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Abstract 

Denoising has numerous applications in communications, control, machine learning, and many other fields of engineering and 

science. A common way to solve the problem utilizes the total variation (TV) regularization. Many efficient numerical 

algorithms have been developed for solving the TV regularization problem. Condat described a fast direct algorithm to compute 

the processed 1D signal. In this paper, we propose a variant of the Condat’s algorithm based on the direct 1D TV regularization 

problem. The usage of the Condat’s method with the taut string approach leads to a clear geometric description of the extremal 

function.  
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1. Introduction 

One of the most known techniques for denosing of noisy signals and images was proposed by Rudin, Osher, and Fatemi [1].  

This is a total variation (TV) regularization problem. Let 𝐽(𝑢) be the following functional in the functional space L2: 

                                                                    𝐽(𝑢) = ∥ 𝑢 − 𝑢0  ∥𝐿2
2 +  𝜆 𝑇𝑉(𝑢),                                                 (1) 

where ∥ 𝑢 − 𝑢0  ∥𝐿2
2  is called a fidelity term and  𝜆𝑇𝑉(𝑢) is called a regularization  term. Here 𝑢0 is an observed signal that is 

distorted by additive noise 𝑛, 

                                                                                   𝑢0 = 𝑣 + 𝑛.                                                                   (2)   

Consider the following variational problem:  

                                                                        𝑢∗ = argmin𝑢∈𝐵𝑉(𝛺) 𝐽(𝑢).                                                               (3) 

where 𝑢∗ is an extremal function for  𝐽(𝑢). Numerical results have shown that TV regularization is quite useful in image 

restoration [2-4]. Here we consider a one dimensional TV (1D TV) regularization problem. In [5,6] Strong and Chan considered 

the behavior of explicit solutions to the 1D TV problem when the parameter 𝜆 in Eq. (1) is sufficiently small. The exact solutions 

to one dimensional TV regularization problem and to two dimensional radial symmetric TV regularization problem were 

considered in [7-10]. Recently, Condat [11,12] proposed explicit solutions to the 1D TV problem as well as a direct fast 

algorithm for the case of discrete functions. The algorithm is very fast and has complexity of 𝑂(𝑛) for typical discrete functions. 

In contrast, the proposed approach for finding exact solutions has a clear geometrical meaning.  

In this paper, we propose a variant of the Condat’s algorithm based on the direct 1D TV regularization problem. The usage of 

the Condat’s method with the taut string method [12] leads to a clear geometric description of the extremal function. 

2. Formulation of 1D TV regularization as a discrete problem 

Let 𝑢0  be a discrete function  𝑢0 = {𝑢0
1, … , 𝑢0

n}. For the function 𝑢0 the problem in Eq. (1) takes following form: 

                                                              𝐽(𝑢) = ∑   (𝑢𝑖 − 𝑢0
𝑖 ) 2 𝑛

𝑖=1 + λ∑ | 𝑢𝑖+1𝑛−1
𝑖=1 − 𝑢𝑖|.                                                (4) 

The functional  𝐽(𝑢)  is convex. Thus for the extremal (minimum) function  𝑢∗ the subgradient  ∇𝐽(𝑢) satisfies the condition:  

                                                                                  𝟎 ∈ ∇𝐽(𝑢∗).                                                                               (5)     

Remark. The subgradient ∇𝑓(𝑥) of the function 𝑓(𝑥) = |𝑥|: 

                                                                              ∇𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 > 0
−1, 𝑥 < 0

[−1; 1], 𝑥 = 0
 .                                                                     (6)  

2.1. Computation of the subgradient  

Consider subgradient ∇𝐽(𝑢): 

                                                            ∇𝐽(𝑢) = ∑  ∇ (𝑢𝑖 − 𝑢0
𝑖 ) 

2
 𝑛

𝑖=1 + λ∑ ∇| 𝑢𝑖+1𝑛−1
𝑖=1 − 𝑢𝑖|.                                         (7)   

