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Abstract 

In this work, we apply quantum cellular automata (QCA) to study pattern formation and image processing in quantum-diffusion Schrödinger 
metamedia with generalized complex diffusion coefficients. Generalized complex numbers have the real part and imaginary part with the 
imaginary unit 2 1i   (classical case), 2 1i   (double numbers) and 2 0i   (dual numbers). They form three 2-D complex algebras. 
Discretization of the Schrödinger equation gives the quantum Schrödinger cellular automaton with various complex–valued physical 
parameters. The process of excitation in these media is described by the Schrödinger equations with the wave functions that have values in 
algebras of the generalized complex numbers. This medium can be used for creation of the eye-prosthesis (so called the ”silicon eye”). The 
medium suggested can serve as the prosthesis prototype for perception of the bichromatic images. 
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1. Introduction 

The metamedia (metamaterials), in which the electro dynamical, thermal and other physical parameters have "exotic" values 
(negative, imaginary, complex or quaternion ones), shows us the wonderful diversity of dynamic behavior and self-organization 
types. It is becoming more and clearer that such systems are not exclusive: when researchers try to investigate the nature of 
complex systems - chemical, biological or physical, - they find many of certain examples. In particular, this fact mainly refers to 
biological systems, because these systems are always quite far from stable state and their parameters frequently have exotic 
values. A theoretical quantum brain model was proposed in [1] using a linear and nonlinear Schrödinger wave equation. The 
model proposes that there exists a quantum process (quantum part of the brain) that mediates the collective response of a neural 
lattice (classical part of the brain). Perception, emotion etc. are supposed to be emergent properties of such compound a 
(classical-quantum) neural circuits.  

Linear and nonlinear Schrodinger equations [2,3] are important members of the family of methods for image processing, 
computer vision, and computer graphics. Schrödinger transform of image as a new tool for image analysis was first given in [3]. 
In the paper, exterior and interior of objects are obtained from Schrödinger transforms of original image and its inverse image. 
Neural networks and cellular automata (in form of a media) which are compatible with the theory of quantum mechanics and 
demonstrate the particle-wave nature of information have been analyzed in [4-6]. The studying of processes in such metamedia 
is very important for many branches of the system theory. There is no general theory of the metamedia yet, and every particular 
example of similar media, usually provides us with the examples of new dynamic or self-organization types.  

In this work, we apply quantum cellular automata to study pattern formation and image processing in quantum-diffusion 
Schrodinger metamedia with generalized complex diffusion coefficients. Generalized complex numbers have the real part and 
imaginary part with the imaginary unit 2 1i   (classical case), 2 1i   (double numbers) and 2 0i   (dual numbers). They form 
three 2-D complex algebras. Discretization of the Schrödinger equation gives the quantum Schrödinger cellular automaton with 
various complex–valued physical parameters. The process of excitation in these media is described by the Schrodinger equations 
with the wave functions that have values in algebras of the generalized complex numbers. This medium can be used for creation 
of the eye-prosthesis (so called the ”silicon eye”). The medium suggested can serve as the prosthesis prototype for perception of 
the bichromatic images. 

The rest of the paper is organized as follows: in Section 2, the object of the study (the Schrödinger equation) is described. In 

Section 3, a brief introduction to mathematical background (algebra 2
2 ( | ),  1,0i i RA  of generalized complex numbers 

a ib z ) is given (subsection 3.1) in order to understand the concept behind the proposed method. In subsection 3.2, the 

proposed method based on Schrödinger equations is explained. Next, we defined Schrödinger transform of image, discussed its 
properties and the properties of the Schrödinger transforms are analyzed. In Section 4, the basic metamedia (the Schrödinger-
Euclidean, Schrödinger-Minkowskian, Schrödinger-Galilean, Schrödinger-Yaglom) are devised and analyzed in detail. The 
simulation result and algorithm complexity are demonstrated too. Finally, we gave our conclusion in Section 5. 

