploy
the same capability to multiple CNAs). CPR is aware of the
capability structure, currently applied patterns and contextual
conditions. Based on that it can provide run-time
recommendations of other patterns that might perform better
in the current contextual situation.

2.3 Lifecycle and Structure of a Capability Pattern

The lifecycle of a capability pattern with relations to components of the CDD
environment is summarized in Fig. 2. Patterns are modeled in the CDT and described
by a set of problem, context, and solution diagrams. Diagrams are based on the
elements of the Capability Meta Model [6]. Alternatively, the designer can enter a
free text based version of problem, context, solution, and usage guidelines, as well as
specify a category name for the pattern. It can be decided whether to document
problem, context and solution in form of diagrams and/or free-form text. The
structure of a capability pattern is summarized in Table 2.

Context diagrams are crucial for ensuring application of the pattern under correct
contextual situation. In this case the most important elements of the context diagram
are Context Set and Context Element Ranges. From the CDT interface
the patterns are published to the CPR using a REST web service (see Table 1). In
order to publish a pattern, the user must specify a CPR user UUID and access token in
the CDT settings section.

After being published the pattern is indexed in CPR by parsing the model.xmi and
contained diagrams. This is important for enabling the discovery of patterns based on
the contained elements (using web service or web-based interface of CPR). When the
pattern is published the designer can log in to the web-based interface of the CPR to
finalize the textual description of problem, context, solution and usage guidelines in
the WYSIWYG editor.

Table 2. Structure of a capability pattern

Name of the field Purpose of the field
Name Each pattern should have a name that reflects the

problem/solution that it addresses. Names of patterns are
also used for indexing purposes.

Problem description Describes the issues that the pattern wishes to address within
the given context and forces. The goal model is typically
used to represent the problem in form of a diagram.

Problem diagrams

Context description Describes the preconditions under which the problem and
the proposed solution seem to occur. This can be expressed
in free text and/or represented in form of diagrams by
creating a Context Set and Context Element
Ranges of Context Elements that influence the
applicability and variability of the solution proposed by the
Pattern.

Context diagrams

Solution description Describes how to solve the problem and to achieve the
desired result. It consists of a textual solution description
and a solution model fragment. Process Variants
expressed in BPMN and adjustments programmed in JAVA
are typical examples of a solution implementation.

Solution diagrams
and implementation

Usage guidelines Presents a set of usage tips to the potential user of the
pattern about how the pattern can be tailored to fit into
particular situations or to meet specific needs of an
organization.

Pattern category A list of category names (keywords) for each pattern in
order to facilitate search and retrieval.

Similarly, to patterns, capabilities are also modeled in the CDT. During the

modeling process the designer can choose to import a pattern from the CPR. The
repository can be queried by providing a pattern name, UUID or UUIDs of elements
contained in it. The designer can also rely on the web interface of CPR and provided

faceted search functionality to find the desired pattern. Pattern import process starts
by downloading an archived capability pattern project from CPR to CDT. It is
extracted afterwards and all of pattern’s model.xmi elements that were not contained
in the original capability’s model.xmi are appended to it. The problem, context and
solution diagrams are added to the current capability project. The corresponding
pattern element is added to the diagram of patterns to keep track of currently applied
patterns (if no such diagram exists, it is created beforehand). The pattern element is
linked to KPIs, to show which KPIs are expected to be influenced by the application
of the pattern. A weight from 0 to 1 can be specified for the connection between a
pattern and a KPI. If there is no direct effect on current KPIs this step can be omitted
or new KPIs can be added to the project.

Fig. 2. Capability pattern lifecycle

After the pattern has been adapted for the specific requirements and the design of a
capability is completed it is deployed to the CPR. The deployment of a capability to
the CPR allows browsing patterns together with capabilities that are based on them.
The connection between pattern and KPI enables quantitative evaluation of patterns in
the CPR. After the deployment the capability write token and UUID are appended to
the CDT project’s model.xmi. These are used by the CNA in later stages to update the
KPI and context indicator values in the CPR.