                                                ∑  ∇ (𝑢𝑖 − 𝑢0
𝑖 ) 2 𝑛

𝑖=1 = ( 𝑢1 − 𝑢0
1, 𝑢2 − 𝑢0

2, … , 𝑢1𝑛−1 − 𝑢0
𝑛−1, 𝑢𝑛 − 𝑢0

𝑛).                       (8) 

In a similar manner with Eq. (6) the subgradients  ∇|𝑢𝑖+1 − 𝑢𝑖|, 𝑖 = 1,… , 𝑛 − 1, can be written as 
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                                            ∇|𝑢2 − 𝑢1| = {

(−1,1,0,0,0, … ,0,0), 𝑖𝑓 𝑢2 > 𝑢1

(1, −1,0,0,0, … ,0,0), 𝑖𝑓 𝑢2 < 𝑢1

{(𝛿1, −𝛿1, 0,0,0, … ,0,0)|𝛿1 ∈ [−1; 1]}, 𝑖𝑓 𝑢2 = 𝑢1
,                                        (9) 

 

                                            ∇|𝑢3 − 𝑢2| = {

(0, −1,1,0,0, … ,0,0), 𝑖𝑓 𝑢3 > 𝑢2

(0,1, −1,0,0, … ,0,0), 𝑖𝑓 𝑢3 < 𝑢2

{(0, 𝛿2, −𝛿2, 0,0, … ,0,0)|𝛿2 ∈ [−1; 1]}, 𝑖𝑓 𝑢3 = 𝑢2
,                                     (10) 

                                                                                                              … 

                      ∇|𝑢𝑛−1 − 𝑢𝑛−2| = {

(0,0,0,0,0, … , −1,1,0), 𝑖𝑓 𝑢𝑛−1 > 𝑢𝑛−2

(0,0,0,0,0, … ,1, −1,0), 𝑖𝑓 𝑢𝑛−1 < 𝑢𝑛−2

{(0,0,0,0,0, … , 𝛿𝑛−2, −𝛿𝑛−2, 0)|𝛿𝑛−2 ∈ [−1; 1]}, 𝑖𝑓 𝑢𝑛−1 = 𝑢𝑛−2
,                         (11) 

 

                      ∇|𝑢𝑛 − 𝑢𝑛−1| = {

(0,0,0,0,0, … 0,−1,1), 𝑖𝑓 𝑢𝑛 > 𝑢𝑛−1

(0,0,0,0,0, … 0,1, −1), 𝑖𝑓 𝑢𝑛 < 𝑢𝑛−1

{(0,0,0,0,0, … ,0, 𝛿𝑛−1, −𝛿𝑛−1)|𝛿𝑛−1 ∈ [−1; 1]}, 𝑖𝑓 𝑢𝑛 = 𝑢𝑛−1
,                                  (12) 

            ∑ ∇| 𝑢𝑖+1𝑛−1
𝑖=1 − 𝑢𝑖| = {(𝛿1, 𝛿2 − 𝛿1, 𝛿3 − 𝛿2, 𝛿4 − 𝛿3, … , 𝛿𝑛−1 − 𝛿𝑛−2, −𝛿𝑛−1 ) |  𝛿𝑖 = −1, 𝑖𝑓 𝑢𝑖+1 > 𝑢𝑖 ,  𝛿𝑖 = 1, 𝑖𝑓 𝑢𝑖+1 < 𝑢𝑖,  

                                                                                                                                                                  𝛿𝑖 ∈ [−1; 1], 𝑖𝑓 𝑢𝑖+1 = 𝑢𝑖 , 𝑖 = 1, … , 𝑛 − 1}.            (13) 

        From expressions (8) and (13) we get the following parameterization of the subradient: 

                                                                      

{
  
 

  
 

