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Abstract 

In this paper, we consider the problem of insufficient runtime and memory-space complexities of deep convolutional neural networks for 

visual emotion recognition. A survey of recent compression methods and efficient neural networks architectures is provided. We 

experimentally compare the computational speed and memory consumption during the training and the inference stages of such methods as the 

weights matrix decomposition, binarization and hashing. It is shown that the most efficient optimization can be achieved with the matrices 

decomposition and hashing. Finally, we explore the possibility to distill the knowledge from the large neural network, if only large unlabeled 

sample of facial images is available. 
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1. Introduction 

Emotion recognition in the wild has many potential applications in various information systems with man-machine 

interaction. Emotions can be automatically extracted from voice [1], text [2] and body language. However, one of the most 

practical way of classifying of human emotions is the usage of facial expressions in either video or still images seems to be one 

of the major research directions in the area of image recognition [3] – [5]. It is known that contemporary deep convolutional 

neural networks (CNNs) [6] – [8] cause much more accurate solutions than the traditional techniques. However, their runtime 

complexity becomes insufficient for application in practical tasks, especially with implementation on mobile platforms. For 

example, the size of the file with the neural model trained on EmotiW [9] dataset is approximately equal to 475 Mb [10]. 

Moreover, it is impossible to classify images with this model faster than 10 FPS even on common laptop. At the same time, the 

most exciting applications of emotion recognition appear in mobile hardware. Hence, the performance optimization of deep 

CNN is now considered as one of the most important studies in deep learning.  

The most remarkable research direction in this field is the optimization of algorithms and neural network architectures. For 

instance, the work on the CNNs compression [11] received the Best Paper Award in very prestigious International Conference 

on Learning Representation (ICLR’16). To compare various methods, we will use such goals as recognition accuracy, and space 

(memory) complexity of the training and inference procedures. It is also important to take into account GPU total training time 

and average inference time. 

The visual emotion recognition problem is particularly difficult because there does not exist a large database of training 

images. In this context, it is worth mentioning the EmotiW challenge [9], which provides one of the most famous datasets 

playing a key role in the growth of the field. Unfortunately, this dataset is not publicly available. Thus, in this paper we, firstly, 

selected the most promising and effective optimization possibilities introduced in the papers from the last year. Secondly, we 

examine the possibility to distill the knowledge [12] of large CNN [10] trained on the EmotiW dataset [9] by classifying the 

images from unlabeled facial dataset in order to train the most efficient CNN architecture. 

The rest of the paper is organized as follows. In Section 2, we provide a survey of recent literature devoted to the performance 

improvements of deep neural networks. Section 3 contains an experimental study of performance optimization methods in visual 

emotion recognition within the already done model. Section 4 explains the possibility to build a powerful yet efficient model by 

distilling the knowledge on architecture independent basis. Finally, concluding comments are given in Section 5. 

2. Review of CNN compression techniques 

There are several types of classification of deep neural networks performance optimization methods, which can differ: by  

1) accuracy loss: lossless, optimization with accuracy loss, optimization-accuracy trade-off; 

2) applicability level: architectural, operational (by model / framework modification), computational (exactly while training 

or inference), hardware; 

3) limitations: architecture-dependent, and architecture-independent; 

4) implementation: runtime implementation, two-step (training -> optimization), sequential (training -> optimization -> re-

training); 

5) optimization building block: all blocks, convolutional layers, fully connected layers. 

Perhaps the most fundamental approach and in the same time one of the most efficient and universal is the pruning [11], [13]. 

It is known that in huge amount of weights (connections) in the trained network even with the superior generalization ability the 
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contribution to every neuron (connection) is different. One can alternately remove connections with low (by absolute value) 

weight and, in turn, minimal impact to the prediction results, and fine-tune after every pruning, until achieving the allowable 

loss in the accuracy. It is important to note that the pruning can be applied to any neural network architecture and both before 

and after every another performance optimization technique being the most general approach. 

