Algorithms for Rewriting Aggregate Queries Using Views

Sara Cohen
Computer Science Dept.
The Hebrew University

sarina@cs.huji.ac.ll

Abstract

Typical queries over data warehouses perform ag-
gregation. One of the main ideas to optimize the
execution of an aggregate query is to reuse re-
sults of previously answered queries. This leads
to the problem of rewriting aggregate queries us-
ing views. More precisely, given a set of queries,
called “views,” and a new query, the task is to
reformulate the new query with the help of the
views in such a way that executing the reformu-
lated query over the views yields the same result
as executing the original query over the base rela-
tions. Due to a lack of theory, so far algorithms
for this problem were rather ad-hoc. They were
sound, but were not proven to be complete.

In earlier work we have given syntactic character-
izations for the equivalence of aggregate queries,
and applied them decide when there exist rewrit-
ings. However, these decision procedures are
highly nondeterministic and do not lend them-
selves immediately to an implementation.

In the current paper, we refine those procedures by
eliminating the nondeterminism as much as possi-
ble, thus obtaining practical algorithms for rewrit-
ing queries with the operators count and sum. It
can be proved that our algorithms are complete
for queries where each relation occurs only once
and for queries without comparisons. We also
show how algorithms for rewriting nonaggregate

Werner Nutt
German Research Center for
Artificial Intelligence GmbH
Werner.Nutt@dfki.de

The copyright of this paper belongs to the paper’s authors. Permission t

Alexander Serebrenik
Computer Science Dept.
The Hebrew University

alicser@cs.huji.ac.il

gueries can be modified to obtain rewriting algo-
rithms for queries with min and max.

These algorithms are a basis for realizing optimiz-
ers that rewrite aggregate queries using views.

1 Introduction

Typically, queries over data warehouses are aggregate
gueries. Aggregate queries occur in different places in a
data warehouse (DW). The ultimate purpose of a DW is to
support queries by end users that want to analyze a busi-
ness. They want to have a comprehensive picture of their
company and ask for the number of customers, maximum
sales, total profits, etc. However, aggregate queries are not
only processed at the data warehouse back end. But also
loading a data warehouse often requires computation of ag-
gregates. Aggregation is a means of reducing the granular-
ity of data. Data in a data warehouse is often coarser than
the data in the operational systems that it is based on. For
instance, while the operational data of a supermarket may
contain each single item of a customers purchase, the DW
may contain only the total sales of each item by day and
store. In such a case, loading can be viewed as executing
an aggregate query.

The execution of aggregate queries tends to be time con-
suming and costly. Computing one aggregate value often
requires to scan many data items. This makes query opti-
mization a necessity. A promising technique to speed up
the execution of aggregate queries is to reuse the answers
to previous queries to answer new queries. We call a re-
formulation of a query that uses other queriegwriting.
Finding such rewritings is known in the literature as the
problem ofrewriting queries using viewdn this phrasing
QOf the problem, it is assumed that there is a setiefs,

copy without fee all or part of this material is granted provided that the Whose answers have been storedmaterialized. Then,

copies are not made or distributed for direct commercial advantage.
Proceedings of the International Workshop on Design and

Management of Data Warehouses (DMDW’99)
Heidelberg, Germany, 14. - 15.6. 1999

(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

S. Cohen, W. Nutt, A. Serebrenik

given a query, the problem is to find a rewriting, which
is formulated in terms of the views and some database re-
lations, such that evaluating the original query yields the
same answers as evaluating first the views and then, based
on that result, evaluating the rewriting.

Rewriting techniques are not only applicable to query

9-1

optimization, but also to data warehouse design [TS97]job type, each gonsor gives a fixed amount. Thus, a lab
which in a sense is the inverse of the optimization prob-4nstructor may receiv8600 per month from the university
lem. Here, one assumes that a set of queries over base @Aad $400 from a government science foundation.
lations is given, together with some additional information We suppose that there are two materialized views. In the
about the frequency with which the queries are posed anfirst view, positions_per_type, we compute the number of
the frequency with which changes to the base relations ogsositions of each type held in the university. In the second
cur. One is then interested in a set of intermediate viewsiew, ta_salary we compute the total salary for each type
from which the queries can be computed such that the totaif position.
cost of query execution and view maintenance is minimal.
In or'der to find goqd view;, one has to understand hOV\bREATE VIEW positions_per_type
gueries can be rewritten using views. AS
Rewriting queries using views has been studied exspircT job_type, COUNT(*)
tensively for non-aggregate queries [LMSS95], and al-FROM ta
gorithms have been devised and implemented [LSK95GROUP BY job_type
Qia96]. For aggregate queries, the problem has been in-
vestigated mainly in the special case of datacubes (see e.§REATE VIEW ta salary(job_type, total_salary)
[HRU96, Dyr96]. However, there is little theory for general A3
aggregate queries, and the rewriting algorithms that appea-LECT Job_type, SUM(amount)
in the literature are by and large ad hoc. These algorithm529M salaries
are sound, that is, the reformulated queries they produce "0V BY job-type.
are in fact rewritings, but there is neither a guarantee that |, ihe following query we calculate the total amount of
they output a rewriting whenever one exists, nor that the}fnoney spent on each job poen:
generate all existing rewritings [SDJL96, GHQ95].)
Recently, we have given syntactic characterizations fof L-2CT ta.jobtype, SUM(amount)
the equivalence of SQL queries with the aggregate oper- o\, ta, salaries .
atorsmin, max, count, andsum [NSS98]. We have ap- WHERE ta.job-type = salarics. job-type
. ! 1 ' GROUP BY ta.job_type.
plied them to decide, given an aggregate query and a set of
views, whether there exists a rewriting, and whether a new An intelligent query optimizer could now reason that for
query over views and base relations is a rewriting [CNS99]each type of job we can calculate the totabamt of money
These characterizations, however, do notimmediately yieldpent on it if we multiply the salary that one TAgeives for
practical algorithms. such a job by the number of positions of that type. The two
In this paper, we show how to derive such algorithms.materialized views contain information that can be com-
The algorithms are sound, i.e., they output rewritings. Webined to yield an answer to our query. The optimizer can
can also show that they are complete for important casesormulate a new query that only accesses the views and
which are relevant in practice. In Section 2 we present aloes not touch the tables in the database:
motivating example. A formal framework for rewritings of
e e g TLECT tashryjh e, ol sy posins
nFROM ta_salary, positions_per_type