( ∇𝐽(𝑢))1 = (𝑢1 − 𝑢0
1) + λ𝛿1

( ∇𝐽(𝑢))2 = (𝑢2 − 𝑢0
2) + λ𝛿2 − λ𝛿1

( ∇𝐽(𝑢))3 = (𝑢3 − 𝑢0
3) + λ𝛿3 − λ𝛿2

…
( ∇𝐽(𝑢))𝑛−1 = (𝑢𝑛−1 − 𝑢0

𝑛−1) + λ𝛿𝑛−1 − λ𝛿𝑛−2

( ∇𝐽(𝑢))𝑛 = (𝑢𝑛 − 𝑢0
𝑛) + λ𝛿𝑛−1

.                                                     (14) 

where   

                                                                       𝛿𝑖 = {

−1, 𝑖𝑓 𝑢𝑖+1 > 𝑢𝑖

1, 𝑖𝑓 𝑢𝑖+1 < 𝑢𝑖

 ∈ [−1; 1], 𝑖𝑓 𝑢𝑖+1 = 𝑢𝑖
.                                                                                 (15)    

Since ( ∇𝐽(𝑢∗))
𝑖 = 0, 𝑖 = 1,… , 𝑛 − 1 for some values of the parameters 𝛿𝑖  satisfying Eq. (15) we get: 

                                                                       

{
  
 

  
 

𝑢∗
1 = 𝑢0

1 − λ𝛿1

𝑢∗
2 = 𝑢0

2 − 𝜆𝛿2 + 𝜆𝛿1

𝑢∗
3 = 𝑢0

3 − 𝜆𝛿3 + 𝜆𝛿2

…
𝑢∗
𝑛−1 = 𝑢0

𝑛−1 − 𝜆𝛿𝑛−1 +  𝜆𝛿𝑛−2

𝑢∗
𝑛 = 𝑢0

𝑛 + 𝜆𝛿𝑛−1 

 .                                                             (16)       

Consider the sequence of the cumulative sums: 

                                                              

{
  
 

  
 

𝑢∗
1 = 𝑢0

1 − λ𝛿1

𝑢∗
2 + 𝑢∗

1 = 𝑢0
2 + 𝑢0

1 − 𝜆𝛿2

𝑢∗
3 + 𝑢∗

2 + 𝑢∗
1 = 𝑢0

3 + 𝑢0
2 + 𝑢0

1 − 𝜆𝛿3

…
𝑢∗
𝑛−1 +⋯+ 𝑢∗

1 = 𝑢0
𝑛−1 +⋯+ 𝑢0

1 − 𝜆𝛿𝑛−1

𝑢∗
𝑛 +⋯+ 𝑢∗

1 = 𝑢0
𝑛 +⋯+ 𝑢0

1 

.                                               (17)     

Consider such variables 𝑈1, … , 𝑈𝑛  and 𝑈0
1, … , 𝑈0

𝑛, that 

 

                                                     

{
 
 

 
 

𝑈1 = 𝑢∗
1, 𝑈0

1 = 𝑢0
1

𝑈2 = 𝑢∗
2 + 𝑢∗

1, 𝑈0
2 = 𝑢0

2 + 𝑢0
1

…
𝑈𝑛−1 = 𝑢∗

𝑛−1 +⋯+ 𝑢∗
1, 𝑈0

𝑛−1 = 𝑢0
𝑛−1 +⋯+ 𝑢0

1

𝑈𝑛 = 𝑢∗
𝑛 +⋯+ 𝑢∗

1, 𝑈0
𝑛 = 𝑢0

𝑛 +⋯+ 𝑢0
1 

 .                                                   (18) 
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So the solution to the problem in Eq. (3) is reduced to the solution of the problem:  

                                                                                      

{
  
 

  
 

𝑈1 = 𝑈0
1 − λ𝛿1

𝑈2 = 𝑈0
2 − 𝜆𝛿2

𝑈3 = 𝑈0
3 − 𝜆𝛿3

…
𝑈𝑛−1 = 𝑈0

𝑛−1 − 𝜆𝛿𝑛−1

𝑈𝑛 = 𝑈0
𝑛

,                                                        (19)    

with given discrete function 𝑈0 and unknown discrete functions 𝑈 and 𝛿 satisfying  to the conditions in Eq. (15).  

