
3rd International conference “Information Technology and Nanotechnology 2017” 207

Compressing deep convolutional neural networks in visual emotion
recognition

A.G. Rassadin
1
, A.V. Savchenko

1

1National Research University Higher School of Economics, Laboratory of Algorithms and Technologies for Network Analysis, 25/12 Bolshaya Pecherskaya

Street, 603155, Nizhny Novgorod, Russia

Abstract

In this paper, we consider the problem of insufficient runtime and memory-space complexities of deep convolutional neural networks for

visual emotion recognition. A survey of recent compression methods and efficient neural networks architectures is provided. We

experimentally compare the computational speed and memory consumption during the training and the inference stages of such methods as the

weights matrix decomposition, binarization and hashing. It is shown that the most efficient optimization can be achieved with the matrices

decomposition and hashing. Finally, we explore the possibility to distill the knowledge from the large neural network, if only large unlabeled

sample of facial images is available.

Keywords: deep learning; convolutional neural networks; deep compression; visual emotion recognition; deep compression; binarized neural

networks; tensor decomposition; SqueezeNet; XNOR-Net; distilling the knowledge of neural network

1. Introduction

Emotion recognition in the wild has many potential applications in various information systems with man-machine

interaction. Emotions can be automatically extracted from voice [1], text [2] and body language. However, one of the most

practical way of classifying of human emotions is the usage of facial expressions in either video or still images seems to be one

of the major research directions in the area of image recognition [3] – [5]. It is known that contemporary deep convolutional

neural networks (CNNs) [6] – [8] cause much more accurate solutions than the traditional techniques. However, their runtime

complexity becomes insufficient for application in practical tasks, especially with implementation on mobile platforms. For

example, the size of the file with the neural model trained on EmotiW [9] dataset is approximately equal to 475 Mb [10].

Moreover, it is impossible to classify images with this model faster than 10 FPS even on common laptop. At the same time, the

most exciting applications of emotion recognition appear in mobile hardware. Hence, the performance optimization of deep

CNN is now considered as one of the most important studies in deep learning.

The most remarkable research direction in this field is the optimization of algorithms and neural network architectures. For

instance, the work on the CNNs compression [11] received the Best Paper Award in very prestigious International Conference

on Learning Representation (ICLR’16). To compare various methods, we will use such goals as recognition accuracy, and space

(memory) complexity of the training and inference procedures. It is also important to take into account GPU total training time

and average inference time.

The visual emotion recognition problem is particularly difficult because there does not exist a large database of training

images. In this context, it is worth mentioning the EmotiW challenge [9], which provides one of the most famous datasets

playing a key role in the growth of the field. Unfortunately, this dataset is not publicly available. Thus, in this paper we, firstly,

selected the most promising and effective optimization possibilities introduced in the papers from the last year. Secondly, we

examine the possibility to distill the knowledge [12] of large CNN [10] trained on the EmotiW dataset [9] by classifying the

images from unlabeled facial dataset in order to train the most efficient CNN architecture.

The rest of the paper is organized as follows. In Section 2, we provide a survey of recent literature devoted to the performance

improvements of deep neural networks. Section 3 contains an experimental study of performance optimization methods in visual

emotion recognition within the already done model. Section 4 explains the possibility to build a powerful yet efficient model by

distilling the knowledge on architecture independent basis. Finally, concluding comments are given in Section 5.

2. Review of CNN compression techniques

There are several types of classification of deep neural networks performance optimization methods, which can differ: by

1) accuracy loss: lossless, optimization with accuracy loss, optimization-accuracy trade-off;

2) applicability level: architectural, operational (by model / framework modification), computational (exactly while training

or inference), hardware;

3) limitations: architecture-dependent, and architecture-independent;

4) implementation: runtime implementation, two-step (training -> optimization), sequential (training -> optimization -> re-

training);

5) optimization building block: all blocks, convolutional layers, fully connected layers.

Perhaps the most fundamental approach and in the same time one of the most efficient and universal is the pruning [11], [13].

