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waveguide of circular cross-section  

A.A. Degtuarev1, A.V. Kukleva1 
1Samara National Research University, 34 Moskovskoe Shosse, 443086, Samara, Russia 

Abstract 

We considered the problem of estimating the error in the solution of the wave equation recorded using infinite series Fourier-Bessel. The 
algorithm that adjusts the number of elements in a partial sum of infinite series, based on the assessment of the series balance. The application 
of the algorithm made it possible, without loss of accuracy, to substantially reduce the number of summable elements of the series in the 
numerical simulation of the light pulse propagation in a circular cross-section. 
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1. Introduction 

During the development of an application program for the numerical simulation of a physical process, it is important to 
investigate the actual error of the method used on special test cases. As test cases typically use such examples that can be 
resolved by an alternative method with high sufficiently precision, allowing to calculate the error of numerical method [1, 2]. 

This work is devoted to study the error of test value problem for the wave equation describing the propagation process of the 
light pulse in a waveguide in circular cross section. To elaboration the error estimate, we used remainder of the Fourier-Bessel. 
To check the quality of the balance assessment in the series we used the technique of computational experiment, which allows 
determine the degree of redundancy among several elements needed to sum to achieve the necessary precision [3]. 

In solving problems from numerical simulation propagation of a light pulse in a medium, various mathematical descriptions 
of the pulse [4-6]. In this paper, we considered two options describe different degrees of smoothness pulse function. 

 
2.  Mathematical model of light pulse propagation in a waveguide of circular cross-section  

To describe the process of light pulse propagation we will consider the following boundary value problem: 
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where E  is a  dielectric field intensity, c  is a wave propagation speed in vacuum, n is a refractive index material of the 
waveguide, R  and L is the radius and length of the waveguide, T is the duration of the dissemination process, ( , )r t  is the 
function describing the pulse shape. 

It is assumed when r R  an ideally conducting shell bound the waveguide, and the medium is not perturbed at the initial 
instant of time.  

Here are the following two variants of kinetic moment:  

   1( , ) sin ,r t r t t               2 *
2 ( , ) sin sin ,r t r t t t      
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 ,  *t is the pulse duration at the entrance of the waveguide,    is the length 

of disturbing wave in vacuum, j  a positive integer. 1( , )r t a piecewise smooth function at variable t , because derivative has 

function jump in 0t  ,  *t t . Function  2 ( , )r t  has the smoothness of a second-order variable t . 
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3.  Exact solution of boundary value problem  

Application of the separation variables method [5] allows getting solution of boundary-value problem for the wave equation, 
it can be thought of as infinite series Fourier-Bessel. For example, when describing an impulse function 1( , )r t  and using 

   0 1r J r   the solution would be: 
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When writing these formulas, we use the following notation: 
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Graph of the cross section of a pulse by a plane 1r m in the process of its propagation in the waveguide has shown in fig.1.  

 
Fig. 1. Modeling the distribution piecewise smooth impulse in wave conductor, separation 1 .r m  

For the case of smooth pulse described by function  2 ( , )r t   if *
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   and,     0 1r J r   solution of boundary-value 

problem is as follows: 
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In the last formulas, we used the following notations: 
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1  is a root of an equation  0 0J R  .  

The process of propagating a piecewise-smooth pulse has shown in figure 2. 
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Fig.2. Modeling of smooth pulse in wave conductor, separation 1 .r m  

4. Series truncation error control 

A computer program simulating the spread of pulse truncation of the infinite series implied above. 

If we can get an estimate a balance number of    
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where    N  is the positive monotonically decreasing function if N   , this assessment can be used to control the 

truncation error. To do this, we need only find ( )N  , is the least value N , satisfy the inequality  N    , and for 

approximate calculation of function values ( , , )E x z t  use a partial amount 
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In this case, the actual error of the calculated value of a function E  at the selected point does not exceed the required level   
, that is 

( ) ( ) ( ( )) .fact N NE E R N           

For the above two ways to specify the light pulse residues had been received by the relevant rows with the following *t  and 
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In the case of piecewise smooth impulse, that described function  1( , )r t , assessed takes the following form: 
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as for the case of smooth pulse, that described function  2 ( , )r t , assessed takes the following form: 
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It should be noted that recorded higher truncation error estimates infinite series are uniform for all independent variables. 
 

5. The method of refinement of the number of summable elements of a series using a computational experiment  

Proposed evaluation are not ideal because they are using strict inequalities, and also they are uniform for all independent 
variables. That is why using of estimates results in adding more elements than is necessary to achieve the required accuracy. In 
this case, it is advisable to apply a technique, which reduces the degree of redundancy terms in the partial sum, and in so doing 
guarantees the achievement of required accuracy [3]. 