2. The object of the study  

In this work the new metamedia with a complex diffusion coefficients are studied. We call such media the Schrödinger 
metamedia. Classical 2-D heat equation is: 
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where ( , , )x y t  is a function describing the media's excitement,  , ,f x y t  is an exciting source (input signal) and  D  is a 

diffusion coefficient (real number).  
The main purpose of this work is the investigation of derivative laws for Schrödinger metamedia with generalized complex 

diffusion coefficient in the form of quantum cellular automata. The generalized complex numbers [7] consist of a real part, an 

imaginary part and a generalized imaginary unit that have one of the following properties: 2 1i    (a classical case), 2 1i    

(double numbers) and 2
0 0i   (dual numbers). They form three 2-D complex algebras  2 ( | ) : | , ,i a ib a b   R z RA  where 

0, , .i i i i   There is a specific type of excitable metamedium for each kind of complex numbers: for 2 ( | )iRA  - the 

Schrödinger-Euclidian metamedium (when cl quD i D D ), for 2 0( | )iRA  - the Schrödinger-Galilean metamedium (when 

0cl quD i D D )  and for 2 ( | )iRA  - the Schrödinger-Minkowskian metamedium (when cl quD i D D ), where ,cl quD iD  are 

classical and quantum diffusion coefficients, respectively.   
Excitation of waves in metamedia are described by three Schrödinger equations with a 2 ( | )iRA -valued wave functions 
( , , )x y t . The discretization of the Schrödinger equations gives us a metamedia models in the form of three excitable cellular 

automata. Their microelectronic realizations appear to be a programmable Schrodinger metamedia [8].  
In this work, we study properties of the Schrödinger excitable metamedium in the form of a cellular automaton. The more 

detailed information about cellular automata can be found in [9]. The automaton's cells are located inside a 2D array. They can 
perform basic operations with complex numbers (in different complex algebras 2 ( | )iRA ). These cells are able to inform the 
neighboring cells about their states. Such media possess large opportunities in processing of bichromatic images in comparison 
with the ordinary diffusion media with the real-valued diffusion coefficients. The latter media are used for creation of the eye-
prosthesis (so called the "silicon eye"). The medium suggested can serve as the prosthesis prototype for perception of the 
bichromatic images [10-16]. 

3. Methods 

3.1. Mathematical background 

We consider the algebraic and geometric properties of three 2-D complex algebras  2 ( | ) : | , ,i x iy x y   R z RA  where 

0, , .i i i i   Additions for all three algebra are identical:        1 2 1 1 2 2 1 2 1 2 ,x iy x iy x x i y y        z z but multiplications 

are different [7]:  

   
   
   

 

2
1 2 1 2 1 2 1 2

2
1 2 1 1 2 2 1 2 1 2 1 2 1 2

2
1 2 1 2 1 2

, 1,

, 1,

             , 0.  

x x y y i x y x y i

x iy x iy x x y y i x y x y i

x x i x y x y i

     
        
   

z z     

The conjugation operation can be defined for 2 ( | )iRA . It maps each number x iy z   to the number :x iy x iy   z . It is 

possible to define a pseudo norm using conjugation. 

Definition 1. The quadratic norm 
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The conjugation operation can be defined is called the pseudonorm of the number x iy z . It is easy to check that 
     1 2 1 2N N Nz z z z . 

Definition 2. The value of an arithmetical square root of the product of numbers  Nzz z  is called an absolute value of a 

generalized complex number z  and can be denoted as norm 
2 2
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  (2) 

This absolute value can be interpreted as a distance (elliptic, hyperbolic or parabolic) from origin to the point z . In the first 
case, the absolute value is called elliptic, in the second case we are dealing with a hyperbolic value (it can also take imaginary 
values because of the result of subtraction operation 2 2x y ) and in the third case, it is called the parabolic absolute value. The 
generalized complex planes are turned into a 2-D pseudo metrical space if they are equipped the following pseudo metrics:  
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Fig. 1. The circles in three complex spaces. 
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where 1 1 1 2 2 2,  x iy x iy   z z  
The algebra 2 ( | )iRA  equipped with pseudo metrics, form three metrical spaces with corresponding geometries: 2 ( | )iRA  is 

transformed into the Euclidean geometry, 2 ( | )iRA  - into the Minkowskian geometry and 2 0( | )iRA  - into the Galilean 
geometry. 