(job_type, positions)

Section 5 we conclude. WHERE tasalary job_type —
positions_per_type.job_type
2 Motivation GROUP BY ta_salary.job_type.

We discuss an example that illustrates the rewriting probtn order to evaluate the new query, we no more need to look
lem for aggregate queries. This example models exup all the teaching assistants nor all the financing sources.
actly the payment policy for teaching assistants at the HeThus, probably, the new query can be executed more effi-
brew University in Jerusalem. There are two tables withciently.

relations pertaining to salaries of teaching assistants: Inthis example, we used our common sense in two occa-
sions. First, we gave an argument why evaluating the origi-
nal query yields the same result as evaluating the new query
that uses the views. Seconeédause wenderstood the se-

At the Hebrew University, there may be many teaching asmantics of the original query and the views, we were able to
sistants in a course. Each TA haga_type in the course come up with a reformulation of the query over the views.
he assists. For example, he may give lectures or grade exegince we cannot expect a query optimizer to have common
cises. Teaching assistants are financed by different sourcesgnse, we will only be able to build an optimizer that can
like science foundations and the university itself. Each rewrite aggregate queries, if we can provide answers to the

ta(name, course_name, job_type)
salaries(job_type, sponsorship, amount).

S. Cohen, W. Nutt, A. Serebrenik 9-2

following two questions. How can we prove that a newrelational or comparisons. If the body contains no com-
query, which uses views, produces the same results as tiparisons, then the query islational. A query islinear
original query? How can we devise an algorithm that sysf it does not contain two relational atoms with the same
tematically and efficiently finds all rewritings? If efficiency predicate symbol. We abbreviate a query @8 + B(s),
and completeness cannot be achieved at the same time, wdnere B(s) stands for the body andfor the terms occur-
may have to find a good trade-off between the two requirefing in the body. Similarly, we may write a conjunctive

ments. query asy(z) + R(s) & C(1), in case we want to distin-
guish between the relational atoms and the comparisons in
3 A Formal Eramework the body, or, shortly, ag(z) « R & C. The variables

appearing in the head are calldistinguished variables

In this section we define the formal framework in which while those appearing only in the body are caltehdis-
we study rewritings of aggregate queries. First, we extendinguished variablesAtoms containing at least one nondis-
the well-known Datalog syntax for non-aggregate queriesinguished variable are callgtbndistinguished atom®y
[UNI89] so that it covers also aggregates. This syntax isabuse of notation, we will often refer to a query by its head
more abstract and concise than SQL. It is not only betteg(z) or simply by the predicate of its head
suited for a theoretical investigation, but it is also a bet- A databaseD contains for each predicate a finite rela-
ter basis for implementing algorithms that reason aboution. Underset semanticsa conjunctive query defines
queries, in particular for implementations in a logic pro- a new relationy” which consists of all the answers that
gramming language. Based on this syntax, we define thgroduces oveP (for a precise definition consult a standard
semantics of queries and give a precise formulation of theextbook like [UII89]). Undeibag-set semanticg,defines
rewriting problem. amultiset obag { ¢} of tuples for each databage The

Through the syntax we implicitly define the set of SQL- bag{¢}}? contains the same tuples as the relati&n but
queries to which our techniques apply. They are essentiallgach tuple occurs as many times as it can be derived over
nonnested queries withoutBAVING clause and with the D with ¢ (for a precise definition see [CV93]).
aggregate operatorsin, max, count, andsum. A gener- Under set-semantics, two querigsind ¢’ are equiva-
alization to queries with the constructoiNION is possi- |ent if for every database, they return the same set as a
ble, but beyond the scope of this paper. For queries withesult. Analogously, we define equivalence under bag-set-
arbitrary nesting and negation no rewriting algorithms aresemantics.
feasible, since equivalence of such queries is undecidable. |n the example below, we show how to transform a query

in SQL notation into one in Datalog notation.
3.1 Non-Aggregate Queries
Example 3.1 Consider a query that finds the teaching as-
sistants who have a job for which they receive more then
500 from the government:

We recall the Datalog notation for conjunctive queries
(which are also called select-project-join queries or SP
queries) and fix our terminology. Later on, we will extend
it to aggregate queries.

