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Abstract 

A detailed analysis of the dynamic model of the tuberculosis epidemic was conducted. It is shown that the dynamic model contains several 
time scales and can be represented in a singularly perturbed form. With help of the integral manifolds theory and the reduction principle, the 
reduction of the modeling system was justified and carried out. This approach allow us to replace the original system by another system of a 
lower order on an integral manifold whose dimension is equal to that of the slow subsystem and which, at the same time, preserves the 
essential properties of the original system. The conditions for the stabilization of the epidemiology based on the selection of necessary 
treatment and preventive measures are determined. 
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1. Introduction 

It is well known that tuberculosis is a deadly disease, the fight against which is still relevant today. In 1882, Robert Koch, 
along with the discovery of the tubercle bacillus, found that this disease is transmitted by aerogenic means [1]. Consequently, 
people who frequently contact individuals with an active form of tuberculosis (the infectious stage of the disease) have a much 
higher risk of infection. Majority of infected people remain latent carriers throughout their life. The average duration of the 
latent period (the period of latent infection) ranges from several months to dozens of years. However, the risk of progression to 
the active form of tuberculosis increases dramatically in the presence of concomitant infections that weaken the immune system. 
In the absence of treatment for tuberculosis of respiratory organs, mortality is about 50%. 

Currently, about 3 million people die from tuberculosis every year worldwide [2]. But in most cases, tuberculosis is curable. 
The current methods of treating this disease require long-term courses of treatment (from six months to several years), the 
violation of which often leads to the return of the disease and the development of drug resistance. 

Treatment of drug-resistant tuberculosis is much more dangerous for the patient, less successful and more costly than 
treatment of the disease caused by common strains of the pathogen. All this shows the necessity of developing a new approach 
of identifying and treating patients with tuberculosis, as well as timely and effective treatment. 

One of the most effective methods for solving such problems is the construction and study of a mathematical model 
describing the processes of infection spread in the population, the development of the disease and the impact of anti-tuberculosis 
measures. Based on this study we can determine effective measures to combat this dangerous phenomenon. 

In the present work, a detailed analysis of the dynamic model of the tuberculosis epidemic based on the cluster approach has 
been carried out. The presence of several time scales made it possible to apply the geometric theory of singular perturbations for 
its qualitative study. This approach made it possible to determine the conditions for the stabilization of epidemiological 
conditions based on the selection of the necessary treatment and preventive measures. 

2. Cluster model of the tuberculosis epidemic  

Mycobacterium drops of tuberculosis get into the air when coughing or sneezing infected people. Tuberculosis bacillus, 
spreading by such drops, lives in the air for a short period of time (about two hours) and, therefore, it is believed that casual 
contact with persons with active tuberculosis (infected individuals) rarely lead to the spread of the disease, and that most relapses 
are the result of prolonged and close contacts with primary carriers of infection. Latently infected individuals become infectious 
after some, usually long, time period. This period of transition to an active form of infection is called latent. Latent periods vary 
from several months to dozens of years. Most infected individuals never go to the active form of tuberculosis. On the other hand, 
the average length of the infection period is relatively short (several months). This indicator is decreasing in countries with 
affordable treatment. 

A common scheme for analyzing the spread of the tuberculosis epidemic is based on the division of the population into 
certain classes. Consider the basic mathematical model of the spread of tuberculosis [2]: 
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Model (1) was derived under assumption that the total population is divided into four epidemiological classes: susceptible (S), 
i.e., uninfected, but susceptible to infection individuals, those in whose body the pathogens of tuberculosis have not yet 
penetrated; carriers of latent infection (E), i.e., individuals in whose body tuberculosis pathogens are present, in equilibrium with 
the immune system, such individuals are characterized by the absence of any external manifestations of the disease; infected 
individuals (I) with clinical manifestations of tuberculosis caused by sufficiently extensive tissue damage as a result of the 
activity of mycobacteria in their organisms; recovery individuals (R) who have completed treatment and recovered from the 

disease. The parameter   reflects the influx of young people into the model population The parameters 1 2 3,  ,      are the 

transmission rates of tuberculosis infection for the respective classes;   is natural mortality rate; k  is the tuberculosis 

progression rate; d  is the tuberculosis induced mortality rate; 1 2,  r r  denote the treatment rates for latent class and infectious 

class, respectively; RIESN   is the total population size. The mixing of classes in this model is homogeneous, that is, 
there are no assumed differences between individuals while tuberculosis transmission depends on the rate of infection.  