Definition 3. The set of all points in the generalized complex plane 2 ( | )iRA  satisfying the equation 2 2 2 2 2| | x i y r  z  is 
called 2 ( | )iRA -circle of the radius r  centered at the origin. 

There are three types of circles: 2 0( | )iRA -circle is the classical Euclidean (elliptic) circle (Fig.1a), 2 ( | )iRA -circle is the 
Minkowskian (hyperbolic) circle (Fig.1b) and 2 0( | )iRA -circle is the Galilean (parabolic) circle in the form of two parallel 
lines (Fig.1c). If x iy z  then the generalized complex number 0 /z z z  has the unit modulus if 0.z  It is easily see, that  
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Here ,   cos sin  are generalized trigonometric functions. In the first case ( i i ) generalized trigonometric functions coincide 

with classical (elliptic) functions: cos ,   sin    cos sin . In the second case ( i i ) they are equal to hyperbolic functions 

ch ,   sh    cos sin . The third case ( 0i i ) gives us new kinds of trigonometric functions: cg 1,   cos  

sg   sin  which will be called parabolic (or Galilean) functions. 

According to (4)-(6), an arbitrary generalized complex number with the unit modulus has the following form 
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In this work, we study the diffusion equation (or the heat equation) with a diffusion coefficient in the form of a generalized 
complex number and with 2 ( | )iRA -valued wave function. We will call such equation the generalized Schrodinger equation. 

3.2. The generalized Schrödinger equation and cellular automata 

Consider the following 2-D Schrödinger equation  

 
2 2

2 2
( , , ) ( , , ) , , ,

d d d
x y t x y t f x y t

dt dx dy

 
      

 
D                                                                                        (7) 

where ( , , )x y t  is a wave 2 ( | )iRA -valued function. It describes the state ( , , )x y t  (in terms of generalized complex numbers) 
of a metamedium point with coordinates ( , )x y  at the moment t . In (7) cl quD iD D  is an 2 ( | )iRA -valued diffusion 
coefficient. If clD D R  is a real number then (7) is an ordinary diffusion (or heat) equation in the real ordinary medium (we 
will call one as the Fourier-Gauss medium). If quiD D C  is an imaginary number then (7) becomes an ordinary Schrödinger 
equation with the Plank's constant / 2quiD i m  If   2cos sin ( | ),i

cl quD iD i e i      D D D RA  then (7) is our 
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generalization of both diffusion and Schrodinger equations. In case of zero initial conditions, we can write the solution (7) in the 
form of the Cauchy integral:  
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                                                               (8) 

This integral we will call the generalized Schrödinger transform (GST) of the initial image ( , , ).f x y t If

2/ 2 ( | ),quiD i m i  C RA  then GST is ordinary Schrödinger transform [2-6]. 
Let us introduce a 2-D regular lattice with nodes  , ,n m kx y t , where 1 ,n nx x h     1m my y h    and 1k kt t    . Here h  

and   are spaces between nodes on the space 2 2
Sp Z R and time t tZ R  lattices, respectively. For discrete Laplacian we use 

the following approximation: 
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  (9) 

As a result, we get the 2-D discrete Schrödinger equation 

 
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n m k n m k
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         D
  (10) 

Now, we give the definition of a 2-D “cellular space” (2-D regular lattice) in which the cellular automaton is defined. A regular 
lattice 2 2

Sp SpZ R  consists of a set of cells (elementary automata, or electrical circuits utAu ), which homogeneously cover a 2-D 
Euclidean space. Each cell is labeled by its position   2,( , ) ( , ),  n m Spn mut x y ut n m ZAu Au  

Regular, discrete, infinite network consisting of a large number of simple identical elements in the form of elementary 
automata ( , )ut n mAu  a copy of which will take place at each node ( , )n m  of the net is called the cellular automaton (see Fig.2 
and Fig.3a). Each so decorated note will be called a cell ( , )ut n mAu  and will communicate with a finite number of other cells 