It is known that in huge amount of weights (connections) in the trained network even with the superior generalization ability the

Image Processing, Geoinformation Technology and Information Security / A.G. Rassadin, A.V. Savchenko

3rd International conference “Information Technology and Nanotechnology 2017” 208

contribution to every neuron (connection) is different. One can alternately remove connections with low (by absolute value)

weight and, in turn, minimal impact to the prediction results, and fine-tune after every pruning, until achieving the allowable

loss in the accuracy. It is important to note that the pruning can be applied to any neural network architecture and both before

and after every another performance optimization technique being the most general approach.

Distilling the knowledge technique has been initially suggested by Hinton et al. in 2014 [12]. The idea of this approach is to

train a cumbersome neural model or an ensemble of models with the superior generalization ability (“teacher”) and then transfer

its predictive power to another, thinner but usually deeper model (“student”) by training the latter to predict the same labels as

the original one. The main disadvantage of this approach is that the time cost for the optimization is on the same level with the

training from scratch. Another obvious drawback is that the “student” model is not protected from the mistakes of the “teacher”

model. In fact, the resulted model is even weaker, because it can tends to unexpected behavior in predictions. Moreover, it is not

an absolute performance optimization but rather relative to the original teacher network. This technique have not become widely

used. We can only mention the work of Romero et al. [14] in which some limitations of the initial approach were overcome.

The idea of weights hashing (quantization) [15] is based on that close values of the CNN weights may be considered equal

(with some precision), which makes it possible to share the same memory unit, and, in turn, drastically reduce the memory costs.

This approach continues to exploit the idea of lower precision computations. It is exactly the key part of the famous Deep

Compression method [11], in which a very effective pipeline to optimize the performance and the size of the network is

described. Unfortunately, it is hard to distill from the paper the real influence of quantization to overall compression quality,

because it also includes pruning, which is the most important factor, which allowed the authors to achieve their outstanding

results in compression of AlexNet [16] architecture.

The tensor decomposition exploits a very intuitive idea: since that deep neural network contains high order matrices (tensors)

of weights in each layer, they can be decomposed to the sequence of lower order matrices and vectors. The most popular

techniques nowadays are CP (CANDECOMP/PARAFAC or Canonical Polyadic Decomposition) [17], Tucker [18] and the most

recent one – Tensor Train [19], [20]. Such approaches allow to explicitly choose between the amount of memory consumption

and the accuracy loss by setting the rank of the decomposition.

The group of binarization methods is based on the observation that it is to enough for weights to be stored in FP32 and

continues the trend of lower precision computations. These techniques differs from the hashing (quantization) by going deeper

into performance optimization problem caring out not only about the storage and native (because of lower precision)

computational efficient. Original idea is followed by the observation that only 1 bit ({0, 1} or {-1, +1}) is enough for weights

values. Thus, it is possible to store only the sign of values instead of usage of full FP32 precision. Hence, the arithmetic

operations can be replaced to much faster logical operations. However, the binarization of the network right after traditional

training leads to the complete loss of the predictive power of the network. It is important to apply binarization iteratively, epoch-

by-epoch. The procedure of binary weights backpropagation was suggested in [21] to implement this approach. Initial idea to

binarize only weights outgrew to binarizing the whole network including the input vector. Such an approach [22] leads to the

complete replacement of the arithmetic operations by XNOR. It has recently been shown [23] that the applied binary mapping

does not matter, hence, the sign of the variable is usually the simplest and fastest technique.

There exist other methods, which optimize a fixed architecture or even already learned model by using several architectural

tricks. Among these methods, it is important to mention the SqueezeNet [24] and the Tiny Darknet [25], which achieve the

accuracy compared to the AlexNet [16], but are much smaller and even faster. The PVANet [26] is the architecture for the

object detection task with minimal computational cost obtained by adapting and combining recent technical innovations. The

BranchyNet [27] introduces early exits (classifiers) along the architecture by which the researcher can explicitly balance

between the inference speed and the accuracy.

