
Algorithms for Rewriting Aggregate Queries Using Views

Sara Cohen
Computer Science Dept.
The Hebrew University

sarina@cs.huji.ac.il

Werner Nutt
German Research Center for
Artificial Intelligence GmbH

Werner.Nutt@dfki.de

Alexander Serebrenik
Computer Science Dept.
The Hebrew University

alicser@cs.huji.ac.il

Abstract

Typical queries over data warehouses perform ag-
gregation. One of the main ideas to optimize the
execution of an aggregate query is to reuse re-
sults of previously answered queries. This leads
to the problem of rewriting aggregate queries us-
ing views. More precisely, given a set of queries,
called “views,” and a new query, the task is to
reformulate the new query with the help of the
views in such a way that executing the reformu-
lated query over the views yields the same result
as executing the original query over the base rela-
tions. Due to a lack of theory, so far algorithms
for this problem were rather ad-hoc. They were
sound, but were not proven to be complete.

In earlier work we have given syntactic character-
izations for the equivalence of aggregate queries,
and applied them decide when there exist rewrit-
ings. However, these decision procedures are
highly nondeterministic and do not lend them-
selves immediately to an implementation.

In the current paper, we refine those procedures by
eliminating the nondeterminism as much as possi-
ble, thus obtaining practical algorithms for rewrit-
ing queries with the operators count and sum. It
can be proved that our algorithms are complete
for queries where each relation occurs only once
and for queries without comparisons. We also
show how algorithms for rewriting nonaggregate

The copyright of this paper belongs to the paper’s authors. Permission to
copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage.

Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW’99)
Heidelberg, Germany, 14. - 15.6. 1999

(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

queries can be modified to obtain rewriting algo-
rithms for queries with min and max.

These algorithms are a basis for realizing optimiz-
ers that rewrite aggregate queries using views.

1 Introduction

Typically, queries over data warehouses are aggregate
queries. Aggregate queries occur in different places in a
data warehouse (DW). The ultimate purpose of a DW is to
support queries by end users that want to analyze a busi-
ness. They want to have a comprehensive picture of their
company and ask for the number of customers, maximum
sales, total profits, etc. However, aggregate queries are not
only processed at the data warehouse back end. But also
loading a data warehouse often requires computation of ag-
gregates. Aggregation is a means of reducing the granular-
ity of data. Data in a data warehouse is often coarser than
the data in the operational systems that it is based on. For
instance, while the operational data of a supermarket may
contain each single item of a customers purchase, the DW
may contain only the total sales of each item by day and
store. In such a case, loading can be viewed as executing
an aggregate query.

The execution of aggregate queries tends to be time con-
suming and costly. Computing one aggregate value often
requires to scan many data items. This makes query opti-
mization a necessity. A promising technique to speed up
the execution of aggregate queries is to reuse the answers
to previous queries to answer new queries. We call a re-
formulation of a query that uses other queries arewriting.
Finding such rewritings is known in the literature as the
problem ofrewriting queries using views.In this phrasing
of the problem, it is assumed that there is a set ofviews,
whose answers have been stored, ormaterialized. Then,
given a query, the problem is to find a rewriting, which
is formulated in terms of the views and some database re-
lations, such that evaluating the original query yields the
same answers as evaluating first the views and then, based
on that result, evaluating the rewriting.

Rewriting techniques are not only applicable to query

S. Cohen, W. Nutt, A. Serebrenik 9-1

optimization, but also to data warehouse design [TS97],
which in a sense is the inverse of the optimization prob-
lem. Here, one assumes that a set of queries over base re-
lations is given, together with some additional information
about the frequency with which the queries are posed and
the frequency with which changes to the base relations oc-
cur. One is then interested in a set of intermediate views
from which the queries can be computed such that the total
cost of query execution and view maintenance is minimal.
In order to find good views, one has to understand how
queries can be rewritten using views.

Rewriting queries using views has been studied ex-
tensively for non-aggregate queries [LMSS95], and al-
gorithms have been devised and implemented [LSK95,
Qia96]. For aggregate queries, the problem has been in-
vestigated mainly in the special case of datacubes (see e.g.,
[HRU96, Dyr96]. However, there is little theory for general
aggregate queries, and the rewriting algorithms that appear
in the literature are by and large ad hoc. These algorithms
are sound, that is, the reformulated queries they produce
are in fact rewritings, but there is neither a guarantee that
they output a rewriting whenever one exists, nor that they
generate all existing rewritings [SDJL96, GHQ95].

Recently, we have given syntactic characterizations for
the equivalence of SQL queries with the aggregate oper-
atorsmin, max, count, andsum [NSS98]. We have ap-
plied them to decide, given an aggregate query and a set of
views, whether there exists a rewriting, and whether a new
query over views and base relations is a rewriting [CNS99].
These characterizations, however, do not immediately yield
practical algorithms.

In this paper, we show how to derive such algorithms.
The algorithms are sound, i.e., they output rewritings. We
can also show that they are complete for important cases,
which are relevant in practice. In Section 2 we present a
motivating example. A formal framework for rewritings of
aggregate queries is presented in Section 3. In Section 4
we give algorithms for rewriting aggregate queries and in
Section 5 we conclude.

2 Motivation

We discuss an example that illustrates the rewriting prob-
lem for aggregate queries. This example models ex-
actly the payment policy for teaching assistants at the He-
brew University in Jerusalem. There are two tables with
relations pertaining to salaries of teaching assistants:

ta(name, course name, job type)

salaries(job type, sponsorship, amount).

