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Abstract

A tracking algorithm using locally adaptive correlation filtering is proposed. The algorithm is designed to track multiple objects

with invariance to pose, occlusion, clutter, and illumination variations. The algorithm employs a prediction scheme and composite

correlation filters. The filters are synthesized with the help of an iterative algorithm, which optimizes discrimination capability for

each target. The filters are adapted online to targets changes using information of current and past scene frames. Results obtained

with the proposed algorithm using real-life scenes, are presented and compared with those obtained with state-of-the-art tracking

methods in terms of detection efficiency, tracking accuracy, and speed of processing.
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1. Introduction

Nowadays, object tracking is a widely investigated topic in engineering and computer vision [1, 2]. Video surveillance, vehicle

navigation, human-computer interaction, and robotics are examples of tracking applications [3, 4, 5, 6, 7, 8, 9, 10, 11]. In tracking,

objects are localized in a current frame automatically by applying a detection engine [12, 13, 14, 15]. A main difficulty in object

tracking is that the observed scene is commonly degraded by additive noise, the presence of a cluttered background, geometric

modifications such as pose changing and scaling, gesticulations, and nonuniform illumination. Additionally, eventual occlusions

and real-time requirements are challenges that a modern tracking algorithm must solve.

Object tracking based on correlation-based methods are widely utilized as an attractive alternative to existing tracking algo-

rithms [16, 17, 18]. Correlation filters have a good formal basis, and they can be easily implemented for real-time applications

[19, 20]. Recognition methods involving template matching are not useful in some cases, for instance, when articulation changes

global features like the object outline. So, conventional correlation filters without training may yield a poor performance to recog-

nize objects possessing incomplete information [21, 22, 23]. Adaptive approach to the filter design helps us to synthesize adaptive

filters for object tracking [24, 25].

In this work, we propose an algorithm for object tracking based on locally adaptive correlation filtering. The algorithm is able

to carry out object tracking with a high accuracy in an video without offline training. The objects are selected at the beginning

of the algorithm. Afterwards, a composite correlation filter optimized for distortion tolerant pattern recognition is designed to

recognize the target in the next frame. The impulse responses of optimum correlation filters are used to synthesize composite

filters for distortion invariant object tracking. Two techniques are used to improve the detection performance: adaptive procedure

that achieves a prespecified performance for a typical scene background, and multiple composite filters (bank of composite filters)

when numerous views are available for training. The filter is dynamically adapted to each frame using information of current and

past scene observations.

The paper is organized as follows. Section 2 recalls the optimum composite filter design. Section 3 describes the suggested

algorithm for object tracking by locally adaptive correlation filtering. Computer simulation results obtained with the proposed

algorithm are presented and compared with common algorithms in terms of detection efficiency and location accuracy in section

4. Finally, section 5 presents our conclusions.

2. Composite filter design using optimum correlation filters

We are interested in the design of a correlation filter which is able to recognize an object embedded into a disjoint background

in the scene corrupted with additive noise. The designed filter should be also able to recognize geometrically distorted versions of

the target. Let T = {ti(x, y); i = 1, . . . ,N} be an image set containing geometrically distorted versions of the target to be recognized.

The input scene is assumed to be composed by the target t(x, y) embedded into a disjoint background b(x, y) at unknown coordinates

(τx, τy), and the whole scene is corrupted with additive noise n(x, y), as follows:

f (x, y) = t(x − τx, y − τy) + b(x, y)w(x − τx, y − τy) + n(x, y), (1)

where w̄(x, y) is a binary function defined as zero inside the target area, and unity elsewhere. The optimum filter for detecting

the target, in terms of the signal to noise ratio (SNR) and the minimum variance of measurements of location errors (LE), is the

generalized matched filter (GMF) [26], whose frequency response is given by

H∗(u, v) =
T (u, v) + µbW(u, v)

Pb(u, v) ⊗ |W(u, v)|2 + Pn(u, v).
(2)
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In (2), T (u, v) and W(u, v) are the Fourier transforms of t(x, y) and w(x, y), respectively; µb is the mean value of the background

b(x, y); Pb(u, v) and Pn(u, v) denote power spectral densities of b0(x, y) = b(x, y) − µb and n(x, y), respectively. The symbol ⊗

denotes convolution.