To summarize our brief survey, we present in Table 1 the potential of the most important discussed methods to achieve four

optimization goals, which we mentioned in introduction. As we can see here, despite of the large number of reviewed papers,

there are no “silver-bullet” methods, which guarantee the training speedup or memory consumption while training. Most of

these techniques dedicated on reduction the memory consumption while inference. The pruning can be very common approach,

e.g. integrated in every modern framework but unfortunately, it is still not common. Next, we consider a set of experiments

similarly to [28].

3. Experimental results

In this section, we will discuss the computational experiments dedicated on performance optimization power of already done

model using the following techniques: HashedNet, BWN, XNOR-Net and CP-decomposition. We have used the author’s code

that guarantees us the exact implementation and results reproducibility. These methods were evaluated on the real task of

emotion recognition from facial images detected in the widely used Radboud Faces Database (RaFD) [29] which contains

pictures of eight emotional expressions: anger, disgust, fear, happiness, sadness, surprise, contempt, and neutral. Each emotion

was shown with three different gaze directions and all images were taken from five camera angles simultaneously. In our

experiments, we omitted profile images and use only frontal faces and pictures with 45°rotation. The neural networks were

trained from scratch using identical training samples and learning procedures. Inspired by the well-known facial expression

recognition CNN [10], we choose the VGG-S architecture for the HashedNet, BWN and XNOR-Net as a baseline. All the neural

Image Processing, Geoinformation Technology and Information Security / A.G. Rassadin, A.V. Savchenko

3rd International conference “Information Technology and Nanotechnology 2017” 209

network models are freely available at (https://mega.nz/#F!2FVz1SAT!dRdzpfc7UEwHC-jI9jEkIQ). In fact, in [10] authors

trained an ensemble of neural networks using RGB and different kind LBP (Local Binary Patterns) visual features, but we

decided to use a single RGB input for the simplicity. All the experiments were done on the same machine using Tesla M2090

with 6 GB of memory under Ubuntu 14.04 with CUDA Toolkit 8.0.

Table 1. Reported results of deep neural networks performance optimization.

 Memory reduction

while training

Memory reduction

while inference
Inference speedup Baseline model Dataset

Deep Compression [11] no 49 unknown VGG-16 ImageNet

FitNets [14] no 36 13.36 Maxout CIFAR-10

HashedNets [15] no 64 unknown same-size MNIST

CP-Decomposition [17] no 12 4.5 AlexNet ImageNet

TensorNet [20] unknown 80 unknown simple CIFAR-10

BinaryNet [21] ~32 (theoretical) ~32 (theoretical) 3.4~23 Maxout CIFAR-10

Binary-Weight-Network and

XNOR-Net [22]
no 67 58 (CPU) ResNet-18 ImageNet

SqueezeNet [24] unknown 50 1.
AlexNet ImageNet

Tiny Darknet [25] unknown 60 2.9

BranchyNet [27] no no 1.9 ResNet-110 CIFAR-10

The HashedNets, BWN and XNOR-Net have been trained using RGB images from the same distinct and balanced training /

testing subsets of the RaFD [29] dataset using the Torch framework. We used SGD with momentum equal to 0.9, learning rate

fixed at 0.001 and mini-batch of 20 sample. The common baseline model [10] was trained with the same settings. This baseline

CNN converged to accuracy 97.13% after 100 epochs (Fig. 1). Here and bellow, the testing error rate is in practically all cases

less than the training error rate. Though such behavior seems to be not obvious, it is reasonable due to the usage of dropout

regularization layer, which is activated while training phase and deactivated when evaluating on the validation set. Moreover,

the training error rate is computed as the mean error rate for all mini-batches in one epoch. On the contrary, the testing error rate

is computed only after each epoch with more optimal weights, which were learned during this epoch. Let us compare this result

with the performance optimization techniques.

