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Abstract

Inferring a bilingual dictionary L1>L3 given two bilingual dictionaries L1>L2 and L2>L3
is a non-trivial task, as seen in reports of large-scale, computationally-heavy experiments
published in recent years (Soderland et al. (2009); Shezaf and Rappoport (2010)). Early
works on this (cf. Tanaka and Umemura (1994)) have already noticed that the main
obstacle in such inferences stems from the fact that polysemy is not isomorphic across
languages, and often a monosemous lexical item in L1 can be polysemous in L2. In
this paper, we present a new set of experiments on automatically generating bilingual
dictionaries based on existing ones. The data used are a commercial set of bilingual
dictionaries with a particular topology when viewed as a graph connecting source and
target languages. We find that searching for cycles in this graph is an effective method for
generating translation inferences, and reflect on the impact of the source data’s structure
on these results and directions for future research.
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1. Introduction
With high-performance, full-fledged machine translation systems such as Google Translate
and Bing Translator, the idea of generating bilingual dictionaries may seem to be a
relatively easy task. After all, translating sentences (let alone larger textual units) is
seemingly a much harder task than generating translation candidates for a lexical item.
Consider the last sentence, which contains 23 words: disambiguating all the words in
context and transferring them to a well-formed sentence in another language involves
many NLP components beyond the lexical item level, including those dealing with lexical
and structural ambiguity, word order, anaphora resolution, and so forth. Most of these are
not relevant when suggesting equivalents for a word like ‘task’ taken from the sentence
and viewed in isolation.

Bilingual dictionaries, however, are composed not only of translation equivalents for
source-language lexical items. Compiling a bilingual dictionary requires selecting the
lexical items that are deemed worthy of inclusion, providing morphological information
for the given translations, introducing usage examples, deciding on the order of the
translations, providing glosses for lexical gaps, and more. Note that the latter three tasks
require meta-linguistic knowledge and even a certain theory of meaning representation
which is far beyond the reach of current models of statistical and neural machine translation
systems. Virtually all systems that auto-generate bilingual dictionaries are restricted to
producing bilingual lexicons. It turns out that even this is a non-trivial task due to what
has been called anisomorphism: “[W]hile it is possible to find translation equivalents at
the sentence level, it is more difficult at the level of lexical units. This difficulty has its
origin in the cultural component which exists in every language and which causes words,
which are dynamic and explicit symbols of that culture, not to have full and absolute
equivalents in other languages. This fact strongly affects some fields of knowledge; for
example business and economics, because they tend to be closely related to particular
cultures.” (al Qāsimı̄ et al. 1977, as cited in Fuertes-Olivera and Arribas-Baño 2008)



Our methodology is computationally straightforward: the algorithm starts with L1 and
goes to L2 then L3 (and L4, L5, etc.), and ends with a translation from the last language
in the chain back to L1. By starting with a given sense in L1 and finally retrieving it again
as a translation in the last pair of the chain, we reinforce the confidence in our selection.
These chains correspond to cycles in the graph of lexical items as vertices connected
by edges when a translation is present. In general we expect that such cycles occur when
meaning is preserved across translations, so that the same sense is recovered once returning
to the original language, and thus we can infer a translation between non-adjacent pairs
of lexical items in the chain.

The main contribution of our method as regards previous research is an analysis of the
problem definition and graph structure of the source data on the resulting translation
inferences. We consider the contributions of which languages are connected in the dataset,
the directedness of translations, and language typology. We also discuss the methodology
of evaluating the performance of such translation inference systems and we provide directions
for further research that take advantage of the a broader range of available lexicographic
data.

2. Dataset
K Dictionaries (KD) possesses rich lexicographic resources for various languages, compiled
using a standard format. In this experiment we used a subset of the data contained in
KD’s bilingual dictionaries. We generated translation inferences for pairs of languages
for which KD already possesses traditional bilingual dictionaries, which can be used to
expedite the evaluation of automatically generated translations.
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Fig. 1: Language paths in the dataset

We included four language paths in our dataset, as shown in Figure 1. Each of these
begins with the same set of 100 randomly-selected words in German, and each successive
language in the path includes translations of the words from the previous language. For
example, the German noun hässlich translates to ugly, mean, and nasty in English. Each
of these in turn has multiple translations into Brazilian Portuguese, which will then have
multiple translations into German.