( , )ut i kAu , which determine its neighborhood ( , ) ( , )i k m nM , geometrically uniform 2( , ) ,  ( , ) Spm n m n  M M M Z .  The 
neighborhood of the cell ( , )ut n mAu  (including the cell itself or not, in accordance with convention) is the set of all the cells 

( , )ut i kAu , ( , ) ( , )i k m nM  of the network which will locally determine the evolution of ( , )ut n mAu . This local communication, 
which is deterministic, uniform and synchronous determines a global evolution of the cellular automaton, along discrete time 
steps 1k kt t    . 

In the case of 2
SpZ , the classical neighborhoods are the von Neumann’s and Moore’s ones. They are known as the nearest 

neighbors neighborhoods, and defined according to the usual norms and the associated distances. More precisely, for 
2( , ) Spi j Z , 1|| ( , ) || | | | |i j i j   and  || ( , ) || max | |,| |i j i j  will denote 1 - and  -norm respectively. Let 1  and   be the 

associated distances. Then  Von Neumann and Moore neighborhoods (Fig.2) are   1( , ) : ( , ) | ( , ), ( , ) 1m n i k m n i k  M  and 
  ( , ) : ( , ) | ( , ), ( , ) 1 ,m n i k m n i k M respectively. To each cell ( , )ut n mAu  we assign an 2 ( | )iRA -valued state 

( , , ) ( , , )n m kn m k x y t   (i.e., the media's excitement).  The dynamics of the cellular automaton are determined by a local 
transition rule, which specifies the new state 1( , , 1) ( , , )n m kn m k x y t    of a cell as a function of its interaction Von 
Neumann neighborhood configuration, according to (10), i.e., 

 
( , , 1) ( , , )

( 1, , ) ( 1, , ) ( , 1, ) ( , 1, ) 4 ( , , ) .

n m k n m k

n m k n m k n m k n m k n m k

 
    

  

         D
  (11) 

This rule shows us the relation between a state ( , , 1)n n k   of the cell ( , )ut n mAu  at the current moment time 1k   and the 
state ( , , )n m k  the same cell ( , )ut n mAu  and the states of the four neighboring cells ( 1, , ),n m k   ( 1, , ),n m k 

( , 1, ),n m k  ( , 1, )n m k   at the previous moment time k . 

 
 a)                                                        b) 

Fig. 2. Examples of interaction neighborhoods (gray and black cells) for the black cell in a 2-D square lattice 2
SpZ .Von Neumann neighborhoods ( , )m nM  

and b) Moore neighborhoods ( , )m nM . 

The global time evolution of the cellular automaton depends on an algebraic nature of the number D . If it is a real number  

clD D R then the automaton simulates the heat propagation on a 2-D plane. According to the results of analysis, in this case 
an elementary medium's cell is an ordinary RC-circuit (see Fig. 3b). It is interesting to investigate the global time evolution of 
the Schrödinger cellular automaton with diffusion coefficient in the form of a generalized complex number 
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2 ( | )cl quD iD i  D RA , where 
2 1, 0.i    The analysis shows that in this case the elementary cells of a 2-D Schrödinger 

cellular automata are not RC-circuits, but a 2-channel filters (see Fig. 3c). 

       
            a)                                                                             b)                                                                   c) 

Fig. 3. a) The 2-D cellular automaton (the Schrödinger metamedium) and b) its equivalent electrical circuit in the form of spatially distributed RC-circuit that 

simulates a simple diffusion media, c) a single cell ( , )ut n mAu  of the 2-D cellular automaton in form of a 2-channel (complex) filter. 