We used default compression settings, provided by the authors of the HashedNet technique [15]: compression rate is equal to

0.125 and the bias hashing was set. The latter option leads to the 81.64% reduction in the weights count. Despite this reduction,

the training process (Fig. 2) is practically identical to the baseline (Fig. 1): the network converged to 96.31% accuracy after 100

epochs, which is 0.8% lower when compared to the baseline CNN (Fig. 1). However, the training procedure is 6.7 times slower

when compared to the baseline. The inference procedure of the HashedNet is also 4.7 times slower. We believe that such

slowdown can be drastically reduced by replacing the current third-party implementation of hashing, which does not allow us

saving trained model and measure memory consumption while inference accurately.

The testing of the CP-decomposition [17] was performed using the SqueezeNet-1.1 [24] architecture instead of VGG-S (Fig.

3). Indeed, convolutional layers take a small portion of weights in such architectures with massive fully connected layers, as the

VGG-S. Hence, the CP-decomposition is appropriate only for such convolutional architectures without fully connected layers as

the SqueezeNet. The baseline model was trained with Caffe framework using stochastic gradient descent (SGD) with

momentum 0.9, fixed learning rate 0.001 and 32 images in a mini-batch. To compare the neural networks computing efficiency

we measured: 1) epoch time for single forward pass and subsequent gradient update on GPU for mini-batch in one random

sample, averaged over 1000 runs; and 2) GPU inference time for single random sample, averaged over 1000 runs. We

additionally estimated the accuracy loss and the reduction in number of weights. Original version of the SqueezeNet-1.1

architecture has relatively small number of filters in every convolutional layer. Hence, the decomposition of every layer to a

lower rank, e.g., 16, tends to the complete loss in accuracy. However, when only two last convolutional layers were decomposed

with the rank equal to 192, the number of parameters reduced at 23.5% with 1.65% of the accuracy loss (from 89.14% to

87.5%). Unfortunately, the inference in the resulted network became even 1.5 times slower. It seems that replacement of the

Fig. 1. The training/testing error rates for the baseline VGG-S neural network model.

https://mega.nz/%23F!2FVz1SAT!dRdzpfc7UEwHC-jI9jEkIQ

Image Processing, Geoinformation Technology and Information Security / A.G. Rassadin, A.V. Savchenko

3rd International conference “Information Technology and Nanotechnology 2017” 210

single large convolutional layer to four sequentially connected small layers causes higher computing complexity in parallel

environment.

 In next experiments, the BWN and the XNOR-Net are implemented according to the paper [22]. Every conv-bn-activation

block excluding the first was replaced with the bn-activation-conv block. The dependences of the testing and training error rates

of the BWN on the epoch number are shown in Fig. 4. Here the BWN converged to the very low error rate 1.43% after forty

epochs. After that time both training and testing error rate started to grow. We cannot precisely explain this behavior but

probably, advanced learning rate policy can suppress this binarization shortcoming. In fact, all our experiments demonstrate that

BWN model always converges 2-4 times faster, when compared to the baseline CNN, which can be explained by very strong

regularization effect introduced by the BWN architecture. We have not observed the inference memory reduction or inference

speedup. The number of parameters also remains unchanged.

The XNOR-Net [22] was not converged in our experiments (Fig. 5). The lowest error rate for the testing set was equal to

41.19%. The only advantage of this method is the slight (2.4%) reduction in the memory consumption while inference, which is

the benefit of the modified binarized activation layer. It is interesting to note that using only binarized activation layer without

weights binarization leads to the same parameters reduction and even slight epoch time speedup. What is more important, such

modification is capable to converge much closer to the accuracy of the baseline model – 88.32% – within the same learning

procedure (Fig. 6).

All results of these experiments are briefly summarized in Table 2. The best value in each column is marked by bold. Here in

“Model size” column we count only the minimum amount of memory needed to store all weights of the CNN. In fact, the real

Fig.2. The training/testing error rates for the HashedNet.

Fig.3. The training/testing error rates for the SqueezeNet.

Fig. 4. The training/testing error rates for the BWN.