A term (denoted as, t) is either a variable (denoted as SELECT ~ name
x, ¥, z) Oor a constant. Aomparisorhas the forms; p ss, FROM ta, salaries , ,
wherey is one of<, <, >, and>.! If ¢ and¢” are con- W HERE sponsorship = "Giovt.” AND amount > 500
. AND ta.job_type = salaries.job_type.
junctions of comparisons, we writé = C" if C’ is acon-

sequencef C'. In this paper we assume all comparisons \ye translate this query into an equivalent Datalog query

range over the rationals. with the head predicate. For the relation names: and
We denote predicates asq andr. A relational atom ga]aries we introduce the predicate namesandsalaries,
has the formp(si,...,s;). Sometimes we writg)(s), and for each attribute of a relation, we fix an argument posi-
wheres denotes the tuple of terms, ..., s;. Anatom tjon of the corresponding predicate. Rach occurrence of
(denoted ag, b) is either a relational atom or a compari- 3 relation name in thEROM clause we create a relational
son. atom. The selection constraints in tHERE clause are
A conjunctive querys an expression of the form taken into account by placing constants or identical vari-
ables into appropriate argument positions of the atoms cor-
g(ry, k) —ar & - Loan. responding to a relation, or by imposing comparisons on
, variables. Finally, the output arguments in BLECT
The atomg(ey, ..., #;) is called theheadof the query. ¢jayse appear as the distinguished variables in the head.
The atomsuy, . . ., a, form the querybody. They can be

i _ ’ J t
IWe use the notatios = ¢ as abbreviation for the conjunctien< q(Name) < saIanes(Job Type, Govt.’, Amoun) &

t&t < s. ta(Name, Course_Name, Job_Type) &

S. Cohen, W. Nutt, A. Serebrenik 9-3

Amount > 500. Jsum(z1+2-) that maps any multise/ of pairs of numbers
(m1,ms) to > (my, m2). We call such a function aag-
It can be easily checked that the Datalog queapbove gregation function
is equivalent to our SQL query. Obviously, one notation An aggregate querys a Conjunctive query augmented
can be transformed into the other, back and forth, compy an aggregate term in its head. Thus, it has the form
pletely automatically.
q(2, k(y)) < B(5).

We callz thegrouping variable®f the query. Queries with

We now extend the Datalog syntax so as to capture alsgjementary aggregate terms atementary queriesif the
queries withGROUP BY and aggregation. We restrict aqqregation term in the head of a query has the fotn),
ourselves to SQL queries where the group by attributes arge call the query an-query(e.g., amax-query).

only requires that the latter besabsetof those appearing queries using elementary views. However, as the example
in the GROUP BY clause. Also, we assume that queriesin section 2 shows, even under this restriction the rewrit-

have only one aggregate term. The general case can easjlyys may not be elementary.

be reduced to this one. We now give a formal definition of the semantics of ag-
gregate queries. Consider the quef¥, x(y)) + B(3).
For a databas®, the query yields a new relatigff . To
edefine the relatiop”, we proceed in two steps.

3.2 Aggregate Queries

Example 3.2 Recall the query in Section 2 that calculates
the total amount of money spent each job type. The ex-
tension of the Datalog syntax is straightforward. Since th .

gy g We associate t@ a non-aggregate query, called the

SELECT attributes are identical to the grouping attributes, T ! 0 - .
there is no need to single them out by a special nota’[ionCoreOf ¢, which is defined ag(z, 5) « B(5). The core is

Hence, the only new feature is the aggregate term in thgwe query that returns all the values that are ama]gamated
SELECT clause. We simply add it to the terms in the head'" the aggregate. Recall thgnder bag-siet:semantlcs, the
of the query, after replacing the attributes with correspond-c?re rett“mt;jovfga bag{{ql]} OtLtu*p:etS(d ,€). Foratuple

ing variables. Thus, the above SQL query is transformed' constants: ot ihe same length asle

into the following Datalog query: o {{é (d,e) e {{QV]}D}}
v d L ’ .

That is, the bag ; is obtained by first grouping together

those answers tpthat returnd for the grouping terms, and

salaries(Job_Type, Sponsorship, Amount). then stripping off from those answers the prefixn other

words,, ;is the multiset ofj-values that returns ford.
Now we define the result of evaluatiggverD as

q(Job_Type, sum(Amount)) +
ta(Name, Course_Name, Job_Type) &

We now give a formal definition of the syntax and seman-
tics of such aggregate queries. We are interested in queries
with the aggregation functiongunt, sum, min andmax. ¢° = {(d,e)|, ;# 0ande = Fe@) G a) b

Since results fomin are analogous to those fatax, we o]

do not considernin. Our functioncount is analogous to ~ that is, intuitively, whenever there is a nonempty group of
the functionCOUNT(*) of SQL. answers with mdexl,.then we apply the aggregation func-

An aggregate ternis an expression built up using vari- 10N fx(y) to the multiset of-values of that group.
ables, the operations addition and multiplication, and ag- DAgalg, two aggregate querigsandq’ areequivalentf
gregation functiong.For examplegount andsum(z1+z,), ¢ = ¢ forall database®.
are aggregate terms. We us@s abstract notations for ag-
gregate terms.

If we want to refer to the variables occurring in an ag-Up to now, we have defined equivalence of aggregate
gregate term, we write(y), wherey is a tuple of distinct queries and equivalence of non-aggregate queries under
variables. Terms of the formbunt, sum(y) andmax(y) both, set and bag-set-semantics. Under set semantics,
areelementary aggregate termabstractly, elementary ag- equivalence of conjunctive queries can be decided by
gregate terms are denotedgy), whereo is an aggregate checking whether there existontainment mappingsr
function. homomorphismbetween the queries [CM77, JK83].