The basic reproduction number, one of the most important characteristics in mathematical biology, defined as the average 
number of secondary cases produced by typical infected individuals, mainly in a susceptible population, is described by 
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where 0Q  is the number of secondary latent infected individuals produced by a typical infected individual during the mean 
infectious period 1 ,  1/ ( )f k k r    shows the probability of survival during the transition from the latent to the active 
infectious stage. 

It is assumed that only individuals who have frequent and prolonged interactions with infected people have a high risk of 
tuberculosis infection. Newly infected individuals activate clusters (groups of individuals who come into regular and close 
contact with people in an active form of tuberculosis), increasing the risk of tuberculosis infection for susceptible individuals of 
each cluster [2].  

Let us make a number of variables changes. We set a constant n be the average size of the cluster; the risk of infection with 
tuberculosis in the cluster will be determined by the parameter  . Further, the population of uninfected people in the cluster 
will be given by 1( ) ( ),N t n I t   where 1N  includes two subpopulations, namely, susceptible 1S  and latent infected 1E , i.e., 

1 1 1( ) ( ) ( ) ( ).N t n I t S t E t      

The population of persons who do not belong to the cluster at the time t is denoted as 2 .N .This population consists only of 
the sensitive  2S  and the latent infected  2E  individuals. The subpopulations of the sick are not included in this model for the 
sake of simplicity. We assume that 2 2 2( / )n k E S N   individuals go to the class 1S  per unit of time, while the individuals 

2 2 2( / )n k E E N   go to the class 1E  per unit time. In addition, since infected individuals are cured or die (with a speed I  ), 
that I   is the rate at which clusters become inactive (or die). We suppose that 1 /n I S N    individuals returns to the class 

2S  and 1 /n I E N    returns to the class 2E  for the unit of time, respectively. Assuming a low level of distribution of 
individuals with an active form of tuberculosis, we consider the case 1 2 ,N N  hence we can neglect the birth rate in the 
population.  

The above assumptions lead (1) to the following basic cluster model [2]: 
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   (2) 

The basic reproduction number for system (2) is:  
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Hence, 0 / ( ).Q n      is the expected number of infections produced by one infected individual in his cluster. Only a 
part / ( )f k k    among the infected individuals will survive during the latent period.  

3. Dimensionless model  

Disease and dynamics of populations have characteristic time scales. Dynamics of influenza in humans is "super fast" at the 
individual and community levels in comparison with the dynamics of the carriers of infection (people). This is because the 
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average life expectancy of an infected person is approximately 4000-8000 times the average duration of an influenza infection 
and, therefore, the largest outbreaks of influenza occur in local communities before any significant demographic change can 
occur (several months). Consequently, when studying the dynamics of the flu epidemic, two typical time scales are often used: 
the time scale of the disease and the life span of the carrier of the infection [3]. 

Tuberculosis is usually described as a slow disease due to its long and varied distribution of the latent period and due to the 
short and relatively narrow distribution of its infectious period [1]. Most latently infected with tuberculosis do not become 
actively infected, i.e., there is no transition of latent form to active. Some become actively infected during a five-year period, 
while others become active only after a longer period of time (perhaps decades). On the other hand, infected individuals remain 
so for relatively short periods of time, in part because of the use of antibiotics (an average of six months). Since secondary 
infections are formed from infected individuals, individuals with an active form of tuberculosis have a relatively short period for 
possible infection of other people. Consequently, the infection of tuberculosis-susceptible individuals occurs on the same time 
scale as the recovery of persons with active tuberculosis. The disease progresses, moving from the latent stage to the active one. 
This occurs on a time scale that is of the same order as the average lifespan of the carrier of the infection (human). 