At the Hebrew University, there may be many teaching as-
sistants in a course. Each TA has ajob type in the course
he assists. For example, he may give lectures or grade exer-
cises. Teaching assistants are financed by different sources,
like science foundations and the university itself. Foreach

job type, each sponsor gives a fixed amount. Thus, a lab
instructor may receive$600 per month from the university
and $400 from a government science foundation.

We suppose that there are two materialized views. In the
first view,positions per type, we compute the number of
positions of each type held in the university. In the second
view, ta salary we compute the total salary for each type
of position.

CREATE VIEW positions per type(job type, positions)
AS
SELECT job type, COUNT(*)
FROM ta
GROUP BY job type

CREATE VIEW ta salary(job type, total salary)
AS
SELECT job type, SUM(amount)
FROM salaries
GROUP BY job type.

In the following query we calculate the total amount of
money spent on each job position:

SELECT ta.job type, SUM(amount)
FROM ta, salaries
WHERE ta.job type = salaries.job type
GROUP BY ta.job type.

An intelligent query optimizer could now reason that for
each type of job we can calculate the total amount of money
spent on it if we multiply the salary that one TA receives for
such a job by the number of positions of that type. The two
materialized views contain information that can be com-
bined to yield an answer to our query. The optimizer can
formulate a new query that only accesses the views and
does not touch the tables in the database:

SELECT ta salary.job type, total salary*positions
FROM ta salary, positions per type
WHERE ta salary.job type =

positions per type.job type
GROUP BY ta salary.job type.

In order to evaluate the new query, we no more need to look
up all the teaching assistants nor all the financing sources.
Thus, probably, the new query can be executed more effi-
ciently.

In this example, we used our common sense in two occa-
sions. First, we gave an argument why evaluating the origi-
nal query yields the same result as evaluating the new query
that uses the views. Second, because weunderstood the se-
mantics of the original query and the views, we were able to
come up with a reformulation of the query over the views.
Since we cannot expect a query optimizer to have common
sense, we will only be able to build an optimizer that can
rewrite aggregate queries, if we can provide answers to the

S. Cohen, W. Nutt, A. Serebrenik 9-2

following two questions. How can we prove that a new
query, which uses views, produces the same results as the
original query? How can we devise an algorithm that sys-
tematically and efficiently finds all rewritings? If efficiency
and completeness cannot be achieved at the same time, we
may have to find a good trade-off between the two require-
ments.

3 A Formal Framework

In this section we define the formal framework in which
we study rewritings of aggregate queries. First, we extend
the well-known Datalog syntax for non-aggregate queries
[Ull89] so that it covers also aggregates. This syntax is
more abstract and concise than SQL. It is not only better
suited for a theoretical investigation, but it is also a bet-
ter basis for implementing algorithms that reason about
queries, in particular for implementations in a logic pro-
gramming language. Based on this syntax, we define the
semantics of queries and give a precise formulation of the
rewriting problem.

Through the syntax we implicitly define the set of SQL-
queries to which our techniques apply. They are essentially
nonnested queries without aHAVING clause and with the
aggregate operatorsmin, max, count, andsum. A gener-
alization to queries with the constructorUNION is possi-
ble, but beyond the scope of this paper. For queries with
arbitrary nesting and negation no rewriting algorithms are
feasible, since equivalence of such queries is undecidable.

3.1 Non-Aggregate Queries

We recall the Datalog notation for conjunctive queries
(which are also called select-project-join queries or SPJ
queries) and fix our terminology. Later on, we will extend
it to aggregate queries.

A term (denoted ass, t) is either a variable (denoted as
x, y, z) or a constant. Acomparisonhas the forms1 � s2,
where� is one of<, �, >, and�.1 If C andC 0 are con-
junctions of comparisons, we writeC j= C 0 if C 0 is acon-
sequenceof C. In this paper we assume all comparisons
range over the rationals.

We denote predicates asp, q andr. A relational atom
has the formp(s1; : : : ; sk). Sometimes we writep(�s),
where�s denotes the tuple of termss1; : : : ; sk. An atom
(denoted asa, b) is either a relational atom or a compari-
son.

A conjunctive queryis an expression of the form

q(x1; : : : ; xk) a1 & � � � & an:

The atomq(x1; : : : ; xk) is called theheadof the query.
The atomsa1; : : : ; an form the querybody. They can be

1We use the notations = t as abbreviation for the conjunctions �
t & t � s.

relational or comparisons. If the body contains no com-
parisons, then the query isrelational. A query is linear
if it does not contain two relational atoms with the same
predicate symbol. We abbreviate a query asq(�x) B(�s),
whereB(�s) stands for the body and�s for the terms occur-
ring in the body. Similarly, we may write a conjunctive
query asq(�x) R(�s) & C(�t), in case we want to distin-
guish between the relational atoms and the comparisons in
the body, or, shortly, asq(�x) R & C. The variables
appearing in the head are calleddistinguished variables,
while those appearing only in the body are callednondis-
tinguished variables.Atoms containing at least one nondis-
tinguished variable are callednondistinguished atoms.By
abuse of notation, we will often refer to a query by its head
q(�x) or simply by the predicate of its headq.

A databaseD contains for each predicate a finite rela-
tion. Underset semantics,a conjunctive queryq defines
a new relationqD which consists of all the answers thatq
produces overD (for a precise definition consult a standard
textbook like [Ull89]). Underbag-set semantics,q defines
a multiset orbagffqggD of tuples for each databaseD. The
bagffqggD contains the same tuples as the relationqD, but
each tuple occurs as many times as it can be derived over
D with q (for a precise definition see [CV93]).