Distilling the knowledge technique has been initially suggested by Hinton et al. in 2014 [12]. The idea of this approach is to 

train a cumbersome neural model or an ensemble of models with the superior generalization ability (“teacher”) and then transfer 

its predictive power to another, thinner but usually deeper model (“student”) by training the latter to predict the same labels as 

the original one. The main disadvantage of this approach is that the time cost for the optimization is on the same level with the 

training from scratch. Another obvious drawback is that the “student” model is not protected from the mistakes of the “teacher” 

model. In fact, the resulted model is even weaker, because it can tends to unexpected behavior in predictions. Moreover, it is not 

an absolute performance optimization but rather relative to the original teacher network. This technique have not become widely 

used. We can only mention the work of Romero et al. [14] in which some limitations of the initial approach were overcome. 

The idea of weights hashing (quantization) [15] is based on that close values of the CNN weights may be considered equal 

(with some precision), which makes it possible to share the same memory unit, and, in turn, drastically reduce the memory costs. 

This approach continues to exploit the idea of lower precision computations. It is exactly the key part of the famous Deep 

Compression method [11], in which a very effective pipeline to optimize the performance and the size of the network is 

described. Unfortunately, it is hard to distill from the paper the real influence of quantization to overall compression quality, 

because it also includes pruning, which is the most important factor, which allowed the authors to achieve their outstanding 

results in compression of AlexNet [16] architecture. 

The tensor decomposition exploits a very intuitive idea: since that deep neural network contains high order matrices (tensors) 

of weights in each layer, they can be decomposed to the sequence of lower order matrices and vectors. The most popular 

techniques nowadays are CP (CANDECOMP/PARAFAC or Canonical Polyadic Decomposition) [17], Tucker [18] and the most 

recent one – Tensor Train [19], [20]. Such approaches allow to explicitly choose between the amount of memory consumption 

and the accuracy loss by setting the rank of the decomposition. 

The group of binarization methods is based on the observation that it is to enough for weights to be stored in FP32 and 

continues the trend of lower precision computations. These techniques differs from the hashing (quantization) by going deeper 

into performance optimization problem caring out not only about the storage and native (because of lower precision) 

computational efficient. Original idea is followed by the observation that only 1 bit ({0, 1} or {-1, +1}) is enough for weights 

values. Thus, it is possible to store only the sign of values instead of usage of full FP32 precision. Hence, the arithmetic 

operations can be replaced to much faster logical operations. However, the binarization of the network right after traditional 

training leads to the complete loss of the predictive power of the network. It is important to apply binarization iteratively, epoch-

by-epoch. The procedure of binary weights backpropagation was suggested in [21] to implement this approach. Initial idea to 

binarize only weights outgrew to binarizing the whole network including the input vector. Such an approach [22] leads to the 

complete replacement of the arithmetic operations by XNOR. It has recently been shown [23] that the applied binary mapping 

does not matter, hence, the sign of the variable is usually the simplest and fastest technique. 

There exist other methods, which optimize a fixed architecture or even already learned model by using several architectural 

tricks. Among these methods, it is important to mention the SqueezeNet [24] and the Tiny Darknet [25], which achieve the 

accuracy compared to the AlexNet [16], but are much smaller and even faster. The PVANet [26] is the architecture for the 

object detection task with minimal computational cost obtained by adapting and combining recent technical innovations. The 

BranchyNet [27] introduces early exits (classifiers) along the architecture by which the researcher can explicitly balance 

between the inference speed and the accuracy. 

To summarize our brief survey, we present in Table 1 the potential of the most important discussed methods to achieve four 

optimization goals, which we mentioned in introduction. As we can see here, despite of the large number of reviewed papers, 

there are no “silver-bullet” methods, which guarantee the training speedup or memory consumption while training. Most of 

these techniques dedicated on reduction the memory consumption while inference. The pruning can be very common approach, 

e.g. integrated in every modern framework but unfortunately, it is still not common. Next, we consider a set of experiments 

similarly to [28]. 