An aggregate termx(y) naturally gives rise to a func- However, the relationship between a queryand a
tion f, () that maps multisets of tuples of numbers to num-rewriting » of ¢ is not equivalence of queries, because the
bers. For instancesum(z; * z2) describes the function view predicates occurring inare not regular data base re-

2This definition blurs the distinction between the function as a mathe-latlons’ but are determined by the base relations indirectly.

matical object and the symbol denoting the function. However, a notatior Order to take' this relationShiP into account, we g'ive a
that takes this difference into accountwould be cumbersome. definition of equivalence of queries modulo a set of views.

3.3 Equivalence Modulo a Set of Views

S. Cohen, W. Nutt, A. Serebrenik 9-4

We consider aggregate queries that use predicates botimly considered conjunctive rewritingsThus, a candidate
from R, a set of base relations, aij a set of view defi- for a rewriting of¢(z) has the form
nitions. We want to define the result of evaluating such a
guery over a databage. We assume that a database con- r(Z) — vi(0h7) & ... & vn(0a2,),
tains only facts about the base relations.

For a databas®, let Dy, be the database that extends where thed;’s are substitutions that instantiate the view
D by interpreting every view predicatec V as the rela- Predicates;; (z;).
tionv”. If ¢ is a query that contains also predicates from Thesecond questiois whether we cameduce reason-
V, theng® is the relation that results from evaluatipg ing about the query, which contains view predicates, to
over the extended databaBg . If ¢, ¢’ are two aggregate easoning about a query that has only base predicates. To
queries using predicates frm]}, we define thaﬁ andq/ this end, weaunfoldr. That iS, we replace each view atom
areequiva'ent modu'@), Writtenq =y q/, if qDV — q/DV vz(gzjz)y with the instantiatiomiBi of the body Ofvi,
for all database®. wherev; is defined as;(z;) « B;. We assume that the

nondistinguished variables in different bodies are distinct.

L N We thus obtain the unfolding’ of », for which the Unfold-
3.4 General Definition of Rewriting ing Theorem holds:

Our goal is to rewrite an aggregate query using a set of
views. We first give a general definition of rewritings. Later
on, we will concentrate on rewritings that have a specia
form. Letq be a query) be a set of views over the set
of relationsR, andr be a query ovel U R. All of ¢, r,
and the views i’ may be aggregate queries or not. Then
we say that is arewriting of ¢ usingV if ¢ =y r andr
contains only atoms with predicates framIf ¢ =y, » and

r contains at least one atom with a predicate fiome say
thatr is apartial rewriting of ¢ using)’.

Tu(i‘) — 9131 & ... & Han

ITheorem 4.1 (Unfolding Theorem) Let V be a set of
views,r a query over), andr" be the unfolding of. Then
r andr" are equivalent modulY, that is,

r=yre Q)

Thethird questionis how to check whetheris a rewrit-
ing of ¢, that is, whether andq areequivalent modul®’.

Now we can reformulate the intuitive questions We ggcayse of the Unfolding Theorem, this can be achieved
asked in the end of the Section 2. Given quetiesdr, by checking whether® andq are set-equivalent: if* = ¢,

and a set of view¥, check whethey =y r. Givenaquery e (1) impliess =y ¢. Set-equivalence of conjunctive
¢ and a set of view®, find all (some) rewritings or partial gyeries can be decided syntactically by checking whether
rewritings ofg. there are homomorphisms in both directions.

4 Rewritings of Aggregate Queries 4.2 Rewritings of Count-queries

We now present techniques for rewriting aggregate queriedVe consider the problem of rewritingunt-queries. As
Our approach will be a to generalize the known technique# first step, we consider rewriting relatiorakint-queries.
for conjunctive queries. Therefore, we first give a short"e then extend our technique in order to rewritint-
review of the conjunctive case and then discuss in how faflueries with comparisons.
aggregates give rise to more complications.

4.2.1 Rewritings of Relational Count-queries

4.1 Reminder: Rewritings of Relational Conjunctive ~ When rewritingcount-gqueries, we must deal with the same
Queries guestions that arose when rewriting conjunctive queries.
Thus, we first define the language for expressing rewrit-
We review the questions related to rewriting relational CoN-ngs. Even if we restrict the language to conjunctive ag-
junctive queries. Suppose, we are given a set of conjunctivgregate queries over the views, we still must decide on two
queries), the views, and another conjunctive qugnyWe aqditional issues. First, which types of aggregate views are
want to know whether there is a rewriting gfusing the seful for a rewriting? Second, what will be the aggre-
views in}. gation term in the head of the rewriting? ddunt-query
Thefirst questiorthat arises is, what is tHanguagefor is sensitive to multiplicities, andount-views are the only
expressing rewritings? Do we consider arbitrary first order
formulas over the view predicates as candidates, or even 31t is an interesting theoretical question, which as yet has not been

recursive queries, or do we restrict ourselves to conjuncieSC!ved. whether more expressive languages give more fioesidor
rewritings. It is easy to show, at least, that in the case at hand allowing

tive qu_eries over the VieWS'? Since.reasoning about queriegso disjunctions of conjunctive queries as candidates does not give more
in the first two languages is undecidable, researchers hayessibilities than allowing only conjunctive queries.