Under set-semantics, two queriesq and q0 are equiva-
lent if for every database, they return the same set as a
result. Analogously, we define equivalence under bag-set-
semantics.

In the example below, we show how to transform a query
in SQL notation into one in Datalog notation.

Example 3.1 Consider a query that finds the teaching as-
sistants who have a job for which they receive more then
$500 from the government:

SELECT name
FROM ta, salaries
WHERE sponsorship = 'Govt.' AND amount > 500

AND ta.job type = salaries.job type.

We translate this query into an equivalent Datalog query
with the head predicateq. For the relation namesta and
salaries we introduce the predicate namesta andsalaries,
and for each attribute of a relation, we fix an argument posi-
tion of the corresponding predicate. Foreach occurrence of
a relation name in theFROM clause we create a relational
atom. The selection constraints in theWHERE clause are
taken into account by placing constants or identical vari-
ables into appropriate argument positions of the atoms cor-
responding to a relation, or by imposing comparisons on
variables. Finally, the output arguments in theSELECT
clause appear as the distinguished variables in the head.

q(Name) salaries(Job Type; 'Govt.';Amount) &

ta(Name;Course Name; Job Type) &

S. Cohen, W. Nutt, A. Serebrenik 9-3

Amount > 500:

It can be easily checked that the Datalog queryq above
is equivalent to our SQL query. Obviously, one notation
can be transformed into the other, back and forth, com-
pletely automatically.

3.2 Aggregate Queries

We now extend the Datalog syntax so as to capture also
queries withGROUP BY and aggregation. We restrict
ourselves to SQL queries where the group by attributes are
identicalto those in theSELECT statement, although SQL
only requires that the latter be asubsetof those appearing
in theGROUP BY clause. Also, we assume that queries
have only one aggregate term. The general case can easily
be reduced to this one.

Example 3.2 Recall the query in Section 2 that calculates
the total amount of money spent oneach job type. The ex-
tension of the Datalog syntax is straightforward. Since the
SELECT attributes are identical to the grouping attributes,
there is no need to single them out by a special notation.
Hence, the only new feature is the aggregate term in the
SELECT clause. We simply add it to the terms in the head
of the query, after replacing the attributes with correspond-
ing variables. Thus, the above SQL query is transformed
into the following Datalog query:

q(Job Type; sum(Amount))

ta(Name;Course Name; Job Type) &

salaries(Job Type; Sponsorship;Amount):

We now give a formal definition of the syntax and seman-
tics of such aggregate queries. We are interested in queries
with the aggregation functionscount, sum, min andmax.
Since results formin are analogous to those formax, we
do not considermin. Our functioncount is analogous to
the functionCOUNT(*) of SQL.

An aggregate termis an expression built up using vari-
ables, the operations addition and multiplication, and ag-
gregation functions.2 For example,count andsum(z1�z2),
are aggregate terms. We use� as abstract notations for ag-
gregate terms.

If we want to refer to the variables occurring in an ag-
gregate term, we write�(�y), where�y is a tuple of distinct
variables. Terms of the formcount, sum(y) andmax(y)
areelementary aggregate terms. Abstractly, elementary ag-
gregate terms are denoted as�(y), where� is an aggregate
function.

An aggregate term�(�y) naturally gives rise to a func-
tionf�(�y) that maps multisets of tuples of numbers to num-
bers. For instance,sum(z1 � z2) describes the function

2This definition blurs the distinction between the function as a mathe-
matical object and the symbol denoting the function. However, a notation
that takes this difference into account would be cumbersome.

f
sum(z1�z2) that maps any multisetM of pairs of numbers
(m1;m2) to

P
(m1;m2). We call such a function anag-

gregation function.
An aggregate queryis a conjunctive query augmented

by an aggregate term in its head. Thus, it has the form

q(�x; �(�y)) B(�s):

We call�x thegrouping variablesof the query. Queries with
elementary aggregate terms areelementary queries. If the
aggregation term in the head of a query has the form�(y),
we call the query an�-query(e.g., amax-query).

In this paper we are interested in rewriting elementary
queries using elementary views. However, as the example
in Section 2 shows, even under this restriction the rewrit-
ings may not be elementary.

We now give a formal definition of the semantics of ag-
gregate queries. Consider the queryq(�x; �(�y)) B(�s).
For a databaseD, the query yields a new relationqD. To
define the relationqD, we proceed in two steps.

We associate toq a non-aggregate query,�q, called the
coreof q, which is defined as�q(�x; �y) B(�s). The core is
the query that returns all the values that are amalgamated
in the aggregate. Recall thatunder bag-set-semantics, the
core returns overD a bagff�qggD of tuples(�d; �e). For a tuple
of constants�d of the same length as�x let

� �d :=
nn
�e
��� (�d; �e) 2 ff�qggD

oo
:

That is, the bag� �d is obtained by first grouping together
those answers to�q that return�d for the grouping terms, and
then stripping off from those answers the prefix�d. In other
words,� �d is the multiset of�y-values that�q returns for�d.

Now we define the result of evaluatingq overD as

qD := f(�d; e) j � �d 6= ; ande = f�(�y)(� �d)g,

that is, intuitively, whenever there is a nonempty group of
answers with index�d, then we apply the aggregation func-
tion f�(�y) to the multiset of�y-values of that group.