4. Results and Discussion 

4.1. The Schrodinger-Euclidean metamedium 

For studying the global time evolution of the Schrödinger cellular automaton we will use the fixed absolute value of D , 

namely 0.11D , which provides quite fast process of diffusion propagation in the classical case with a real-valued diffusion 

coefficient 0 0.11D D , but will not lead to the memory overflow because of extremely high values 

For a classical complex case (
2 1i   ), the diffusion coefficient can be represented in the polar form: cl quD i D  D  

2 2
0 ,i i

cl quD D e D e         where 2 2
0 ,cl quD D D    arctg / .qu clD D   An ordinary diffusion occurs when 0   (real-

valued diffusion coefficient). The quantum diffusion (for free quantum particle) occurs when / 2   (a purely imaginary 

diffusion coefficient like the one in the Schrodinger equation). It is interesting to study how the global time evolution is 
changing when the angle   runs along interval  0 / 2   .  For 0   we have the Fourier-Gaussian medium (classical 

Newton world), and for / 2   we have the Schrödinger-Euclidean medium (quantum world). On the  's increase a classical 

diffusion Fourier-Gaussian medium turns into the quantum Schrödinger-Euclidean medium. 
On Fig. 4 and Fig. 5 the results of modeling for a complex diffusion coefficient D  with different values of phase   are 

presented. Each picture is divided onto four parts: the bottom row represents a real  ( , , )x y t   and an imaginary  ( , , )x y t   

components of a wave excitement in the form of 2 ( | )iRA -valued function ( , , )x y t , the absolute value ( , , )x y t  is presented 

in the top left quarter, the phase  Arg ( , , )x y t   is shown in the top right quad.  

 
  a) 00                                                       b) 05   

Fig. 4. The excitement of the Schrödinger-Euclidean metamedium at the time 128kt   for two values of diffusion coefficient 0
iD e   D , where 00   

(the Fourier-Gaussian medium) and 05   (the Schrödinger-Euclidean metamedium). 

At the initial moment of time a single cell 0 0( , )ut x yAu  was being excited by the bichromatic Dirac delta-function 

   0 0 0 0 0 0 0 0( , , 0) ( , ,0) ( , ,0) ( , ,0) 1x y t x y i x y x y i        . In process of time, the excitement covers more and more cells 

of automaton. Fig. 4 shows the excitement of a metamedium with two diffusion coefficients: 00   (a real-valued diffusion 

coefficient) and 05   at the moment of time 128kt  . It can be seen that when 00   the excitement takes the form of the 

2D Gaussian surface (see Fig. 4a and Fig. 5a) and describes an ordinary diffusion process. Dark intensities correspond to higher 
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number values on the mentioned figures. When 05   the excitement has not very strongly marked form of a blurred wave 

packet (see Fig. 4b and Fig. 5b). The wave nature denotes on the appearance of quantum properties of the Schrodinger-Euclid 
metamedium even with small values of an angle .  

 
  a) 00                                                       b) 05   

Fig.  5. The typical excitements a) in the form of 2-D Gaussian surface in the Fourier-Gaussian metamedium and b) in the form of a wave packet in the 

Schrödinger-Euclidean metamedium ( 128kt  , 05  ). 
     
Remark 1. Note that with small angles   the absolute value of an imaginary component is significantly smaller than an 

absolute value of a real part:    ( , , ) ( , , )x y t x y t     . For this reason in       2 2
( , , ) ( , , ) ( , , )x y t x y t x y t         

 ( , , )x y t    the real value prevails. Thereby in this case (low values of  ) the real part and the absolute value of an 

excitement function have the form of a smooth Gaussian surface. For the visualization of low imaginary part, the normalization 
has been applied on a Fig 4b and Fig 5b.                                                                                                                                         

When the   value is being increased, firstly, a real part also begin to demonstrate a wave nature, and secondly the values of 

an imaginary and a real parts are flattening    ( , , ) ( , , )x y t x y t     . It is shown on a Fig. 6 that when the phase   is 

being increased, the excitement becomes more and more similar to a wave packet in form of a 2-D Gaussian surface. Inside of 
that surface the real and imaginary components are fluctuating in an antiphase (see interchanging black and white rings on a 
figure). The absolute value of an excitement has the form of a 2-D Gaussian surface. 