Let hi(x, y) be the impulse response of a GMF constructed for the ith available view of the target ti(x, y) in T . Let H =

{hi(x, y); i = 1, . . . ,N} be the set of all GMF impulse responses constructed for all training images ti(x, y). Additionally, let

S = {si(x, y); i = 1, . . . ,M} be an image set containing M unwanted patterns to be rejected. We want to synthesize a filter capable

to recognize all target views in T and to reject the false patterns in S , by combining the optimum filter templates contained in H,

and by using only a single correlation operation. The required filter p(x, y), can be constructed as follows [26]:

p(x, y) =

N∑

i=1

αihi(x, y) +

N+M∑

i=N+1

αisi(x, y), (3)

where the coefficients {αi; i = 1, . . . ,N + M} are chosen to satisfy prespecified output values for each pattern in U = T ∪ S . Using

vectormatrix notation, we denote by R a matrix with N + M columns, where each column is the vector version of each element of

U. Let a = [αi; i = 1, . . . ,N + M]T be a vector of coefficients. Thus, (3) can be rewritten as

p = Ra. (4)

Let us denote by

u =




1, . . . , 1
︸  ︷︷  ︸

Nones

, 0, . . . , 0
︸  ︷︷  ︸

Mzeros





T

,

the desired responses to the training patterns, and denote by Q the matrix whose columns are the elements of U. The response

constraints can be expressed as

u = Q+p, (5)

where superscript + denotes complex conjugate. Substituting (4) into (5), we obtain

u = Q+Ra.

Thus, the solution for a, is

a = [Q+R]−1u. (6)

Finally, substituting (8) into (4), the solution for the composite filter is given by

p = R[Q+R]−1u. (7)

Note that the value of the correlation peak when using the filter given in Eq. 7, is expected to be close to unity for true-class

objects, and close to zero for false-class objects.

The discrimination capability (DC) is a measure of the ability of the filter to distinguish a target from unwanted objects; it is

defined by [26]

DC = 1 −
|cb|2

|ct |2
,

where cb is the value of the maximum correlation sidelobe in background area and ct is the value of the correlation peak generated

by the target. A DC value close to unity indicates that the filter has a good capability to distinguish between the target and any

false object. Negatives values of the DC indicate that the filter is unable to detect the target. Also, if the obtained DC is greater

than a prespecified threshold (DC > DCth), then the target is considered as detected and, otherwise, the target is rejected.

3. Object tracking with locally adaptive correlation filtering

In this section we describe the proposed algorithm for object tracking based on composite correlation filtering. The proposed

algorithm is robust to pose changes and appearance modifications of objects, as well as to the presence of scene noise, illumination

changes, and target occlusions.

The algorithm starts with an initialization step where the objects are selected. Next, an optimum correlation filter for reliable

detection and location estimation of the target is designed. Afterwards, a composite locally adaptive correlation filter is synthe-

sized. The proposed algorithm incorporates an automatic re-initialization mechanism that reestablishes the tracking if it fails. The

block diagram of the proposed algorithm is depicted in Fig. 1. The detailed operation steps are explained below.

Step 1: For each object select a small target ti(x, y) from a captured scene frame fi(x, y) containing the object to be tracked.

Step 2: Synthesize an optimum correlation filter hi(x, y) with (2) for reliable detection and location estimation of the target ti(x, y)

in the observed local frame li(x, y).
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Step 3: Synthesize a composite locally adaptive correlation filter pi(x, y) as follows. First, detect and locate the target by hi(x, y)

filter from the observed local frame li(x, y). If the obtained DC is greater than a prespecified threshold (DC > DCrec), then

the target is considered as successfully detected, ti(x, y) added into the set T and recursion should be stopped. Otherwise,

the target si(x, y) corresponding to a false peak added into the set S . Second, synthesize a composite filter pi(x, y) with the

help of (7). Third, detect and locate the target by pi(x, y) filter from the observed local frame li(x, y) recursively until the

condition DC > DCrec is satisfied.

Step 4: Detect and locate the target in the observed local frame li+1(x, y) from a new scene frame fi+1(x, y) by pi(x, y) filter. The

coordinates of the observed local frame li+1(x, y) are provided by a prediction process that analyzes the motion kinematics

of the target. If the obtained DC is greater than a prespecified threshold (DC > DCth), then the target is considered as

successfully detected and pi(x, y) filter added to the bank B of composite correlation filters. Otherwise, the target is lost in

the observed local frame li+1(x, y) and we recursively used the filters from bank B until condition DC > DCcon is satisfied.

The filter from bank B with condition DC > DCcon is used to a new scene frame. If the target is lost in the observed local

frame li+1(x, y) with help the filters from bank B, then the coordinates of the target is set coordinates of the past scene frame

fi(x, y) and we proceed to a new scene frame fi+2(x, y).