Again, two aggregate queriesq andq0 areequivalentif
qD = q0D for all databasesD.

3.3 Equivalence Modulo a Set of Views

Up to now, we have defined equivalence of aggregate
queries and equivalence of non-aggregate queries under
both, set and bag-set-semantics. Under set semantics,
equivalence of conjunctive queries can be decided by
checking whether there existcontainment mappingsor
homomorphismsbetween the queries [CM77, JK83].

However, the relationship between a queryq and a
rewriting r of q is not equivalence of queries, because the
view predicates occurring inr are not regular data base re-
lations, but are determined by the base relations indirectly.
In order to take this relationship into account, we give a
definition of equivalence of queries modulo a set of views.

S. Cohen, W. Nutt, A. Serebrenik 9-4

We consider aggregate queries that use predicates both
fromR, a set of base relations, andV, a set of view defi-
nitions. We want to define the result of evaluating such a
query over a databaseD. We assume that a database con-
tains only facts about the base relations.

For a databaseD, let DV be the database that extends
D by interpreting every view predicatev 2 V as the rela-
tion vD . If q is a query that contains also predicates from
V, thenqDV is the relation that results from evaluatingq
over the extended databaseDV . If q, q0 are two aggregate
queries using predicates fromR[V, we define thatq andq0

areequivalent moduloV, writtenq �V q0, if qDV = q0DV

for all databasesD.

3.4 General Definition of Rewriting

Our goal is to rewrite an aggregate query using a set of
views. We first give a general definition of rewritings. Later
on, we will concentrate on rewritings that have a special
form. Let q be a query,V be a set of views over the set
of relationsR, andr be a query overV [R. All of q, r,
and the views inV may be aggregate queries or not. Then
we say thatr is a rewriting of q usingV if q �V r andr
contains only atoms with predicates fromV. If q �V r and
r contains at least one atom with a predicate fromV we say
thatr is apartial rewriting of q usingV.

Now we can reformulate the intuitive questions we
asked in the end of the Section 2. Given queriesq andr,
and a set of viewsV, check whetherq �V r. Given a query
q and a set of viewsV, find all (some) rewritings or partial
rewritings ofq.

4 Rewritings of Aggregate Queries

We now present techniques for rewriting aggregate queries.
Our approach will be a to generalize the known techniques
for conjunctive queries. Therefore, we first give a short
review of the conjunctive case and then discuss in how far
aggregates give rise to more complications.

4.1 Reminder: Rewritings of Relational Conjunctive
Queries

We review the questions related to rewriting relational con-
junctive queries. Suppose, we are given a set of conjunctive
queriesV, the views, and another conjunctive queryq. We
want to know whether there is a rewriting ofq using the
views inV.

Thefirst questionthat arises is, what is thelanguagefor
expressing rewritings? Do we consider arbitrary first order
formulas over the view predicates as candidates, or even
recursive queries, or do we restrict ourselves to conjunc-
tive queries over the views? Since reasoning about queries
in the first two languages is undecidable, researchers have

only considered conjunctive rewritings.3 Thus, a candidate
for a rewriting ofq(�x) has the form

r(�x) v1(�1�x1) & : : : & vn(�n�xn);

where the�i’s are substitutions that instantiate the view
predicatesvi(�xi).

Thesecond questionis whether we canreduce reason-
ing about the queryr, which contains view predicates, to
reasoning about a query that has only base predicates. To
this end, weunfoldr. That is, we replace each view atom
vi(�i�xi), with the instantiation�iBi of the body ofvi,
wherevi is defined asvi(�xi) Bi. We assume that the
nondistinguished variables in different bodies are distinct.
We thus obtain the unfoldingru of r, for which the Unfold-
ing Theorem holds:

ru(�x) �1B1 & : : : & �nBn:

Theorem 4.1 (Unfolding Theorem) Let V be a set of
views,r a query overV, andru be the unfolding ofr. Then
r andru are equivalent moduloV, that is,

r �V ru: (1)

Thethird questionis how to check whetherr is a rewrit-
ing of q, that is, whetherr andq areequivalent moduloV.
Because of the Unfolding Theorem, this can be achieved
by checking whetherru andq are set-equivalent: ifru � q,
then (1) impliesr �V q. Set-equivalence of conjunctive
queries can be decided syntactically by checking whether
there are homomorphisms in both directions.

4.2 Rewritings of Count-queries

We consider the problem of rewritingcount-queries. As
a first step, we consider rewriting relationalcount-queries.
We then extend our technique in order to rewritecount-
queries with comparisons.

4.2.1 Rewritings of Relational Count-queries

When rewritingcount-queries, we must deal with the same
questions that arose when rewriting conjunctive queries.
Thus, we first define the language for expressing rewrit-
ings. Even if we restrict the language to conjunctive ag-
gregate queries over the views, we still must decide on two
additional issues. First, which types of aggregate views are
useful for a rewriting? Second, what will be the aggre-
gation term in the head of the rewriting? Acount-query
is sensitive to multiplicities, andcount-views are the only

3 It is an interesting theoretical question, which as yet has not been
resolved, whether more expressive languages give more possibilities for
rewritings. It is easy to show, at least, that in the case at hand allowing
also disjunctions of conjunctive queries as candidates does not give more
possibilities than allowing only conjunctive queries.

S. Cohen, W. Nutt, A. Serebrenik 9-5

type of aggregate views that do not lose multiplicities4.
Thus, the natural answer to the first question is to use only
count-views when rewritingcount-queries. We show in
the following example that there are an infinite number of
aggregate terms that can be usable in rewriting acount-
query.