Next the capability is deployed to the CNA for execution. During the execution the
CNA receives context data from the CCP and calculates Context Element
values, Context Indicators and KPIs. Based on the current context the CNA
adjusts capability in the CDA. One of the possible run-time adjustments is switching
between multiple patterns based on the current context set (such adjustment has to be

foreseen while designing the capability in the CDT). During run-time the CNA sends
KPI and Context Indicator values to the CPR that are used for calculating
Pattern Performance Indicators (PPIs).

During run-time designer can use the CNA web interface to check whether there
are any patterns which are not implemented however could perform better under the
current contextual situation. This is done via a REST web service invocation from the
CNA to the CPR (see Table 1). The incorporation of new patterns is not supported
during run-time, therefore to add a new pattern the designer needs to alter the
capability project in the CDT and redeploy it to the CPR and the CNA.

2.4 Pattern Evaluation

The CPR supports two ways of evaluating a capability pattern. The CPR user can
leave feedback in the comment section under the specific pattern and give pattern a
user rating from 1 to 5 stars using the CPR web interface. This is especially important
for patterns that have no KPIs associated with them.

If a pattern has KPIs connected to it and statistical data has been collected by the
CPR, a PPI is computed as:

𝑃𝑃𝐼 = !!
!!!

!!!
∗ !"#!

!"##$%&∗!""

!"#!
!"#!"#

!
!!! , (1)

where 𝑤 is weight reflecting the pattern’s impact on a KPI, n is a total number of

KPIs that pattern has been linked to, 𝐾𝑃𝐼!!"##$%& is the current value of the i-th KPI,
𝐾𝑃𝐼!

!"#$%& is the target value of the i-th KPI.

Fig. 3. Pattern design in CDT

3 Example

In order to demonstrate the operation of the CPR an example from the field of cloud
application scalability is used. To provide the required Quality of Service cloud
applications are usually scaled horizontally (the number of running instances is
adjusted) based on the load and various performance metrics. Different strategies can
be used for this purpose. Netto et al. [10] proposes to categorize them as follows:

• reactive – a scaling operation is performed immediately as soon as
performance values have fallen out of a previously defined interval,

• conservative – a scaling operation is performed if during the last few time
windows performance values have fallen out of a previously defined
interval,

• predictive – performance values for the next time window are predicted
and acted upon similarly as with the reactive strategy.

Reactive, conservative and predictive scaling strategies can be formulated as three
interchangeable patterns. In this case we consider a general cloud based service where
tasks are first sent to a queue and picked up from it by a varying number of worker
nodes. The number of nodes has to be scaled according to the load. There exists a
previously defined constant reflecting the maximum allowed task wait time in queue.
The context in all three cases consists of resource utilization, queue size, and time in
queue. Patterns are described using the structure given in Table 2. Solution diagrams
consisting for reactive, conservative, and predictive scaling are given in Fig. 4, Fig. 5,
Fig. 6 respectively.

Fig. 4. Reactive scaling pattern solution

Fig. 5. Conservative scaling pattern solution

Fig. 6. Predictive scaling pattern solution

All patterns use a constant MaxTimeInQueueAC however the three context
elements are interpreting the contextual situation according to the scaling strategy
(historical, current, and predicted load). All three patterns present the best practices
together with the Context Elements that can be used for solving an application scaling
problem.

Once patterns have been published in the CPR they can be used for capability
design. For example, a scaling capability can be based on one of the mentioned
strategies through reusing a pattern. Let’s consider a cloud service providing a video
transcoding service, where all videos are first queued and then processed by worker
nodes. As it can be seen the problem resembles one described by all three patterns and
designer can choose between them based on the PPI accumulated in CPR and
characteristics of the specific case. The final solution differs from the original pattern
since case specific details have been added (see Fig. 7).

Fig. 7. Capability based on ConservativeScaling

MaxNodesAC and MinNodesAC are constants used to limit the minimum and
maximum number of online video transcoder nodes. NumOfNodes is a Context
Element used to reflect current number of online video transcoders. If NumOfNodes
is equal to MaxNodesAC scaling up is not allowed, similarly, if NumOfNodes is
equal to MinNodesAC scaling down is prohibited. The implementation code of the
algorithm should be adjusted accordingly to the cloud computing platform so that
originally available methods scaleUp and scaleDown would be able to interact
with the infrastructure services.