S. Cohen, W. Nutt, A. Serebrenik 9-5

type of aggregate views that do not lose multiplicities defined is the only candidate preserving this characteris-
Thus, the natural answer to the first question is to use onlyic. Now, instead of checking whetheris a rewriting
count-views when rewritingecount-queries. We show in of ¢, we can verify ifr" is equivalent tor. It has been
the following example that there are an infinite number ofshown [CV93, NSS98] that two relationabunt-queries
aggregate terms that can be usable in rewritingant- are equivalent if and only if they are isomorphic.
query. We present an algorithm that finds a rewriting for a
query using views. Our approach can be thought of as
Example 4.2 Consider aggregate querigsv, and rewrit- reverse engineering. We have characterized the “product”
ing candidates;,,, forn > 1: that we must create, i.e., a rewriting, and we now present
an automatic technique for producing it.

¢(w, count) p(z,y) We start by discussing when a view(ii, count) < R,,

v(z, count) <+ p(z,y) instantiated byd, is usable in order to rewrite a query,
n . q(z, count) + R. Recall that a rewting of ¢ is a queryr
ro(e, ([[2)7) < vlez) & .o & ol 2) that when unfolded yields a query isomorphigtarhus, in
j=1 order forév, to be usablef R, must “cover” some part of

R. Thereforefv is usable for rewriting only if there ex-

Then it is easy to see that is a rewriting ofy modulo{v} ists an isomorphisme, from R, to R’ C R. Note that we

for all n. It is natural to create only; as a rewriting of . : -)
q. In fact, only forr; will the Unfolding Theorem hold. can assume, w.1.0.g. thatis the identity mapping on the

However. when creating rewritin tomatically w mustdis'[inguished variables af. We would like to replace?’
owever, when creating rewrntings automaticafly we Must, iy, 4., in the body ofy in order to derive a partial rewrit-
restrict the aggregate term in the head of the rewriting in

order to prevent deriving infinitely many rewritings Ing of ¢. This cannot always be done. Observe that after
P 9 y y gs- replacingR’ with 6v, variables that appeared Rl and do

not appear irfu are not accessible anymore. Thus, we can
only perform the replacement if these variables do not ap-
pear anywhere else if in ¢'s head or body. IfR’ can be

We define a candidate for a rewriting @fz, count) as
a query having the form

n replaced byv, usingy, we say that is R-usable undef
r(@,sum(] [#)) ¢ vi(6121,21) & ... & v5,(6a%n,2n) wirt. o to rewriteg. We denote this fact aB-usable(v, 6,
i=1
).

wherev{ arecount-views defined as; (z;, count) « B; Example 4.3 Consider the following

andz; are variables not appearing elsewhere in the body of

7. We callr acount-rewriting candidate. Note thatin some q(z,count) < pi(z,z,y) & pa(y, 2)

cases, it is possible to omit the summation. This is true if

the values of; are functionally dependent on the value of

Z. In such a case, the summation is always over a singletorin order to use in rewritingg we must find an instantiation
After presenting our rewriting candidates we now show¢ such tha#p, (z’, v/, y') covers some part of the body of

how we can reduce reasoning about rewriting candidates;. Clearly,f0p; (z', «’, y') can cover only; (z, z, y). Thus,

to reasoning about conjunctive aggregate queries. We ugeshould equate’ andv’. We takef = {«'/«, v/« } and

a similar technique to that shown in Subsection 4.1. Wehus,y = {z/z,y'/y}. However,y appears ip; (z, z, y)

replace view atoms with the appropriate instantiations ofand not in the head @fv and thereforey is not accessible

their bodies. As in the case for relational queries, unfoldingafter replacement. Note thatappears ip, and thusy is

should preserve equivalence. Otherwise reduction aboutot R-usable in rewriting.

the reasoning is not possible. We choose to replace the i) o

aggregate term in the rewriting with theunt term. This In Figure 4.2.1 we present an algorithm for finding

is a natural choice and is also necessary sincet is the ~ 'ewritings. Th'e algor|thm nondeterm!nlstlcally chooses a

only aggregate term which will preserve this characteristicVieW v and an instantiatiofy, such thav is R-usable under

v(2' o, count) <+ pi(z', 0 y)

Thus, we obtain the unfolding' of » defined as 6. If the choice fails, backtracking is performed. When the
’ while-loop is completed, the algorithm returns a rewriting.
r'(z,count) «+ 1 B1 & ... & 0, B,. By backtracking we can find additional rewritings. Note,

that the same algorithm may be used to produce partial

We have proven in [CNS99] that the unfolding theoremrewritings. For this purpose it is sufficient to relax the ter-
holds, i.e.,» =y r". Moreover, we have shown that mination condition of the while-loop. This will similarly
when unfoldings of this type are used, the candidate wénold for subsequent algorithms presented.

, , . R, We note the following. In line 9R is changed and

Although sum-views are sensitive to multiplicities (i.e., are calcu- . - .
lated under bag-set-semantics), they lose these values. For example, ~thUS,¢ IS also changed. Therefore, at the next iteration of
views ignore occurrences of zero values. the while-loop we check whetheris R-usable undef to

S. Cohen, W. Nutt, A. Serebrenik 9-6

Algorithm Relational Count_Rewriting
Input A queryq(z, count) « R and a set of view¥
Output A rewriting r of ¢.

(1) Not_Covered := R.
(2) Rewriting := 0.