Example 4.2 Consider aggregate queriesq, v, and rewrit-
ing candidates,rn, for n � 1:

q(x; count) p(x; y)

v(x; count) p(x; y)

rn(x; (
nY

j=1

zj)
1

n) v(x; z1) & : : : & v(x; zn)

Then it is easy to see thatrn is a rewriting ofq modulofvg
for all n. It is natural to create onlyr1 as a rewriting of
q. In fact, only forr1 will the Unfolding Theorem hold.
However, when creating rewritings automatically we must
restrict the aggregate term in the head of the rewriting in
order to prevent deriving infinitely many rewritings.

We define a candidate for a rewriting ofq(�x; count) as
a query having the form

r(�x; sum(
nY
i=1

zi)) vc1(�1�x1; z1) & : : : & vcn(�n�xn; zn)

wherevci arecount-views defined asvci (�xi; count) Bi

andzi are variables not appearing elsewhere in the body of
r. We callr acount-rewriting candidate. Note that in some
cases, it is possible to omit the summation. This is true if
the values ofzi are functionally dependent on the value of
�x. In such a case, the summation is always over a singleton.

After presenting our rewriting candidates we now show
how we can reduce reasoning about rewriting candidates,
to reasoning about conjunctive aggregate queries. We use
a similar technique to that shown in Subsection 4.1. We
replace view atoms with the appropriate instantiations of
their bodies. As in the case for relational queries, unfolding
should preserve equivalence. Otherwise reduction about
the reasoning is not possible. We choose to replace the
aggregate term in the rewriting with thecount term. This
is a natural choice and is also necessary sincecount is the
only aggregate term which will preserve this characteristic.
Thus, we obtain the unfoldingru of r defined as

ru(�x; count) �1B1 & : : : & �nBn:

We have proven in [CNS99] that the unfolding theorem
holds, i.e., r �V ru. Moreover, we have shown that
when unfoldings of this type are used, the candidate we

4Although sum-views are sensitive to multiplicities (i.e., are calcu-
lated under bag-set-semantics), they lose these values. For example,sum-
views ignore occurrences of zero values.

defined is the only candidate preserving this characteris-
tic. Now, instead of checking whetherr is a rewriting
of q, we can verify ifru is equivalent tor. It has been
shown [CV93, NSS98] that two relationalcount-queries
are equivalent if and only if they are isomorphic.

We present an algorithm that finds a rewriting for a
query using views. Our approach can be thought of as
reverse engineering. We have characterized the “product”
that we must create, i.e., a rewriting, and we now present
an automatic technique for producing it.

We start by discussing when a view,v(�u; count) Rv,
instantiated by�, is usable in order to rewrite a query,
q(�x; count) R. Recall that a rewriting of q is a queryr
that when unfolded yields a query isomorphic toq. Thus, in
order for�v, to be usable,�Rv must “cover” some part of
R. Therefore,�v is usable for rewritingq only if there ex-
ists an isomorphism,', fromRv toR0 � R. Note that we
can assume, w.l.o.g. that' is the identity mapping on the
distinguished variables ofv. We would like to replaceR0

with �v in the body ofq in order to derive a partial rewrit-
ing of q. This cannot always be done. Observe that after
replacingR0 with �v, variables that appeared inR0 and do
not appear in��u are not accessible anymore. Thus, we can
only perform the replacement if these variables do not ap-
pear anywhere else inq, in q’s head or body. IfR0 can be
replaced by�v, using', we say thatv isR-usable under�
w.r.t. ' to rewriteq. We denote this fact asR-usable(v, �,
').

Example 4.3 Consider the following

q(x; count) p1(x; x; y) & p2(y; z)

v(x0; u0; count) p1(x
0; u0; y0)

In order to usev in rewritingq we must find an instantiation
� such that�p1(x0; u0; y0) covers some part of the body of
q. Clearly,�p1(x0; u0; y0) can cover onlyp1(x; x; y). Thus,
� should equatex0 andu0. We take,� = fx0=x; u0=xg and
thus,' = fx=x; y0=yg. However,y appears inp1(x; x; y)
and not in the head of�v and therefore,y is not accessible
after replacement. Note that,y appears inp2 and thus,v is
notR-usable in rewritingq.

In Figure 4.2.1 we present an algorithm for finding
rewritings. The algorithm nondeterministically chooses a
view v and an instantiation�, such thatv isR-usable under
�. If the choice fails, backtracking is performed. When the
while-loop is completed, the algorithm returns a rewriting.
By backtracking we can find additional rewritings. Note,
that the same algorithm may be used to produce partial
rewritings. For this purpose it is sufficient to relax the ter-
mination condition of the while-loop. This will similarly
hold for subsequent algorithms presented.

We note the following. In line 9R is changed and
thus,q is also changed. Therefore, at the next iteration of
the while-loop we check whetherv is R-usable under� to

S. Cohen, W. Nutt, A. Serebrenik 9-6

Algorithm Relational Count Rewriting
Input A queryq(�x; count) R and a set of viewsV
Output A rewriting r of q.

(1) Not Covered := R.
(2) Rewriting := ;.
(3) n := 0.
(4) While Not Covered 6= ; do:
(5) Choosea viewv(�x0; count) R0 in V.
(6) Choosean instantiation,�, and an isomorphism',

such thatR-usable(v, �, ').
(7) For eachatoma 2 R0 do:
(8) If a is a nondistinguished atom,then
(9) Remove'(�a) from R.