Image Processing, Geoinformation Technology and Information Security / A.G. Rassadin, A.V. Savchenko

3rd International conference “Information Technology and Nanotechnology 2017” 211

size of the file with the model can be much larger. For instance, the real size of the baseline VGG-S model is equal to 474 MB,

i.e., it is approximately 100 MB larger than the model size in Table 2. The best accuracy achieves with the BWN technique,

while the SqueezeNet outperforms other networks by the model size and execution times.

Table 2. Summary of evaluation results of CNN compressing methods.

Training time per

one epoch, ms
Inference time, ms Model size, MB Accuracy, %

VGG-S (baseline) 43.7 33.4 372.2 97.13

SqueezeNet-1.1 (baseline) 22.94 4.94 2.8 89.14

SqueezeNet-1.1, CP-Decomposition 22.94 7.74 2.1 87.5

HashedNets 294.8 158.2 68.3 96.31

Binary-Weight-Network (BWN) 83.8 33.5 11.6 98.57

XNOR-Net 84.3 34.2 11.6 58.81

XNOR-Net w/o weights activation 43.4 34.1 11.6 88.32

4. Distilling the knowledge of neural network in unsupervised environment

Let us consider the well-known practical case of visual emotion recognition, when the large training dataset is unavailable.

However, there exist several pre-trained large CNN models, which do not satisfy the requirements of space complexity and run-

time efficiency. Due to lack of original or suitable dataset it is impossible to directly implement compact architecture described

above. Hence, in this section we examine the potential of distilling the knowledge [12], [14] of these CNNs using one of the

known face datasets, which are widely applied in face recognition tasks.

The main disadvantage of the distilling the knowledge technique from paper [12] is its strong dependence on the network

architecture. However, Tramèr et al. [30] have shown that probably any classifier of multimedia data can be reproduced based

only on the labels, which are returned by this classifier for images from large enough dataset, even if nothing is known about its

internal structure (architecture or even a kind of model). Hence, we can train an arbitrary architecture (small-size and efficient

network like SqueezeNet [24]) using labels obtained by the existing (large) CNN or even an ensemble of such networks. This

problem is the special case of unsupervised learning, because images from these available datasets usually do not contain the

emotion labels.

In this paper, we propose to extend this idea and train the small network using not only the labels predicted by large

(“teacher”) CNN, but the vectors of posterior probabilities of all emotion classes at the output of softmax layer of this network.

The loss function is defined as the Kullback-Leibler divergence (KLD) between these posterior probabilities and the output of

the softmax layer of the trained small (“student”) CNN. It is expected that having also the scoring for each label can drastically

improve the accuracy of the system. This architecture was implemented using Keras framework with Theano backend

(https://github.com/arassadin/cnn-compression). The sketch of this network is shown in Fig. 7.

Fig. 5. The training/testing error rates for the modified XNOR-Net w/o weights activation.

Fig. 6. The training/testing error rates for the modified XNOR-Net.

https://github.com/arassadin/cnn-compression

Image Processing, Geoinformation Technology and Information Security / A.G. Rassadin, A.V. Savchenko

3rd International conference “Information Technology and Nanotechnology 2017” 212

This architecture (hereinafter “softmax outputs”) is experimentally compared with the traditional (“label-only”) by

architecture-independent distillation the knowledge. Rather large VGG-S network was used as a teacher, and trained the most

promising architecture discussed in the previous section, namely, SqueezeNet-1.1 model [24]. Due to the lack of computational

resources, the VGG-S knowledge was distilled on 13813 facial images from PubFig83 dataset [31]. The resulted architecture

was tested with the RaFD [29] dataset. However, unlike the previous section, here we examine all images from this set with

either frontal or profile orientation. We used two VGG-S teacher models, namely, the publicly available model from pre-trained

[10] on EmotiW [9] dataset, and our own model trained directly on the RaFD dataset. The accuracies of these models on the

whole RaFD testing set are approximately equal to 41.45% and 81%, respectively. The estimated accuracies of resulted

(SqueezeNet) CNNs using either training or testing datasets are presented in Table 3.

Table 3. Experimental results of knowledge distillation.