3) n:=0.
(4) While Not_Covered # § do:
(5) Choosea viewv(z', count) < R'in V.
(6) Choosean instantiationg, and an isomorphism,
such thatR-usable(v, 0, ¢).
@) For eachatoma € R’ do:
(8) If « is a nondistinguished atorthen
9 Removey(fa) from R.
(10) If ¢(0a) ¢ Not_Covered then fail.
(11) Removeyp(fa) from Not_Covered.
(12) Increment n.
(13) Add v(0%', z,,)) to Rewriting, wherez, is a fresh variable.

(14) Return r(z,sum(J]i-, z;)) + Rewriting.

Figure 1: Relational Count Query Rewriting Algorithm

rewrite the updated version gf(line 6). Thus, in each iter- candidate has the form:
ation of the loop, additional atoms are covered. In line 10 .
the algorithm checks if a nondistinguished atom is already _

. o) i)) &
covered. If so, then the algorithm must fail, i.e., backtrack, r(@ Sum(Hz)
as explained above. The algorithm is sound and complete
as stated below.

i=1

vi (0171, 21) & ... & vl (02, 20) & C7

We can unfold- in the same fashion as unfolding a rela-
Theorem 4.4 (Soundness and Completeness of Rela- tional rewriting. As above, it holds that' =, ». Thus,
tional Count Rewriting) Let ¢ be acount-query andy once again we can reduce reasoning about queries with
be a set of views. Thenis a count-rewriting candidate views to reasoning about equivalent queries without views.

and r» =y ¢ if and only if » can be returned byRela- In order to verify thatr is a rewriting ofq , we have to
tional_Count_Rewriting(q, V), by making the appropriate verify thatr" = gq.
choices in lines 5 and 6. In [NSS98], we gave a sound and complete character-

ization of equivalence of conjunctiveunt-queries. The
Our algorithm runs in nondeterministic polynomial ©nly known algorithm that checks equivalence of conjunc-
time. The algorithm guesses views and instantiations anélve count-queries creates an exponential blowup of the
then verifies that the obtained result is a rewriting in a poly-gueries. Thus, it is difficult to present a tractable algo-
nomial time. This is an optimal algorithm, since the view fithm for computing rewritings. However, equivalence of

usability problem for relational conjunctiveunt-queries linear count-queries with comparisons is isomorphism of
is NP-complete [CNS99]. the queries [NSS98]. Thus, we will give a sound, com-

plete, and tractable algorithm for computing rewritings of
linear count-queries. This algorithm is also sound and
4.2.2 Rewritings of Count-Queries with Comparisons ~ tractable for the general case, but is not complete. In the
sequel, in this section we assume that the comparisons in
We extend the technique presented in the previous sectidiie queries we are rewriting are deductively closed. Com-
in order to rewrite queries with comparisons. Thus, we conputing a deductive closure is a well-known polynomial pro-
sider the problem of rewriting queries having comparisonscedure [KIu88].
with views having comparisons. We augment the rewrit- We discuss when a view;(u, count) « R, & C,
ing candidate form with comparisons. Thus given a quernyinstantiated byd, is usable in order to rewrite a query,
q(z,count) + R & C and a set of viewsy, a rewriting ¢(z, count) + R & C. Clearly, the conditions presented

S. Cohen, W. Nutt, A. Serebrenik 9-7

above for the relational case must hold in this case. Thughat are sensitive to multiplicities, they are useful for
in order fordv to be usable there must be an isomorphism rewritings. Howeversum-views may lose multiplicities
from R, to R’, a subset oR. In addition we must require and make the aggregation variable inaccessible. Thus, at
thatC' |= ¢ (0C,), thus, using’ will preserve the compar- most onesum-view should be used in the rewriting of a
isons implied byy. We have seen that when replaciR§ query. The following are rewriting candidates of the query
with 0v we lose access to tmndistinguished variablesin ¢(z, sum(y)) + R & C:

v. Therefore, it is necessary for the comparisons ito

imply all the comparisons ipwhich contain an image of a ri (&, sum(y Hzi)) “)
nondistinguished variable in Formally, letndv(v) be the Pl

set of nondistinguished variablesin Let C#(#7?4(¥)) pe (0121, 21) & or & 0 (O, 2n) & C
the comparisons i’ containing variables ip(0ndv(v)). ! o o T

ThenC, = C¥¥n4 () must hold. If these conditions ro(, sum(y * Hzi)) 0 (0,25, y) & 3)
hold, we say that is C'-usable undef w.r.t. . We denote ’ b} ’

this fact asC-usable(v, 0, ¢). v (0171, 21) & .. & VS (0nn, 2) & C

We present an algorithm for computing rewritings of
conjunctivecount-queries in Figure 4.2.2. Note that we Wherevy is acount-view of the formv{ (z;, count) « B;
modify C'in line 12. We remove front' its comparisons andv* is asum-view of the formv®(z,, sum(y)) < Bs.
containing a variable that is not accessible after replacingVote that the variablg in the head of the query in Equa-
the appropriate subset &by the appropriate instantiation tion 3 must appear amortigx; for some:. In [CNS99] we
of v. Thus, this step is necessary in order for the resultinghowed that if a rewriting candidate is equivalent to its un-
query to be safe [UI188]. folding then it must be one of the above forms. As in the
The given algorithm runs in nondeterministic polyno- case okount-query rewritings, in some cases the rewriting
mial time. The following theorem states that it is both may be optimized by dropping the summation.
sound and complete for linear queries and is sound, but not Once again, we reduce reasoning about rewriting candi-
complete, for arbitrary queries. dates to reasoning about conjunctive aggregate queries. For
this purpose we extend the unfolding technique introduced