(10) If '(�a) 62 Not Covered then fail.
(11) Remove'(�a) from Not Covered.
(12) Increment n.
(13) Add v(��x0; zn)) to Rewriting, wherezn is a fresh variable.
(14) Return r(�x; sum(

Qn

i=1 zi)) Rewriting.

Figure 1: Relational Count Query Rewriting Algorithm

rewrite the updated version ofq (line 6). Thus, in each iter-
ation of the loop, additional atoms are covered. In line 10
the algorithm checks if a nondistinguished atom is already
covered. If so, then the algorithm must fail, i.e., backtrack,
as explained above. The algorithm is sound and complete
as stated below.

Theorem 4.4 (Soundness and Completeness of Rela-
tional Count Rewriting) Let q be a count-query andV
be a set of views. Thenr is a count-rewriting candidate
and r �V q if and only if r can be returned byRela-
tional Count Rewriting(q;V), by making the appropriate
choices in lines 5 and 6.

Our algorithm runs in nondeterministic polynomial
time. The algorithm guesses views and instantiations and
then verifies that the obtained result is a rewriting in a poly-
nomial time. This is an optimal algorithm, since the view
usability problem for relational conjunctivecount-queries
isNP-complete [CNS99].

4.2.2 Rewritings of Count-Queries with Comparisons

We extend the technique presented in the previous section
in order to rewrite queries with comparisons. Thus, we con-
sider the problem of rewriting queries having comparisons
with views having comparisons. We augment the rewrit-
ing candidate form with comparisons. Thus given a query
q(�x; count) R & C and a set of views,V, a rewriting

candidate has the form:

r(�x; sum(
nY
i=1

zi))

vc1(�1�x1; z1) & : : : & vcn(�n�xn; zn) & C0

We can unfoldr in the same fashion as unfolding a rela-
tional rewriting. As above, it holds thatru �V r. Thus,
once again we can reduce reasoning about queries with
views to reasoning about equivalent queries without views.
In order to verify thatr is a rewriting ofq , we have to
verify thatru � q.

In [NSS98], we gave a sound and complete character-
ization of equivalence of conjunctivecount-queries. The
only known algorithm that checks equivalence of conjunc-
tive count-queries creates an exponential blowup of the
queries. Thus, it is difficult to present a tractable algo-
rithm for computing rewritings. However, equivalence of
linear count-queries with comparisons is isomorphism of
the queries [NSS98]. Thus, we will give a sound, com-
plete, and tractable algorithm for computing rewritings of
linear count-queries. This algorithm is also sound and
tractable for the general case, but is not complete. In the
sequel, in this section we assume that the comparisons in
the queries we are rewriting are deductively closed. Com-
puting a deductive closure is a well-known polynomial pro-
cedure [Klu88].

We discuss when a view,v(�u; count) Rv & Cv,
instantiated by�, is usable in order to rewrite a query,
q(�x; count) R & C. Clearly, the conditions presented

S. Cohen, W. Nutt, A. Serebrenik 9-7

above for the relational case must hold in this case. Thus,
in order for�v to be usable there must be an isomorphism'
fromRv toR0, a subset ofR. In addition we must require
thatC j= '(�Cv), thus, usingv will preserve the compar-
isons implied byq. We have seen that when replacingR0

with �v we lose access to thenondistinguished variables in
v. Therefore, it is necessary for the comparisons inv to
imply all the comparisons inq which contain an image of a
nondistinguished variable inv. Formally, letndv(v) be the
set of nondistinguished variables inv. Let C'(�ndv(v)) be
the comparisons inC containing variables in'(�ndv(v)).
ThenCv j= C'(�ndv(v)) must hold. If these conditions
hold, we say thatv isC-usable under� w.r.t.'. We denote
this fact asC-usable(v, �, ').

We present an algorithm for computing rewritings of
conjunctivecount-queries in Figure 4.2.2. Note that we
modify C in line 12. We remove fromC its comparisons
containing a variable that is not accessible after replacing
the appropriate subset ofR by the appropriate instantiation
of v. Thus, this step is necessary in order for the resulting
query to be safe [Ull88].

The given algorithm runs in nondeterministic polyno-
mial time. The following theorem states that it is both
sound and complete for linear queries and is sound, but not
complete, for arbitrary queries.

Theorem 4.5 (Soundness and Completeness of Count
Rewriting) Let q be acount-query andV be a set of views.
If r is returned byCount Rewriting(q;V), then r is a
count-rewriting candidate ofq and r �V q. In addition,
if q is either linear or relational, then the opposite holds by
making the appropriate choices in lines 5 and 6.

Example 4.6 This example shows the incompleteness of
the algorithm for the general case. Consider the queryq,
view v, rewritingr, and unfoldingru

q(count) p(x) & p(y) & p(u) &

x < y & x < u

v(y; count) p(x) & p(y) & x < y

r(sum(z1 � z2)) v(y; z1) & v(y; z2)

ru(count) p(x) & p(y) & p(u) &

x < y & u < y:

Althoughru � q [NSS98], the algorithm does not find any
rewritings.

4.3 Rewritings of Sum-Queries

Rewriting sum-queries is similar to rewritingcount-
queries. When rewritingsum-queries we must also take
the aggregation variable into consideration. We present an
algorithm for rewritingsum-queries that is similar to the
algorithm forcount-queries.