Begin

Capture a scene 

frame fi(x,y)

Select the target 

ti(x,y)

Synthesize an optimum 

correlation ✁lter hi(x, y)

Construct composite filter 

pi(x,y) by SDF
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Fig. 1. Block diagram of the proposed tracking algorithm based on locally adaptive correlation filtering.

4. Computer simulation

In this section, computer simulation results obtained with the proposed algorithm for object tracking are presented and com-

pared with common algorithms in terms of detection efficiency, tracking accuracy, and speed of processing.

In order to evaluate the performance of our tracker, we conduct experiments on 100 challenging image sequences from Object

Tracking Benchmark (TB-100 database) [27]. These sequences cover most challenging situations in object tracking: Illumination

Variation (IV), Scale Variation (SV), Occlusion (OCC), Deformation (DEF), Motion Blur (MB), Fast Motion (FM), In-Plane

Rotation (IPR), Out-of-Plane Rotation (OPR), Out-of-View (OV), Background Clutters (BC), Low Resolution (LR).
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For comparison, we run 3 state-of-the-art algorithms with the same initial position of the target. The first tracking algorithm

(SURF) [28] is based on matching of local features and descriptors. The second tracking algorithm (STRUCK) predicts the target

location change between frames on the basis of structured learning [29]. The third collaborative tracking algorithm (SCM) is

combined a sparsity-based discriminative classifier and a sparsity-based generative model [30]. The work [27] performed large-

scale experiments to evaluate the performance of recent 33 object-tracking algorithms. Tracking algorithms STRUCK and SCM

perform much better than the others.

For evaluating of detection efficiency we use an evaluation metric of the overlap score. Given a tracked bounding box rt and

the ground-truth bounding extent r0 of a target object, the overlap score is defined as

S =
∥rt ∩ r0∥

∥rt ∪ r0∥
, (8)

where ∩ and ∪ represent the intersection and union operators, respectively, and ∥ · ∥ denotes the number of pixels in a region. This

average overlap score (AOS) can be used as the performance measure. In addition, the overlap scores can be used for determining

whether an algorithm successfully tracks a target in a frame, by testing whether S is larger than a threshold of 0.5. Also we

evaluate the tracking algorithms using the average center location error (ACLE) for all image sequences from database.

Table 1 shows the average overlap score (AOS), the average center location errors (ACLE) and the Average Processing Time

(APT) on a scena for all the tracking algorithms with the overlap threshold of 0.5. The evaluation results show that our proposed

algorithm is faster than the others and more accurate in terms of the average center location errors.

Table 1. Evaluation results of the state-of-the-art STRUCK, SCM, SURF and proposed algorithms by the average overlap score (AOS), the average center location

errors (ACLE), and the Average Processing Time (APT)

Tracker All BC DEF FM IPR IV LR MB OCC OPR OV SV APT ACLE

Proposed 53.3 50.7 51.1 60.0 56.4 43.5 56.7 55.7 44.6 50.5 41.7 51.4 0.2005 68.8

STRUCK 57.5 59.3 52.4 55.6 57.0 59.0 59.1 59.9 55.9 57.3 58.9 57.8 0.2894 61.5

SCM 54.4 61.3 51.5 42.8 51.8 61.1 61.7 45.2 56.8 57.0 56.4 55.8 0.3122 64.8

SURF 35.2 37.4 25.8 41.6 39.7 37.3 23.0 45.4 36.0 34.8 46,.7 33.0 0.1668 276.6

When an object moves fastly on the FM subset, the proposed algorithm performs much better than the others. However, the

proposed algorithm does not perform well in the subset (IV, OCC, OV) due to illumination variation, and partial occlusion of the

target. On the other subsets, the Struck, SCM, and the proposed algorithms outperform other the state-of-the-art algorithms. Fig. 2

shows sample tracking results of the proposed algorithms where the target objects are marked with red rectangles and the actually

tracked objects by the proposed algorithm are marked with green rectangles.

Fig. 2. Results of tracking by proposed algorithm.

5. Conclusion

A tracking algorithm using locally adaptive correlation filtering is proposed. The algorithm is designed to track multiple objects

with invariance to pose, partial occlusion, clutter, and illumination variations. The algorithm employs a prediction scheme and

composite correlation filters. The filters are synthesized with the help of an iterative algorithm, which optimizes discrimination

capability for each target. The filters are adapted online to targets changes using information of current and past scene frames.

The evaluation results show that our proposed algorithm is faster than the others and more accurate in terms of the average center

location errors. On the majority test sets the proposed algorithm performs much better than the state-of-the-art algorithms.
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