Let N positive integer, satisfies the inequality  1N N  , where 1  , number  1N   found by the rule described in 

paragraph 4. Then for partial amount NE  the actual error will satisfy the inequality: 

     1 1
.fact N NN NN E E E E E E          
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Changing N  within the boundaries  1 1N N   , find lowest value  2N   , when running the inequality 

 1 2 ,NNE E     where 2 1.      

For this choice 2  and equity of the previous inequality, the actual error 2( ( ))fact N   do not exceed value  .  

Thus, to reduce the number of summands in the partial amount, we must: 
1) Specify the number of 1   and then find the value 1( )N  , that the smallest value N , satisfy the inequality 1( )N   . 

2) Changing a variable N  from the value  1N   downward, find the smallest of its value that satisfies the inequality  

1( ) 2N NE E   . The resulting value is  2N  . 

3) Changing value with sample spacing 1  and 2  so, to  1 2 ,     run the steps  1) and 2) again. 

4) Of all the values  2N  , obtained in step 3), select the smallest. 

As a result of the use of this algorithm, it can be expected that the number of summable elements  2N   in the partial sum 

will be reduced significantly as compared with the number of  N   while maintaining safeguards for accuracy, i.e.  

  2fact N   . In tables 1 and 2 are the results of computational experiments, aimed at reducing the number of 

summands in partial amounts. The calculations have been carried out with the following parameters: 

1 ,m   1,n   7 ,L m  5 ,R m  143 10 / ,с m s  1 ,r m 1 ,z m  
tc

t m
n
 .  

Asked value   in increments of the maximum value of the amplitude of the wave. 

Table 1. The dependence of the summands number  N   and  2N   of coordinate t   

with different values  for piecewise smooth impulse. 
  10-1 10-2 10-3 10-4 10-5 

 N   
131 1019 9844 98079 980434 

,t m   2N   

0.9 13 48 231 3116 9906 
0.999 37 306 1241 6774 26632 

0.99999 37 312 3072 35599 126836 

1 37 312 3075 37713 377122 
1.00001 37 312 3072 35599 126836 

  10-1 10-2 10-3 10-4 10-5 

1.001 37 306 1241 6774 26633 

1.1 16 68 320 3119 9906 
1.7 19 34 124 1286 4086 
2.5 15 32 96 928 984 

4 13 25 66 612 643 
5.1 16 30 75 649 1436 
5.9 17 28 324 3116 3258 

5.999 47 355 1262 6422 9906 
5.99999 47 466 4672 35599 26632 

6 47 467 4672 37713 126836 

6.00001 47 465 4671 35599 377122 
6.001 47 383 1461 6423 126836 

6.1 17 30 360 3119 26634 

Table 2. The dependence of the summands number  N   and  2N   of coordinate t   

with different values  for smooth pulse. 

  10-2 10-3 10-4 10-5 10-6 

 N   
21 36 113 357 1128 

,t m   2N   

0.9 15 18 28 62 132 

0.999 15 18 28 61 136 
0.99999 14 17 28 62 126 

1 15 18 27 67 141 

1.000001 10 21 37 91 186 
1.001 10 22 42 101 211 

1.1 15 17 33 61 132 

1.7 10 17 37 81 181 
2.5 13 15 26 67 146 

4 15 22 46 101 216 
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From the table it can be seen that the number of summands, using uniform assessments for the respective series truncation 
allows you to get only the rough partial sums of lengths. These values are repeatedly exceed the values obtained from the 
application of the above algorithm. As can be seen from table 1, to calculate the tension of the electric field in the foreground 
and background areas of wave fronts requires a much larger number of terms, for example, in the range 1.7 5.1m t m    

order enough 4086 parts to achieve precision  10-5, while in the range 0.9 1.1m t m    we want 377122 parts.This increase 

in the number of summands is a consequence of the weak function breaks 1( , )r t , significantly slowing down the convergence 

of series. For the case of smooth pulse, function description 2 ( , )r t  the uneven distribution of values  2N   for different t  
turns out to be negligible. 

 
6. Conclusion 

Developed and implemented programmatically algorithm provides adjustment of the partial sums length of infinite series, 
obtained in the course of solving boundary value problem for the wave equation. For practical application of the algorithm, it is 
of fundamental importance to first obtain an upper estimate for the remainder of the Fourier series that determines the solution of 
the boundary value problem.  

The application of developed algorithm for specific series that describe the distribution of momentum in circular waveguide 
section allowed multiple times (from 3 up to 1500 times and more for Piecewise-smooth momentum and from 2 to 5 times for 
the case of smooth pulse) to reduce length of the partial sums of the series.  
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