We define the form of rewriting candidates forsum-
queries. Sincesum and count-views are the only views

that are sensitive to multiplicities, they are useful for
rewritings. However,sum-views may lose multiplicities
and make the aggregation variable inaccessible. Thus, at
most onesum-view should be used in the rewriting of a
query. The following are rewriting candidates of the query
q(�x; sum(y)) R & C:

r1(�x; sum(y �
nY
i=1

zi)) (2)

vc1(�1�x1; z1) & : : : & vcn(�n�xn; zn) & C0

r2(�x; sum(y �
nY
i=1

zi)) vs(�s�xs; y) & (3)

vc1(�1�x1; z1) & : : : & vcn(�n�xn; zn) & C0

wherevci is acount-view of the formvci (�xi; count) Bi

andvs is a sum-view of the formvs(�xs; sum(y)) Bs .
Note that the variabley in the head of the query in Equa-
tion 3 must appear among�i�xi for somei. In [CNS99] we
showed that if a rewriting candidate is equivalent to its un-
folding then it must be one of the above forms. As in the
case ofcount-query rewritings, in some cases the rewriting
may be optimized by dropping the summation.

Once again, we reduce reasoning about rewriting candi-
dates to reasoning about conjunctive aggregate queries. For
this purpose we extend the unfolding technique introduced
in Subsection 4.2. Thus, the unfoldings of the candidates
presented are:

ru1(�x; sum(y)) �1B1 & : : : �nBn & C0:

ru2(�x; sum(y)) �sBs & �1B1 & : : : �nBn & C0:

Now, instead of checking whetherr is a rewriting ofq
we can verify ifru is equivalent tor. However, the only
known algorithm for checking equivalence ofsum-queries,
presented in [NSS98], requires an exponential blowup of
the queries. Thus, it might be very difficult to provide a
tractable algorithm that is both sound and complete for ar-
bitrary sum-queries. However, relationalsum-queries and
linearsum-queries are equivalent if and only if they are iso-
morphic. Thus, we can extend the algorithm presented in
the Figure 4.2.2 forsum-queries.

As a preliminary step for our algorithm we extend the
algorithm in Figure 4.2.2, such that in line 5sum-views
may be chosen as well. We call this algorithmCom-
pute Rewriting. We derive an algorithm for rewriting
sum-queries, presented in Figure 4.3. The algorithm runs
in nondeterministic polynomial time and the following
holds:

Theorem 4.7 (Soundness and Completeness of Sum
Rewriting) Given asum-queryq and a set of viewsV the
following holds. Ifr is returned bySum Rewriting(q;V),
thenr is a sum-rewriting candidate ofq andr �V q. In
addition, ifq is either linear or relational, then the opposite
holds by making the appropriate choices.

S. Cohen, W. Nutt, A. Serebrenik 9-8

Algorithm Count Rewriting
Input A queryq(�x; count) R & C and a set of viewsV
Output A rewriting r of q.

(1) Not Covered := R.
(2) Rewriting := ;.
(3) n := 0.
(4) While Not Covered 6= ; do:
(5) Choosea viewv(�x0; count) R0 & C0 in V.
(6) Choosean instantiation,�, and an isomorphism',

such thatR-usable(v, �, ') andC-usable(v, �, ').
(7) For eachatoma 2 R0 do:
(8) If a is a nondistinguished atom,then
(9) Remove'(�a) from R.

(10) If '(�a) 62 Not Covered then fail.
(11) Remove'(�a) from Not Covered.
(12) Remove fromC comparisons containing a variable in'(�R0),

but not in��x0

(13) Increment n.
(14) Add v(��x0; zn)) to Rewriting, wherezn is a fresh variable.
(15) Return r(�x; sum(

Qn

i=1 zi)) Rewriting & C.

Figure 2: Count Query Rewriting Algorithm

4.4 Rewritings of Max-Queries

We consider the problem of rewritingmax-queries. Note
thatmax-queries are insensitive to multiplicities. Thus, it
is natural to use nonaggregate views andmax-views when
rewriting amax-query. When using amax-view the aggre-
gation variable becomes inaccessible. Thus, we use at most
onemax-view. The following are rewriting candidates of
the queryq:

r1(�x;max(y)) (4)

v1(�1�x1) & : : : & vn(�n�xn) & C0

r2(�x;max(y)) vs(�m�xm; y) & (5)

v1(�1�x1) & : : : & vn(�n�xn) & C0

wherevi is a nonaggregate view andvm is amax-view.
Note that the variabley in the head of the query in Equa-
tion 5 must appear among�i�xi for somei. In [CNS99]
we showed that if a rewriting candidate is equivalent to its
unfolding then it must have one of the above forms.

Once again, reasoning about rewriting candidates can
be reduced to reasoning aboutmax-queries, using an ap-
propriate extension of the unfolding technique. We have
shown [NSS98] that equivalence of relationalmax-queries
is equivalence of their cores. There is a similar reduc-
tion for the general case. Thus, algorithms developed for
checking set-equivalence of queries can easily be converted
to algorithms for checking equivalence ofmax-queries.
Similarly, algorithms that find rewritings of nonaggregate

queries can be modified to find rewritings ofmax-queries.
Rewriting nonaggregate queries is a well known prob-
lem [LMSS95]. Thus, we do not present algorithms for
finding rewritings ofmax-queries in this paper.