3. Experimental results 

In this section, we will discuss the computational experiments dedicated on performance optimization power of already done 

model using the following techniques: HashedNet, BWN, XNOR-Net and CP-decomposition. We have used the author’s code 

that guarantees us the exact implementation and results reproducibility. These methods were evaluated on the real task of 

emotion recognition from facial images detected in the widely used Radboud Faces Database (RaFD) [29] which contains 

pictures of eight emotional expressions: anger, disgust, fear, happiness, sadness, surprise, contempt, and neutral. Each emotion 

was shown with three different gaze directions and all images were taken from five camera angles simultaneously. In our 

experiments, we omitted profile images and use only frontal faces and pictures with 45°rotation. The neural networks were 

trained from scratch using identical training samples and learning procedures. Inspired by the well-known facial expression 

recognition CNN [10], we choose the VGG-S architecture for the HashedNet, BWN and XNOR-Net as a baseline. All the neural 
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network models are freely available at (https://mega.nz/#F!2FVz1SAT!dRdzpfc7UEwHC-jI9jEkIQ). In fact, in [10] authors 

trained an ensemble of neural networks using RGB and different kind LBP (Local Binary Patterns) visual features, but we 

decided to use a single RGB input for the simplicity. All the experiments were done on the same machine using Tesla M2090 

with 6 GB of memory under Ubuntu 14.04 with CUDA Toolkit 8.0. 

Table 1. Reported results of deep neural networks performance optimization. 

 Memory reduction 

while training 

Memory reduction 

while inference 
Inference speedup Baseline model Dataset 

Deep Compression [11] no 49 unknown VGG-16 ImageNet 

FitNets [14] no 36 13.36 Maxout CIFAR-10 

HashedNets [15] no 64 unknown same-size MNIST 

CP-Decomposition [17] no 12 4.5 AlexNet ImageNet 

TensorNet [20] unknown 80 unknown simple CIFAR-10 

BinaryNet [21] ~32 (theoretical) ~32 (theoretical) 3.4~23 Maxout CIFAR-10 

Binary-Weight-Network and 

XNOR-Net [22] 
no 67 58 (CPU) ResNet-18 ImageNet 

SqueezeNet [24] unknown 50 1. 
AlexNet ImageNet 

Tiny Darknet [25] unknown 60 2.9 

BranchyNet [27] no no 1.9 ResNet-110 CIFAR-10 

The HashedNets, BWN and XNOR-Net have been trained using RGB images from the same distinct and balanced training / 

testing subsets of the RaFD [29] dataset using the Torch framework. We used SGD with momentum equal to 0.9, learning rate 

fixed at 0.001 and mini-batch of 20 sample. The common baseline model [10] was trained with the same settings. This baseline 

CNN converged to accuracy 97.13% after 100 epochs (Fig. 1). Here and bellow, the testing error rate is in practically all cases 

less than the training error rate. Though such behavior seems to be not obvious, it is reasonable due to the usage of dropout 

regularization layer, which is activated while training phase and deactivated when evaluating on the validation set. Moreover, 

the training error rate is computed as the mean error rate for all mini-batches in one epoch. On the contrary, the testing error rate 

is computed only after each epoch with more optimal weights, which were learned during this epoch. Let us compare this result 

with the performance optimization techniques. 

We used default compression settings, provided by the authors of the HashedNet technique [15]: compression rate is equal to 

0.125 and the bias hashing was set. The latter option leads to the 81.64% reduction in the weights count. Despite this reduction, 

the training process (Fig. 2) is practically identical to the baseline (Fig. 1): the network converged to 96.31% accuracy after 100 

epochs, which is 0.8% lower when compared to the baseline CNN (Fig. 1). However, the training procedure is 6.7 times slower 

when compared to the baseline. The inference procedure of the HashedNet is also 4.7 times slower. We believe that such 

slowdown can be drastically reduced by replacing the current third-party implementation of hashing, which does not allow us 

saving trained model and measure memory consumption while inference accurately. 

The testing of the CP-decomposition [17] was performed using the SqueezeNet-1.1 [24] architecture instead of VGG-S (Fig. 

3). Indeed, convolutional layers take a small portion of weights in such architectures with massive fully connected layers, as the 

VGG-S. Hence, the CP-decomposition is appropriate only for such convolutional architectures without fully connected layers as 

the SqueezeNet. The baseline model was trained with Caffe framework using stochastic gradient descent (SGD) with 

momentum 0.9, fixed learning rate 0.001 and 32 images in a mini-batch. To compare the neural networks computing efficiency 

we measured: 1) epoch time for single forward pass and subsequent gradient update on GPU for mini-batch in one random 

sample, averaged over 1000 runs; and 2) GPU inference time for single random sample, averaged over 1000 runs. We 

additionally estimated the accuracy loss and the reduction in number of weights. Original version of the SqueezeNet-1.1 

architecture has relatively small number of filters in every convolutional layer. Hence, the decomposition of every layer to a 

lower rank, e.g., 16, tends to the complete loss in accuracy. However, when only two last convolutional layers were decomposed 

with the rank equal to 192, the number of parameters reduced at 23.5% with 1.65% of the accuracy loss (from 89.14% to 