Theorem 4.5 (Soundness and Completeness of Count i, supsection 4.2. Thus, the unfoldings of the candidates
Rewriting) Letq be acount-query and be a set of views. resented are:

If » is returned byCount_Rewriting(q, V), thenr is a
count-rewriting candidate of; andr =y ¢. In addition, ri(z,sum(y)) < 61B1 & ...0,B, &'
if ¢ is either linear or relational, then the opposite holds by +4 (& sum(y)) <« 0:B; & 0,81 & ...0,B, & C'.

making the appropriate choices in lines 5 and 6. i) . N
Now, instead of checking whetheris a rewriting ofq

Example 4.6 This example shows the incompleteness ofwe can verify ifr* is equivalent ta-. However, the only
the algorithm for the general case. Consider the qgery known algorithm for checking equivalencesafm-queries,
view v, rewritingr, and unfolding-* presented in [NSS98], requires an exponential blowup of
the queries. Thus, it might be very difficult to provide a
g(count) e p(r) L p(y) & p(u) & tractable algorithm that is both sound and complete for ar-
r<ylr<u bitrary sum-queries. However, relationakm-queries and
v(y,count) + p(x)&ply) &<y linearsum-queries are equivalent if and only if they are iso-
r(sum(z; % z2)) vy, 1) & v(y, 22) morphlc. Thus, we can extgnd the algorithm presented in
u] & & & the Figure 4.2.2 fosum-queries.
ri(count) p(w) & p(y) & plu) As a preliminary step for our algorithm we extend the
r<y&u<y. algorithm in Figure 4.2.2, such that in linesam-views
Althoughr = ¢ [NSS98], the algorithm does not find any may be C*.“?Se” as well.. we call th.'s algontr(hm'n.-
rewritings pute_Rewriting. We derive an algorithm for rewriting
' sum-queries, presented in Figure 4.3. The algorithm runs
4.3 Rewritings of Sum-Queries Ir? Igondeterministic polynomial time and the following
olds:

T

Rewriting sum-queries is similar to rewritingcount-

queries. When rewritingum-queries we must also take Theorem 4.7 (Soundness and Completeness of Sum

the aggregation variable into consideration. We present aRewriting) Given asum-queryq and a set of view®’ the

algorithm for rewritingsum-queries that is similar to the following holds. Ifr is returned bySum Rewriting(q, V),

algorithm forcount-queries. thenr is a sum-rewriting candidate ofy and» =y ¢. In
We define the form of rewriting candidates fewm- addition, Ifq is either linear or relational, thenthe Opposite

queries. Sinceum and count-views are the only views holds by making the appropriate choices.

S. Cohen, W. Nutt, A. Serebrenik 9-8

Algorithm Count_Rewriting
Input A queryq(z, count) + R & C and a set of view¥
Output A rewriting r of ¢.

(1) Not_Covered := R.
(2) Rewriting := 0.

3) n:=0.
(4) While Not_Covered # § do:
(5) Choosea viewv(z', count) + R’ & C'in V.
(6) Choosean instantiationd, and an isomorphisig,
such thatR-usable(v, 0, ¢) andC-usable(v, 8, ¢).
@) For eachatoma € R’ do:
(8) If « is a nondistinguished atorthen
9 Removeyp(fa) from R.
(10) If w(fa) ¢ Not_Covered then fail.
(11) Removeyp(fa) from Not_Covered.
(12) Remove fromC' comparisons containing a variablegfd R’),
but not infz’
(13) Increment n.
(14) Add v(0%', z,)) to Rewriting, wherez, is a fresh variable.

(15) Return r(z,sum([]'_, z;)) + Rewriting & C.

Figure 2: Count Query Rewriting Algorithm

4.4 Rewritings of Max-Queries gueries can be modified to find rewritingsmfix-queries.
Rewriting nonaggregate queries is a well known prob-
lem [LMSS95]. Thus, we do not present algorithms for
finding rewritings ofmax-queries in this paper.

We consider the problem of rewritingax-queries. Note
that max-queries are insensitive to multiplicities. Thus, it
is natural to use nonaggregate views amgk-views when
rewriting amax-query. When using max-view the aggre-
gation variable becomes inaccessible. Thus, we use at mogt Conclusion
onemax-view. The following are rewriting candidates of

the queryy: Aggregate queries are increasingly prevalent due to the
B widespread use of data warehousing for decision support.

r1(2, max(y)) < (4) They are generally computationally expensive since they
v1(0171) & ... & v (0,2,) & C7 scan many data items, while retrieving few. Thus, the

ro(Z, max(y)) <« v*(Omim y) & (5) computation time of aggregate queries is generally or-

ders of magnitude larger than the result size of the query.
n(iz) & . & (Onzn) & This makeg query ogtimization a necessity. Optci]miz}/
wherev; is a nonaggregate view and® is a max-view. iNg aggregate queries was studied in the context of dat-
Note that the variablg in the head of the query in Equa- acubes [HRU96, Dyr96]. However, there was little the-
tion 5 must appear amonyz; for somei. In [CNS99] ory for general aggregate queries, beyond this context. In
we showed that if a rewriting candidate is equivalent to itsthis paper, based on previous results in [NSS98, CNS99],

unfolding then it must have one of the above forms. we presented algorithms that enable reuse of precomputed
Once again, reasoning about rewriting candidates cafUeries in answering new ones.
be reduced to reasoning abautx-queries, using an ap- The algorithms presented were implemented in SICS-

propriate extension of the unfolding technique. We havelus Prolog. The system was developed at Hebrew Uni-
shown [NSS98] that equivalence of relationaix-queries ~ Versity and it is located ahttp://www.cs.huji.ac.il/

is equivalence of their cores. There is a similar reduc- alicser/aggrq/.

tion for the general case. Thus, algorithms developed for Topics for future research include rewriting queries with
checking set-equivalence of queries can easily be convertddAVING clauses, negation and functional dependencies,
to algorithms for checking equivalence efax-queries. and enriching the class of aggregate functions with statisti-
Similarly, algorithms that find rewritings of nonaggregate cal functions.