5 Conclusion

Aggregate queries are increasingly prevalent due to the
widespread use of data warehousing for decision support.
They are generally computationally expensive since they
scan many data items, while retrieving few. Thus, the
computation time of aggregate queries is generally or-
ders of magnitude larger than the result size of the query.
This makes query optimization a necessity. Optimiz-
ing aggregate queries was studied in the context of dat-
acubes [HRU96, Dyr96]. However, there was little the-
ory for general aggregate queries, beyond this context. In
this paper, based on previous results in [NSS98, CNS99],
we presented algorithms that enable reuse of precomputed
queries in answering new ones.

The algorithms presented were implemented in SICS-
tus Prolog. The system was developed at Hebrew Uni-
versity and it is located athttp://www.cs.huji.ac.il/
~alicser/aggrq/.

Topics for future research include rewriting queries with
HAVING clauses, negation and functional dependencies,
and enriching the class of aggregate functions with statisti-
cal functions.

S. Cohen, W. Nutt, A. Serebrenik 9-9

Algorithm Sum Rewriting
Input A queryq(�x; sum(y)) B and a set of viewsV
Output A rewriting r of q.

(1) Let q0 be the queryq0(�x; count) B.
(2) Let r0=Compute Rewriting(q0;V).
(3) If r0 is of the form

r0(�x; sum(y �
Qn

i=1 zi)) vs(�s�xs; y) & vc1(�1�x1; z1) & : : : & vcn(�n�xn; zn) & C0

(4) Then return r0

(5) If r0 is of the form
r0(�x; sum(

Qn

i=1 zi)) vc1(�1�x1; z1) & : : : & vcn(�n�xn; zn) & C0

and y appears among�i�xi
(6) Then return

r(�x; sum(y �
Qn

i=1 zi)) vc1(�1�x1; z1) & : : : & vcn(�n�xn; zn) & C0.

Figure 3: Sum Query Rewriting Algorithm

References

[CM77] A.K. Chandra and P.M. Merlin. Optimal imple-
mentation of conjunctive queries in relational
databases. InProc. 9th Annual ACM Sympo-
sium on Theory of Computing, 1977.

[CNS99] S. Cohen, W. Nutt, and A. Serebrenik. Rewrit-
ing aggregate queries using views. In Ch. Pa-
padimitriou, editor,Proc. 18th Symposium on
Principles of Database Systems, Philadelphia
(Pennsylvania, USA), May 1999. ACM Press.
To appear.

[CV93] S. Chaudhuri and M. Vardi. Optimization of
real conjunctive queries. InProc. 12th Sympo-
sium on Principles of Database Systems, Wash-
ington (D.C., USA), May 1993. ACM Press.

[Dyr96] C. Dyreson. Information retrieval from an in-
complete datacube. InProc. 22nd Interna-
tional Conference on Very Large Data Bases,
Bombay (India), September 1996. Morgan
Kaufmann Publishers.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Ag-
gregate query processing in data warehouses.
In Proc. 21st International Conference on Very
Large Data Bases. Morgan Kaufmann Publish-
ers, August 1995.

[HRU96] V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes efficiently. InProc.
1996 ACM SIGMOD International Conference
on Management of Data, pages 205–227, Mon-
treal (Canada), June 1996.

[JK83] D.S. Johnson and A. Klug. Optimizing con-
junctive queries that contain untyped variables.
SIAM Journal on Computing, 12(4):616–640,
1983.

[Klu88] A. Klug. On conjunctive queries containing in-
equalities.J. ACM, 35(1):146–160, 1988.

[LMSS95] A.Y. Levy, A.O. Mendelzon, Y. Sagiv, and
D. Srivastava. Answering queries using views.
In Proc. 14th Symposium on Principles of
Database Systems, pages 95–104, San Jose
(California, USA), May 1995. ACM Press.

[LSK95] A.Y. Levy, D. Srivastava, and T. Kirk. Data
model and query evaluation in global informa-
tion systems.Journal of Intelligent Information
Systems, 5(2):121–143, 1995.

[NSS98] W. Nutt, Y. Sagiv, and S. Shurin. Decid-
ing equivalences among aggregate queries. In
J. Paredaens, editor,Proc. 17th Symposium on
Principles of Database Systems, pages 214–
223, Seattle (Washington, USA), June 1998.
ACM Press. Long version as Report of Esprit
LTR DWQ.

[Qia96] X. Qian. Query folding. In Stanley Y. W. Su,
editor,Proc. 12th International Conference on
Data Engineering, pages 48–55, New Orleans
(Louisiana, USA), March 1996. IEEE Com-
puter Society.

[SDJL96] D. Srivastava, Sh. Dar, H.V. Jagadish, and A.Y.
Levy. Answering queries with aggregation us-
ing views. InProc. 22nd International Confer-
ence on Very Large Data Bases, Bombay (In-

S. Cohen, W. Nutt, A. Serebrenik 9-10

dia), September 1996. Morgan Kaufmann Pub-
lishers.

[TS97] D. Theodoratos and T.K. Sellis. Data ware-
house configuration. InProc. 23nd In-
ternational Conference on Very Large Data
Bases, pages 126–135, Athens (Greece), Au-
gust 1997. Morgan Kaufmann Publishers.

[Ull88] J. Ullman. Principles of Database and
Knowledge-Base Systems, Vol. I: Classical
Database Systems. Computer Science Press,
New York (New York, USA), 1988.

[Ull89] J. Ullman. Principles of Database and
Knowledge-Base Systems, Vol. II: The New
Technologies. Computer Science Press, New
York (New York, USA), 1989.

S. Cohen, W. Nutt, A. Serebrenik 9-11