87.5%). Unfortunately, the inference in the resulted network became even 1.5 times slower. It seems that replacement of the 

Fig. 1. The training/testing error rates for the baseline VGG-S neural network model. 

https://mega.nz/%23F!2FVz1SAT!dRdzpfc7UEwHC-jI9jEkIQ
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single large convolutional layer to four sequentially connected small layers causes higher computing complexity in parallel 

environment. 

 In next experiments, the BWN and the XNOR-Net are implemented according to the paper [22]. Every conv-bn-activation 

block excluding the first was replaced with the bn-activation-conv block. The dependences of the testing and training error rates 

of the BWN on the epoch number are shown in Fig. 4. Here the BWN converged to the very low error rate 1.43% after forty 

epochs. After that time both training and testing error rate started to grow. We cannot precisely explain this behavior but 

probably, advanced learning rate policy can suppress this binarization shortcoming. In fact, all our experiments demonstrate that 

BWN model always converges 2-4 times faster, when compared to the baseline CNN, which can be explained by very strong 

regularization effect introduced by the BWN architecture. We have not observed the inference memory reduction or inference 

speedup. The number of parameters also remains unchanged. 

The XNOR-Net [22] was not converged in our experiments (Fig. 5). The lowest error rate for the testing set was equal to 

41.19%. The only advantage of this method is the slight (2.4%) reduction in the memory consumption while inference, which is 

the benefit of the modified binarized activation layer. It is interesting to note that using only binarized activation layer without 

weights binarization leads to the same parameters reduction and even slight epoch time speedup. What is more important, such 

modification is capable to converge much closer to the accuracy of the baseline model – 88.32% – within the same learning 

procedure (Fig. 6).  

 

All results of these experiments are briefly summarized in Table 2. The best value in each column is marked by bold. Here in 

“Model size” column we count only the minimum amount of memory needed to store all weights of the CNN. In fact, the real 

Fig.2. The training/testing error rates for the HashedNet. 

Fig.3. The training/testing error rates for the SqueezeNet. 

Fig. 4. The training/testing error rates for the BWN. 
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size of the file with the model can be much larger. For instance, the real size of the baseline VGG-S model is equal to 474 MB, 

i.e., it is approximately 100 MB larger than the model size in Table 2. The best accuracy achieves with the BWN technique, 

while the SqueezeNet outperforms other networks by the model size and execution times. 

Table 2. Summary of evaluation results of CNN compressing methods. 

  

  

Training time per 

one epoch, ms 
Inference time, ms Model size, MB  Accuracy, % 

VGG-S (baseline) 43.7 33.4 372.2 97.13 

SqueezeNet-1.1 (baseline) 22.94 4.94 2.8 89.14 

SqueezeNet-1.1, CP-Decomposition 22.94 7.74 2.1 87.5 

HashedNets 294.8 158.2 68.3 96.31 

Binary-Weight-Network (BWN) 83.8 33.5 11.6 98.57 

XNOR-Net 84.3 34.2 11.6 58.81 

XNOR-Net w/o weights activation 43.4 34.1 11.6 88.32 

4. Distilling the knowledge of neural network in unsupervised environment 

Let us consider the well-known practical case of visual emotion recognition, when the large training dataset is unavailable. 

However, there exist several pre-trained large CNN models, which do not satisfy the requirements of space complexity and run-

time efficiency. Due to lack of original or suitable dataset it is impossible to directly implement compact architecture described 

above. Hence, in this section we examine the potential of distilling the knowledge [12], [14] of these CNNs using one of the 

known face datasets, which are widely applied in face recognition tasks.  

The main disadvantage of the distilling the knowledge technique from paper [12] is its strong dependence on the network 

architecture. However, Tramèr et al. [30] have shown that probably any classifier of multimedia data can be reproduced based 

only on the labels, which are returned by this classifier for images from large enough dataset, even if nothing is known about its 

internal structure (architecture or even a kind of model). Hence, we can train an arbitrary architecture (small-size and efficient 

network like SqueezeNet [24]) using labels obtained by the existing (large) CNN or even an ensemble of such networks. This 

problem is the special case of unsupervised learning, because images from these available datasets usually do not contain the 

emotion labels. 