 VGG on EmotiW VGG on RaFD

 Label-only Softmax outputs Labels-only Softmax outputs

Training (PubFig83) accuracy, % 66.5 73 75.5 77

Testing (RaFD) accuracy, % 12.3 23.8 40.9 46.9

This experiment shows the strong domination of the learning on posterior probabilities at the softmax layer (Fig. 7) over the

traditional (labels-only) approach. However, we cannot consider the experiment with VGG (EmotiW) model very representative

due to very low accuracy rate (23.8% for the softmax outputs and 12.3% for labels only). Such behavior can be explained by the

very low capabilities of the initial model (near the 40% accuracy according to the paper [10]). However, it is very revealing that

labels-only accuracy is on rate of random guessing while the accuracy of the proposed architecture (Fig. 7) is almost twice

higher. Another teacher network allowed labels-only training the small model achieving near the 41% of accuracy. At the same

time the model trained on the softmax outputs was able to achieve near the 47% of accuracy rate. Such two simple experiments

show the potential of the knowledge distillation via the training on both labels and softmax of the large (“teacher”) architecture.

5. Conclusion

In this paper, we have reviewed several modern approaches to reduce the space requirements and run-time complexity of deep

CNNs in the problem of visual emotion recognition based on facial expressions. We emphasized the obvious trends in this field,

namely, efficient tensor (or CP) decomposition techniques, lower precision calculations and more accurate network binarization.

It was experimentally shown, that the most promising CNN performance optimization methods include the usage of special

architectures, e.g., SqueezeNet [24], and binarization techniques [22], [23]. Additional set of experiments was intended to

demonstrate the potential of the knowledge distillation methods using the pre-trained large CNN as a teacher network, which

allows training a small CNN even with limited computational resources and the absence of the massive specialized datasets.

The main direction for further research will be concentrated on combining of the most successful reviewed techniques. It is

important to test these methods with other datasets, e.g., in the group-level emotion recognition in the EmotiW 2017 challenge.

Another research direction is the implementation of the complete pipeline to video-based emotion recognition [9]. Finally, it is

necessary to examine the possibility to implement discussed methods in image recognition on mobile platforms.

Acknowledgments

The work was conducted at National Research University Higher School of Economics and supported by RSF grant 14-41-

00039.

References

[1] Fayek HM, Lech M, Cavedon L. Towards real-time Speech Emotion Recognition using deep neural networks. Proceedings of the International Conference

on Signal Processing and Communication Systems (ICSPCS) 2015: 1–5.

Fig. 7. The sketch of the proposed architecture: distillation the knowledge from large CNN with matching of posterior probabilities at the softmax outputs along

with the labels correspondence.

Image Processing, Geoinformation Technology and Information Security / A.G. Rassadin, A.V. Savchenko

3rd International conference “Information Technology and Nanotechnology 2017” 213

[2] Socher R, Perelygin A, Wu J, Chuang J, Manning C, Ng A, Potts C. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank.

Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2013; p. 1642.

[3] Kahou SE, Bouthillier X, Lamblin P, Gulcehre C, Michalski V, Konda K, Jean S, Froumenty P, Dauphin Y, Boulanger-Lewandowski N, Ferrari RC, Mirza

M, Warde-Farley D, Courville A, Vincent P, Memisevic R, Pal C, Bengio Y. EmoNets: Multimodal deep learning approaches for emotion recognition in video,

2015. ArXiv preprint arXiv:1503.01800.

[4] Ruiz-Garcia A, Elshaw M, Altahhan A, Palade V. Deep Learning for Emotion Recognition in Faces. Proceedings of the International Conference on

Artificial Neural Networks and Machine Learning (ICANN). Lecture Notes in Computer Science l 988; 7: 38–46.

[5] Kahou SE, Michalski V, Konda K, Memisevic R, Pal C. Recurrent Neural Networks for Emotion Recognition in Video. Proceedings of the ACM

International Conference on Multimodal Interaction 2016; 467–474.

[6] Lin M, Chen Q, Yan S. Network In Network, 2013. ArXiv preprint arXiv:1312.4400.