 

Consider additional variables 𝑈0 = 𝑈0
0 = 0. Note that then  for any 𝑖 = 1, … , 𝑛 − 1  the condition 𝑢𝑖+1 > 𝑢𝑖 is equivalent to 

the condition 𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1 > 0, the condition 𝑢𝑖+1 < 𝑢𝑖 is equivalent to the condition 𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1 < 0, the 

condition 𝑢𝑖+1 = 𝑢𝑖 is equivalent to the condition 𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1 = 0.  

 

Then the set of equations in Eq. (19) can be rewritten taking into account additional variables: 

                                                                                     

{
 
 
 

 
 
 

𝑈0 = 𝑈0
0 = 0

𝑈1 = 𝑈0
1 − λ𝛿1

𝑈2 = 𝑈0
2 − 𝜆𝛿2

𝑈3 = 𝑈0
3 − 𝜆𝛿3

…
𝑈𝑛−1 = 𝑈0

𝑛−1 − 𝜆𝛿𝑛−1

𝑈𝑛 = 𝑈0
𝑛

,                                                         (20)     

where   

                                                             𝛿𝑖 = {

−1, 𝑖𝑓 𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1 > 0

1, 𝑖𝑓 𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1 < 0

 ∈ [−1; 1], 𝑖𝑓 𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1 = 0

.                                                   (21)    

2.2. Construction the ,,tube’’ 

The values 𝑈0
0, 𝑈0

1, … , 𝑈0
𝑛 of the discrete function 𝑈0 defines a piecewise linear curve, which is an axial line of the tube. The 

values  𝑈0
0, 𝑈0

1 + λ,… , 𝑈0
𝑛−1 + λ,𝑈0

𝑛 form the upper piecewise linear border of the tube, the values  𝑈0
0, 𝑈0

1 − λ,… , 𝑈0
𝑛−1 − λ, 𝑈0

𝑛 

form the bottom piecewise linear border of the tube. Figure 1 shows an example of a tube.  

 

 

 

 

 

 

 

 

Fig. 1.  Example of a tube. 

2.3. Description of the extremal function 𝑈 

Since δi, i = 1, … , n − 1, take values in the segment [−1; 1], a piecewise linear curve defined by the values U1, … , Un of a 

discrete function U (i.e. solution to the  problem in Eq. (20)) entirely belongs to the tube.  

If the second discrete derivative equals zero,   𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1 = 0 then the piecewise linear curve defined by the values 

U1, … , Un of a discrete function U in the neighborhood of the point 𝑖 is a straight line.  

If the second discrete derivative is positive,   𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1 > 0 then from Eq. (21) we see that 𝛿𝑖 = −1 and Eq. (20) 

shows us that 𝑈𝑖 = 𝑈0
𝑖 + λ, i.e.  𝑈𝑖 belongs to the upper border of the tube. 

If the second discrete derivative is negative,   𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1 < 0 then from Eq. (21) we see that 𝛿𝑖 = 1 and Eq. (20) 

shows us that 𝑈𝑖 = 𝑈0
𝑖 − λ, i.e.  𝑈𝑖 belongs to the lower border of the tube. 

It means that a piecewise linear curve defined by the values U0, … , Un of a discrete function U exactly coincides with  so 

called ,,taut string” connecting the endpoints of the tube.  
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Fig. 2.  Taut string in the tube. 

Conclusion 

In this paper, we propose a variant of the Condat’s method based on the direct 1D TV regularization problem. The usage of 

the Condat’smethod with the taut string method leads to a clear geometric description of the extremal function. 
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