4.2. The Schrödinger-Minkowskian metamedium 

In this case the diffusion coefficient is a double number and the wave function ( , , )x y t  takes its values in the algebra of 

double numbers  2( | ) : | ,i z a i b a b    R RA  where 2 1.i     

 
025                                          060                                                          

Fig. 6. The excitement of the Schrodinger-Euclidean metamedium at the moment 128kt   for two values of diffusion coefficient 0
iD e   D  ( 025   

and 060  ). 

Every double number can be represented in the following polar form  1 1cosh sinhcl quD i D i       D D  

2 1( | ),ie i 
 D RA  where 2 2

0 cl quD D D  D ,  0 0arcth / .b a   Here we consider the case when cl quD D . It was 

done so to get an absolute value 2 2
cl quD D D  that doesn't appear to be a complex number. In addition, the values 2 2,cl quD D  

were chosen so that 2 2
0 0.11cl quD D D   D . Fig. 7 contains the picture of the excitement of a cellular automaton after 128 

iterations (initial excitement is the bichromatic Dirac function). 
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05                                          020   

Fig. 7. The excitement of a Schrödinger-Minkowskian metamedium at the moment 128kt   for two values of a diffusion coefficient's phase 0
iD e   D   

( 05   and 020  ). 

Unlike the previous case (when both real and imaginary values had the wave nature) in this case a real component has a 
smooth Gaussian form and real part has the form of a wave packet. It turned out that the frequency of fluctuations of real values' 
waves does not increase when the phase of a diffusion coefficient D grows. In the center of a phase image (top right quarter of 
pictures) the increase of an angle   leads to the sharper look of a zero phases ring. 

4.3. The Schrödinger-Galilean metamedium 

In this case the diffusion coefficient D  is a dual number and wave function ( , , )x y t  takes its values in the algebra of dual 

numbers  2 0 0( | ) : | , ,i z a i b a b   R RA  where 2
0 0.i   Every dual number can be represented in the following  polar form 

  0
0 0 2 01 ( | ),i

cl qu clD i D i D e i       D D RA  where , / .cl qu clD D D D  On Fig. 8 we can see the form of 

excitement process after 128 iterations from the impact of the Dirac delta-function at the initial moment of time.  
As in the previous case, a real component does not demonstrate a wave nature when an imaginary component does. What is 

more, when we increase the value of   to 045   then the average value of a real part becomes lower than the average value 

of an imaginary part, and when 045   an imaginary component begins to prevail over the real one. In addition, in this case the 

wave nature of the absolute value of a wave function is absent because of the fact that it does not include a non-zero imaginary 

part. The reason of this is that for dual numbers we have an equation 0x i y x  z . In this way the imaginary part of a wave 

function is "living on its own", it does not have an impact on an absolute value. So, it is like an invisible "ghost" that 
accompanies it. 

 
050                                          080   

Fig. 8. The excitement of a Schrödinger-Minkowskian metamedium at the moment 128kt   for two values of a diffusion coefficient's phase 0
iD e   D   

( 05   and 020  ). 

4.4. The Schrödinger-Yaglom metamedium 

The generalization of three algebra  2 ( | ) : | ,i a ib a b   R z RA , where 0, ,i i i i  , is the Yaglom algebra [7] 

 2 ( | ) : | ,k ki a i b a b   R z RA  in which we have 2
ki k R , where k  is an arbitrary real number (see Fig. 9). Particularly 

when 1,0k   an algebra 2 ( | )kiRA  turns into 2 ( | )iRA . In this algebra, the addition and multiplication rules have the 

following form: 

       1 2 1 1 2 2 1 2 1 2 ,k k kx i y x i y x x i y y        z z  

      1 2 1 1 2 2 1 2 1 2 1 2 1 2 .k k kx i y x i y x x k y y i x y x y       z z  



Image Processing, Geoinformation Technology and Information Security / V. Labunets et al. 