In this paper, we propose to extend this idea and train the small network using not only the labels predicted by large 

(“teacher”) CNN, but the vectors of posterior probabilities of all emotion classes at the output of softmax layer of this network. 

The loss function is defined as the Kullback-Leibler divergence (KLD) between these posterior probabilities and the output of 

the softmax layer of the trained small (“student”) CNN. It is expected that having also the scoring for each label can drastically 

improve the accuracy of the system. This architecture was implemented using Keras framework with Theano backend 

(https://github.com/arassadin/cnn-compression).  The sketch of this network is shown in Fig. 7.  

Fig. 5. The training/testing error rates for the modified XNOR-Net w/o weights activation. 

Fig. 6. The training/testing error rates for the modified XNOR-Net. 

https://github.com/arassadin/cnn-compression
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This architecture (hereinafter “softmax outputs”) is experimentally compared with the traditional (“label-only”) by 

architecture-independent distillation the knowledge. Rather large VGG-S network was used as a teacher, and trained the most 

promising architecture discussed in the previous section, namely, SqueezeNet-1.1 model [24]. Due to the lack of computational 

resources, the VGG-S knowledge was distilled on 13813 facial images from PubFig83 dataset [31]. The resulted architecture 

was tested with the RaFD [29] dataset. However, unlike the previous section, here we examine all images from this set with 

either frontal or profile orientation. We used two VGG-S teacher models, namely, the publicly available model from pre-trained 

[10] on EmotiW [9] dataset, and our own model trained directly on the RaFD dataset. The accuracies of these models on the 

whole RaFD testing set are approximately equal to 41.45% and 81%, respectively. The estimated accuracies of resulted 

(SqueezeNet) CNNs using either training or testing datasets are presented in Table 3.  

Table 3. Experimental results of knowledge distillation.  

 VGG on EmotiW VGG on RaFD 

 Label-only  Softmax outputs Labels-only  Softmax outputs 

Training (PubFig83) accuracy, % 66.5 73 75.5 77 

Testing (RaFD) accuracy, % 12.3 23.8 40.9 46.9 

This experiment shows the strong domination of the learning on posterior probabilities at the softmax layer (Fig. 7) over the 

traditional (labels-only) approach. However, we cannot consider the experiment with VGG (EmotiW) model very representative 

due to very low accuracy rate (23.8% for the softmax outputs and 12.3% for labels only). Such behavior can be explained by the 

very low capabilities of the initial model (near the 40% accuracy according to the paper [10]). However, it is very revealing that 

labels-only accuracy is on rate of random guessing while the accuracy of the proposed architecture (Fig. 7) is almost twice 

higher. Another teacher network allowed labels-only training the small model achieving near the 41% of accuracy. At the same 

time the model trained on the softmax outputs was able to achieve near the 47% of accuracy rate. Such two simple experiments 

show the potential of the knowledge distillation via the training on both labels and softmax of the large (“teacher”) architecture. 

5. Conclusion 

In this paper, we have reviewed several modern approaches to reduce the space requirements and run-time complexity of deep 

CNNs in the problem of visual emotion recognition based on facial expressions. We emphasized the obvious trends in this field, 

namely, efficient tensor (or CP) decomposition techniques, lower precision calculations and more accurate network binarization. 

It was experimentally shown, that the most promising CNN performance optimization methods include the usage of special 

architectures, e.g., SqueezeNet [24], and binarization techniques [22], [23]. Additional set of experiments was intended to 

demonstrate the potential of the knowledge distillation methods using the pre-trained large CNN as a teacher network, which 

allows training a small CNN even with limited computational resources and the absence of the massive specialized datasets. 

The main direction for further research will be concentrated on combining of the most successful reviewed techniques. It is 

important to test these methods with other datasets, e.g., in the group-level emotion recognition in the EmotiW 2017 challenge. 

Another research direction is the implementation of the complete pipeline to video-based emotion recognition [9]. Finally, it is 

necessary to examine the possibility to implement discussed methods in image recognition on mobile platforms.  
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