S. Cohen, W. Nutt, A. Serebrenik 9-9

References

[CM77]

[CNS99]

[CVO3]

[Dyro6]

[GHQY5]

[HRU96]

Algorithm
Input
Output

Sum_Rewriting
A rewriting r of ¢.

(1)
(2)
3)

(4)
(5)

Let ¢’ be the query’(z, count) + B.
Let »'=Compute_Rewriting(q’, V).
If " is of the form

(2, sum(y * [[iey zi)) ¢ v*(0s2s,y) & 0§ (0121, 21) & ... & v (0n 20, 2) & C7

Then return »’
If ' is of the form

P (z, sum([7, zi)) < v§(0121,21) & ... & 05 (0,2p, 2,) & C

and y appears among; z;
Then return

(6)

r(z,sum(y « [[/_, 2i)) < v§(0121,21) & ... & 05 (0,20, 20) & C.

A queryq(z, sum(y)) < B and a set of view¥

Figure 3: Sum Query Rewriting Algorithm

[JK83]

A.K. Chandra and P.M. Merlin. Optimal imple-
mentation of conjunctive queries in relational
databases. IRroc. 9th Annual ACM Sympo-
sium on Theory of Computin§977. [Klu88]

S. Cohen, W. Nutt, and A. Serebrenik. Rewrit-

ing aggregate queries using views. In Ch. Pa-[LMSS95]
padimitriou, editor,Proc. 18th Symposium on

Principles of Database SystepRhiladelphia
(Pennsylvania, USA), May 1999. ACM Press.

To appear.

S. Chaudhuri and M. Vardi. Optimization of [LSK9S]
real conjunctive queries. IAroc. 12th Sympo-

sium on Principles of Database SysteiVash-

ington (D.C., USA), May 1993. ACM Press.

C. Dyreson. Information retrieval from an in- [NSS98]
complete datacube. IRroc. 22nd Interna-
tional Conference on Very Large Data Bases
Bombay (India), September 1996. Morgan
Kaufmann Publishers.

A. Gupta, V. Harinarayan, and D. Quass. Ag-
gregate query processing in data Warehousquiage]
In Proc. 21st International Conference on Very

Large Data Basedviorgan Kaufmann Publish-

ers, August 1995.

V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes efficiently. Rroc.
1996 ACM SIGMOD International Conference
on Management of Datpages 205-227, Mon-
treal (Canada), June 1996.

[SDJL9E]

S. Cohen, W. Nutt, A. Serebrenik

D.S. Johnson and A. Klug. Optimizing con-
junctive queries that contain untyped variables.
SIAM Journal on Computingl2(4):616—640,
1983.

A. Klug. On conjunctive queries containing in-
equalities.J. ACM 35(1):146-160, 1988.

A.Y. Levy, A.O. Mendelzon, Y. Sagiv, and
D. Srivastava. Answering queries using views.
In Proc. 14th Symposium on Principles of
Database Systemgpages 95-104, San Jose
(California, USA), May 1995. ACM Press.

A.Y. Levy, D. Srivastava, and T. Kirk. Data
model and query evaluation in global informa-
tion systemsJournal of Intelligent Information
Systems5(2):121-143, 1995.

W. Nutt, Y. Sagiv, and S. Shurin. Decid-
ing equivalences among aggregate queries. In
J. Paredaens, editd?roc. 17th Symposium on
Principles of Database Systemgages 214—
223, Seattle (Washington, USA), June 1998.
ACM Press. Long version as Report of Esprit
LTR DWQ.

X. Qian. Query folding. In Stanley Y. W. Su,
editor, Proc. 12th International Conference on
Data Engineeringpages 48-55, New Orleans
(Louisiana, USA), March 1996. IEEE Com-
puter Society.

D. Srivastava, Sh. Dar, H.V. Jagadish, and A.Y.
Levy. Answering queries with aggregation us-
ing views. InProc. 22nd International Confer-
ence on Very Large Data BaséBombay (In-

9-10

[TS97]

[UII88]

[U1I89]

dia), September 1996. Morgan Kaufmann Pub-
lishers.

D. Theodoratos and T.K. Sellis. Data ware-
house configuration. InProc. 23nd In-
ternational Conference on Very Large Data
Bases pages 126-135, Athens (€&ace), Au-
gust 1997. Morgan Kaufmann Publishers.

J. Ullman. Principles of Database and

Knowledge-Base Systems, Vol. I: Classical
Database SystemsComputer Science Press,
New York (New York, USA), 1988.

J. Ullman. Principles of Database and
Knowledge-Base Systems, Vol. Il: The New
Technologies Computer Science Press, New
York (New York, USA), 1989.

S. Cohen, W. Nutt, A. Serebrenik

9-11