[7] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going Deeper with Convolutions, 2014. ArXiv preprint

arXiv:1409.4842.

[8] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition , 2015. ArXiv preprint arXiv:1512.03385.

[9] Emotion Recognition in the Wild Challenge. URL: https://sites.google.com/site/emotiwchallenge/.

[10] Levi G, Hassner T. Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns. Proceedings of the ACM

International Conference on Multimodal Interaction (ICMI) 2015; 503–510.

[11] Han S, Mao H, Dally WJ. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, 2015. ArXiv

preprint arXiv:1510.00149.

[12] Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network, 2015. ArXiv preprint arXiv:1503.02531.

[13] Molchanov P, Tyree S, Karras T, Aila T, Kautz J. Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning, 2016. ArXiv preprint

arXiv:1611.06440.

[14] Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y. FitNets: Hints for Thin Deep Nets, 2014. ArXiv preprint arXiv:1412.6550.

[15] Chen W, Wilson JT, Tyree S, Weinberger KQ, Chen Y. Compressing Neural Networks with the Hashing Trick, 2015. ArXiv preprint arXiv: 1504.04788.

[16] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing

Systems (NIPS) 2012; 25: 1106–1114.

[17] Lebedev V, Ganin Y, Rakhuba M, Oseledets I, Lempitsky V. Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition, 2014.

ArXiv preprint arXiv:1412.6553.

[18] Kim Y-D, Park E, Yoo S, Choi T, Yang L, Shin D. Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications,

2015. ArXiv preprint arXiv:1511.06530.

[19] Novikov A, Podoprikhin D, Osokin A, Vetrov D. Tensorizing Neural Networks, 2015. ArXiv preprint arXiv:1509.06569.

[20] Garipov T, Podoprikhin D, Novikov A, Vetrov D. Ultimate Tensorization: Compressing Convolutional and FC Layers Alike, 2016. ArXiv preprint

arXiv:1611.03214.

[21] Courbariaux M, Hubara I, Soudry D, El-Yaniv R, Bengio Y. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations

Constrained to +1 or -1, 2016. ArXiv preprint arXiv:1602.02830.

[22] Rastegari M, Ordonez V, Redmon J, Farhadi A. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, 2016. ArXiv preprint

arXiv:1603.05279.

[23] Merolla P, Appuswamy R, Arthur J, Esser SK, Modha D. Deep Neural Networks Are Robust to Weight Binarization And Other Non-linear Distortions,

2016. ArXiv preprint arXiv:1606.01981.

[24] Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level Accuracy With 50x Fewer Prameters And <0.5MB

Model Size, 2016. ArXiv preprint arXiv:1602.07360.

[25] Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE International Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[26] Hong S, Roh B, Kim K-H, Cheon Y, Park M. PVANet: Lightweight Deep Neural Networks for Real-time Object Detection, 2016. ArXiv preprint

arXiv:1608.08021.

[27] Teerapittayanon S, McDanel B, Kung HT. BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks. Proceedings of the IEEE

International Conference on Pattern Recognition (ICPR) 2016: 2464–2469.

[28] Rassadin AG, Savchenko AV. Deep Neural Networks Performance Optimization in Image Recognition. Proceedings of the III International Conference on

Information Technologies and Nanotechnologies (ITNT) 2017: 649–654.

[29] Langner O, Dotsch R, Bijlstra G, Wigboldus DHJ, Hawk ST, van Knippenberg A. Presentation and Validation of the Radboud Faces Database. Cognition

& Emotion 2010; 24(8): 1377–1388.

[30] Tramèr F, Zhang F, Juels A, Reiter MK, Ristenpart T. Stealing Machine Learning Models via Prediction APIs. 25th USENIX Security Symposium

(USENIX Security 16) 2016: 601–618.

[31] Pinto N, Stone Z, Zickler T, Cox D. Scaling Up Biologically-inspired Computer Vision: A Case Study In Unconstrained Face Recognition On Facebook.

Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)2011: 35–42.