3rd International conference “Information Technology and Nanotechnology 2017”     147 

The conjugation operation can be defined in the algebra 2 ( | )kiRA . Such operation maps each number kx i y z  in a new 

number :k kx i y x i y   z . It is obvious that 2 2kx y  z zz . It can be easily seen that 

 2 2 2 2
cos sin ,ki

k k k k

x y x y
i i i e

x k y x k y
 

   
                     

z z z z z
z z

                                     (12) 

where 

2 2 2 2

sin
cos : ,  sin : ,  tg .  

cos
k

k k k
k

x x y y b

ax ky x ky


  


     

 z z
                                                         (13) 

In the considered case the diffusion coefficient D  is the 2 ( | )kiRA -valued complex number and the wave function  ( , , )x y t  

takes its values in the algebra 2 ( | )kiRA , where 2 .ki k  We will call the corresponding medium the Schrodinger-Yaglom 

metamedium. According to (12) every 2 ( | )kiRA -valued diffusion coefficient can be represented in a polar form: 

 2 2 2 2
cos sin .kqu qu icl cl

k k k k k
cl qu cl qu

D DD D
i i i D e

D k D D k D
 

  
                      

D D D D
D D  

Now D  depends on two parameters   and k .  The results of modeling the Schrödinger-Yaglom metamedia for different 

values of k  are shown on Fig. 10. It should be noted that the ring of zero phases (the bright one), which was inherent for the 
case with dual numbers (k = 0) also is the first inner ring of phase fluctuations for the negative values of a parameter k  (on a 
Fig. 10 0,25k    and 0,05k   ). We can see the second bright ring that is located after the first one and also after the first 
black ring. The second bright ring moves away from the point of origin when the absolute value of k  is being decreased. When 

0k   (see Fig. 10c) the mentioned ring along with the first dark one tends to infinity.  

 

Fig. 9. In every plane, that crosses the vertical of the k -parameter axis, there is an algebra  2 ( | ) : | ,k ki a i b a b   R z RA . Three planes that cross this 

axis at three points 1,0k   represent three algebras of complex numbers that were considered before. 

 
  a)                                              b)                                               c) 

Fig. 10. The excitement of three Schrödinger-Yaglom metamedia at the moment 128kt  for three values of the parameter k : a) 0,25k   , b) 

0,05k   , c)  0k   for identical values arg{ } 40.5 D  and 0.07D . 

4.5. The interference of two excitements 

Because the excitement function ( , , )x y t  frequently has a wave nature, it is very interesting to study the interference picture 

of two excitements that appears simultaneously in the different points of a metamedium.  
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Fig.11a shows us a superposition of two excitements when a diffusion coefficient is a real number. In this case both 
excitement processes appear to be 2-D Gaussian  surfaces that add up with each other in process of time. 

More interesting results can be seen on Fig. 11b-c for the Schrödinger-Euclidean metamedium with 
2arg{ } / 2  1.i     D  In that case the interference of excitements occurs, like it happens in a classical quantum 

mechanics. The results of an interference for the Schrodinger-Galilean metamedium with a dual diffusion coefficient 2( 0)i   

are presented on Fig. 11d. Let us note that white rings of the zero phases don't add up with each other like it happens in the case 
of a classical interference. They are smoothly connecting instead. 

5. Conclusion 

The metamedia with a generalized complex diffusion coefficients were first studied. Their time evolutions are described with 
generalized Schrodinger equations. The implementation of such metamedia with a cellular automaton was considered. In 
addition, this work contains the results of modeling, which shown the complex character of such media's behavior. Our future 
work will be focused on using commutative and Clifford algebras for hyperspectral image processing and pattern recognition.  

 
a)                                                       b)                                                     c)                                                     d) 

Fig. 11. The interference picture of two excitements in a) the Fourier-Gaussian medium with  2arg{ } 0 ,  1D i       (real diffusion coefficient);    b)-c) 

the Schrödinger-Euclidean diffusion media (complex diffusion coefficient ):  b) two closely located points were excited by the Dirac delta-functions at the 
initial moment of time,  c) one points were located relatively far from each other, d) the interference picture of two excitements in the Schrodinger-Galilean 

metamedium (it has a dual diffusion coefficient). 
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