In the given example user satisfaction survey results received after transcoding of
the video would serve as the KPI. This is used to calculate the PPI based on Formula
1. The result is shown using a dashboard in the user interface of CPR (see Fig. 8).

An example of a Context Indicator correlating with the PPI of the pattern is the
average server startup time. If it takes seconds to startup a new video transcoder,
Reactive strategy could be the most effective while Proactive would work better in
scenarios where it takes a relatively long time to start a new worker node. This
knowledge would be typically discovered through analyzing correlation between
Context Indicator values and PPIs stored in CPR. Upon discovering a more suitable
pattern the designer can perform according changes to the capability design.

Fig. 8. Visualization of a PPI in CPR

4 Conclusions and Future Work

The CPR has been developed and integrated with other components of the CDD
environment. It facilitates effective pattern search, application, and quantitative
evaluation. CPR enables a bidirectional trace between the capability delivery solution
and the patterns that were used in the construction of it. This together with the
availability of run-time statistics and PPIs allows improving the overall quality of
capabilities, determining under which contextual conditions a specific pattern
operates better, and simplifying the usage of capability patterns in general.
Furthermore, with respect the challenges outlined in section 2, in broad terms the CPR
facilitates collecting evidence about the pattern utility based real application cases and
run-time data.

Among the directions for future work are experiments determining to what extent
recommendations from the CPR lead to improvements of the performance of a
capability. Another direction is pattern mining, which is made possible by hosting all
capabilities and their meta-data in a single repository. Furthermore, investigations into
CPRs support of other pattern types and development methodologies and tools (as
outlined in [11]) will also be carried out.

5 References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc. (1995).

2. Falk, T., Griesberger, P., Leist, S.: Patterns as an artifact for business process
improvement - Insights from a case study, (2013).

3. Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W.F.: Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance. IEEE Trans. Softw. Eng. 28, 595–606 (2002).

4. Khomh, F., Guéhéneuc, Y.G., Reengineering, F.: Do design patterns impact
software quality positively? In: CSMR 2008 - 12th European Conference on
Software Maintenance and Reengineering. pp. 274–278. , Athens (2008).

5. Wendorff, P.: Assessment of design patterns during software reengineering:
lessons learned from a large commercial project. In: Software Maintenance and
Reengineering, 2001. Fifth European Conference on. pp. 77–84 (2001).

6. J. Grabis, M. Henkel, J. Kampars, H. Koç, K. Sandkuhl, D. Stamer, J. Stirna, F.
Valverde, J. Zdravkovic “Deliverable 5.3: The Final Version of Capability
Driven Development Methodology,” FP7 Proj. 611351 CaaS – Capability as a
Service in digital enterprises, Stockholm University, pp. 266, 2016. Available:
https://doi.org/10.13140/RG.2.2.35862.34889

7. Stirna, J., Zdravkovic, J., Henkel, M., Kampars, J.: Capability Patterns as the
Enablers for Model-based Development of Business Context-aware Applications.
In: CBI, COBI. pp. 1–12. CEUR Workshop Proceedings, Lisbon (2015).
http://ceur-ws.org/Vol-1408/paper2-cobi.pdf

8. Capability Pattern Repository, http://patterns.caas-project.eu/
9. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information

Systems Research. MIS Q. 28, 75–105 (2004).
10. Netto, M.A.S., Cardonha, C., Cunha, R.L.F., Assuncao, M.D.: Evaluating auto-

scaling strategies for cloud computing environments. In: Proceedings - IEEE
Computer Society’s Annual International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems, MASCOTS. pp.
187–196 (2015).

11. M. Henkel, C. Stratigaki, J. Stirna, P. Loucopoulos, Y. Zorgios and A. Migiakis,
(2017) Combining Tools to Design and Develop Software Support for
Capabilities, Complex Systems Informatics and Modeling Quarterly, CSIMQ, no.
10, pp. 38–52, Available: https://doi.org/10.7250/csimq.2017-10.03