The same language may be reached in different ways (e.g. Spanish is reached via the paths
DE>JA>ES, DE>DK>FR>ES, and DE>NL>ES) and will contain non-identical sets of
words depending on how it is reached. In total we arrive at 2279 German headwords as the
final translations, summing the contributions from the four paths, which illustrates the
exponential growth of number of translations in bilingual dictionaries that are recursively
chained.
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Fig. 2: Dictionary topology, with three target language pairs (DE>BR, DK>ES, NL>FR)
color-coded

We can combine these paths together into a graph representing the topology of our dataset,
as shown in Figure 2. Note that by design the graph is connected and cyclic (i.e. contains
cycles). Although the given graph is directed, we will later discuss the extent to which
translations may be treated as reflexive.

3. Goal

Three language pairs were selected as targets for our translation inference algorithm:
German>Brazilian Portuguese (DE>BR), Danish>Spanish (DK>ES), and Dutch>French
(NL>FR). Although we did not provide translations from the first to the second member
of each pair in the given dataset, we do have these translations in KD’s dictionaries which
can be used to partially verify automatically-generated translations.

Note that there are edges connecting BR>DE and ES>DK, while our goal is to produce
edges in the opposite direction connecting these nodes. We additionally include the
restriction that the BR>DE edge cannot be directly reversed, though we allow reversing
the ES>DK edge.



4. Algorithm

Our algorithm consists of finding cycles of translations in the graph shown in Figure 2.
The idea is that although translations diverge as pivot languages are traversed, we can
increase the confidence in recursive translations if we arrive at the same headword we
started from upon returning to the source language. For example, consider the following
translation path:

DE DK FR ES BR DE
darstellen fremstille fabriquer fabricar fabricar herstellen
"represent" "manufacture" "fabricate" "fabricate" "fabricate" "produce"

Here there has been some semantic shift across successive translations, due to non-overlapping
semantic ambiguity of lexical items in these different languages. As a result, we arrive at
a different word in German at the end of the translation path, and so it may be discarded.
By contrast, consider the following translation path:

DE NL ES BR DE
darstellen weergeven representar representar darstellen
"represent" "represent" "represent" "represent" "represent"

In this case the meaning has remained approximately constant along the translation path,
and we return to the same word in German at which we began.

Although our graph is directed, we generalize our algorithm using the simplifying assumption
that translations are reflexive, so if say English apple translates to French pomme then
we may assume that French pomme can translate to English apple. Thus we elect to
search for translation cycles irrespective of the given translation directions, except for the
restriction given above that we may not reverse the BR>DE edge. This allows us to find
more translation cycles such as the following:

DK ES NL DE DK
se på mirar bekijken betrachten se på

"watch (v.)" "watch (v.)" "view (v.)" "view (v.)" "watch (v.)"

As can be seen in Figure 2, the edges DK<ES, ES<NL, NL<DE, and DE>DK do not
form a directed cycle, but they do form an undirected cycle, and we expect that these
will also correspond to relatively accurate translations.

The complete graph consisting of our dataset and all translations consists of thousands
of densely-connected nodes and finding all cycles in this graph would be computationally
infeasible. However, this issue is obviated by including the reasonable restriction that
translation paths may only traverse any given language once. Then we can find cycles
efficiently with a depth-first search from the word whose translation is desired.

To summarize, our algorithm consists of the following: For each pair of languages for
which we must generate translations, we have source language Ls and target language Lt.
For each node (headword) ns in Ls, we perform a depth-first search beginning at ns for
cycles, with the following constraints:



• the search is undirected except for the edge BR>DE which may only be traversed in
that direction

• cycle may contain at most one node in each language
• cycle must contain a node in Lt

This terminates once we have found such a cycle, and we infer that the node in Lt is the
translation of the node in Ls.

5. Results

For each language pair, we measured the number of lexical items in the source language
("Source nodes") for which we would like to find translations, and the number of translations
inferred by the algorithm ("Inferences"). We also estimated the precision of our algorithm
by sampling the inferred translations and manually checking their accuracy; we checked all
inferred translations for the pairs DE>BR and NL>FR, and a random sample of 100 out
of the 251 inferred translations for the pair DK>ES. The column "Estimated precision"
contains the ratio of the number of sampled translation inferences that were judged to be
correct translations to the total number of translation inferences sampled. The column
"Gold precision" contains the ratio of the number of translation inferences that were found
in KD’s gold standard dictionaries containing direct translations between these language
pairs over the total number of translation inferences.

Language pair Source nodes Inferences Estimated precision Gold precision
DE>BR 100 50 1.00 0.62
DK>ES 1039 240 0.89 0.59
NL>FR 145 63 0.70 0.52

Note that we have not calculated recall because it is not well-defined for this task.
Recall would measure the fraction of all possible translations that have been discovered,
but existing bilingual dictionaries do not purport to be exhaustive lists of all possible
translations for each headword and thus this cannot be reliably measured.

We also examined the number of occurrences of different cycle shapes within the graph of
languages. Figure 3 lists the four most common paths through the dictionary. Paths (a)
and (b) both require some translations to be reversed, while (c) and (d) are traversable
while respecting directedness.

6. Discussion

Our algorithm produces translation inferences with reasonable accuracy (≥ 70%, based on
the manually-evaluated precision estimates). While there is room for improvement, these
results demonstrate that this simple and computationally inexpensive algorithm could be
used to greatly reduce the manual work required to generate a bilingual dictionary in a
new pair of languages.
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Fig. 3: Four most common paths through the dictionary

The precision estimates calculated from the gold standard data are quite different than
the precision estimated based on manual evaluation of sampled inferences, which implies
that the gold standard dictionaries are far from being exhaustive with respect to the
translations provided for each headword. Indeed, it is reasonable to assume that the
goal of a bilingual dictionary is not necessarily to provide every possible translation
equivalent, and the selection of translations provided in such a dictionary is the product
of many factors including editorial choice and differing tolerance for semantic deviation.
This relates to the difficulty in measuring recall in order to evaluate such translation
inference algorithms; it remains for future research to examine how to effectively measure
the extent to which an algorithm’s inferred translations provide sufficient coverage.



Note that the performance of the algorithm is quite different for different language
pairs. With highest precision for the pair DE>BR and lowest for NL>FR, it is apparent
that the algorithm is affected by considerations of language typology and/or the graph
structure of the dataset. Since the most common paths all contain both Romance and
Germanic languages together, the contribution of language typology does not conform
to the expectation that better translations should be inferred from chains of languages
from the same family (though the lack of Japanese in these cycles might be related to
it being the typological outlier among the languages in the dataset). Regarding graph
structure, in the given dataset the languages DE and BR (and similarly DK and ES) are
connected while the shortest path between NL and FR crosses another node. This matches
the intuition that better translations can be produced between pairs of languages that are
more closely connected in the dataset. Since these results were obtained using a restricted
subset of the language translation pairs present in KD’s lexicographic resources, we expect
that these results will improve when the algorithm is run using all available data.

Recall that the algorithm treated the graph as undirected in order to find cycles of
translations. The assumption that translations are reflexive is not generally valid with
regards to dictionaries. For example, in the dataset one of the English translations listed
for the German word ‘Abitur’ is ‘high school graduation’. While this is an accurate
translation, the phrase ‘high school graduation’ is not a lexical unit that would normally
appear as a headword in a dictionary of English. Similarly, translations may consist of
inflected forms which should not occur as headwords. However, such forms will not have
translations themselves and are less likely to appear as translations of headwords from
other languages, so this is less significant for our cycle-based algorithm. On the other hand,
allowing reversed translations in paths does significantly affect the number of cycles that
can be found, as evidenced by the fact that the two most common cycles found in the
language graph were undirected (see Figure 3).

Among various limitations of the current algorithm is that it only selects one translation
for each lexical item in the source language, present in the first cycle found in the
depth-first search. This conceivably could be improved upon by finding all cycles containing
the source item and a lexical item in the target language, and selecting lexical items in the
target language in such cycles that satisfy some measure of goodness (e.g. cycle length) as
translations. In addition, the current algorithm does not use much of the rich lexicographic
data which is present in the source resources including synonyms and antonyms, semantic
fields, example sentences, and other data. We hypothesize that these components could
be used to increase the level of confidence of existing translations and remove invalid
translations from consideration.

7. Conclusion

We have presented a computationally straightforward method for automatically generating
bilingual dictionaries based on existing ones. By finding cycles of translations in the graph
of all lexical entries with translations treated as undirected edges, we were able to infer
translations with reasonable accuracy. We found that precision is best estimated using
manual evaluation rather than searching existing dictionaries for the inferred translations,
and an examination of the most common paths traversed by the algorithm implied that
treating the translations as undirected was significant in the algorithm’s performance.
Future research will focus on how to measure the exhaustiveness of the translations



produced, how to effectively compare multiple cycles containing the same source lexical
item, and how to use the supporting lexicographic data connected to dictionary headwords
to improve the quality of generated translations.
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