Tuberculosis can be acquired at random (individual level), that is, as a result of accidental contacts, or through members of an 
epidemiologically active cluster that includes at least one actively infected person. The choice of these levels of distribution is 
not accidental, it is associated with the observed statistical data of the spread of tuberculosis. Since in the original system there is 
no clear separation into fast and slow variables, but the process speeds have different orders, it is necessary to bring the system 
(2) to a dimensionless form. To do this, we introduce the following dimensionless variables and parameters: 
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where   is a small positive parameter. With new variables system (2) has a form: 
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where 1y , 2y  and 3y  are the fast variables, while 1x  and 2x  are the slow variables; 1x  corresponds to a population of sensitive 

individuals not belonging to the cluster; 2x  is a population of latently infected individuals not belonging to the cluster; 1y  
reflects a population of susceptible people in the cluster; 2y  is a latently infected population; 3y  is the population of infected 

individuals belonging to the cluster. The generated system [4, 5] for (3) is: 
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The last three equations in (4) determine the zeroth order approximation of the slow manifold (the slow surface) of system 

(3). From these equations we have the expressions for 1y , 2y  and 3y : 
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Since the Jacobi matrix of the fast subsystem of system (3): 
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has the negative eigenvalues, then the slow surface (5) is stable [4, 5], hence, we can replace the original system (3) by the 
reduced one. The reduced system is the projection of the original system on the slow surface (5) with preservation of the 
essential qualitative features of the dynamics of the complete system (see, for example, [6-17]).  

The reduced system has the form  
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where 0 ( )Q n m n        is a number of secondary infections produced by one infected individual in a population each 
member of which is susceptible.  

System (6) is a homogeneous mixed model in which the infection spread parameter is a function of the parameters: 

0 ( ).Q n      Recall that the basic reproduction number is defined as 0 0 ( ).c Q k k     It is easy to see that 0
c  is the 

threshold parameter for the dynamic model (6).  

4. Analysis 

System (6) has two equilibriums 1P  and 2P : 
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Our goal is to find such conditions on the parameters of the system, reflecting the methods of treatment and preventive 
measures, in which the infected and latent infected populations are stabilized at the minimum value. From a mathematical point 

of view, this means that the equilibrium of the system is globally asymptotically stable, and their coordinates 1 ,x 2x  should be 

as small as possible. 

It should be noted that the coordinates of the point 1P  correspond to the following situation in real life: all persons are 

susceptible to tuberculosis, but not infected (either in active or latent form). In other words, this is the most favorable situation 
from the point of view of epidemiology. Therefore, if this point is globally asymptotically stable, then this will be the most 
favorable outcome. 

The Jacobi matrix of the system (6) 
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at the point 1(1,0)P  is 
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with the eigenvalues 1 2 0,  1 .В В Q        Thus, according to the reduction principle, the condition 0 1Q В   is the 

criteria for the globally asymptotic stability of the point 1P . This condition can be written in terms of the main reproductive 

number as 0 1.c     
The Jacobi matrix (7) at the equilibrium point 2P  has the form 
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For the asymptotic stability of the equilibrium 2P , it is necessary and sufficient that the trace of this matrix be negative and 

the determinant positive, i.e., 
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The last system can be written as 
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Taking into account the physical meaning of the parameters, this condition is equivalent to the inequality 0 1 .Q B   Thus, we 

have the following statement. 
Theorem. If 0 1c   a disease-free equilibrium 1 (1, 0)P  (i.e., the point determining the absence of infection in the population) 

is globally asymptotically stable. If 0 1,c   that point 1 (1, 0)P  is unstable and the equilibrium 
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is globally asymptotically stable. 
It should be noted that in [1] this statement was obtained on the basis of the Hoppenshtadt theorem. 
Although the singular point 2P  corresponds to the situation when the infected individuals in the population are present, but 

for typical values of the parameters, the ratio of the quantity of latently infected individuals to the amount of susceptible 
individuals is insignificant. Hence, the situation when this point is asymptotically stable is not so bad from the point of view of 
the real situation. In other words, the latently infected individuals will exist but their quantity will not be so high, that is, the 
epidemic threshold will not be reached. 

5. Correctness of model reduction  

The solutions of the original and reduced systems were plotted with the help of Wolfram Mathematica 10.3 and NetBeans 
8.0.1. Figures 1-4 show the graphs for systems (3) and (6) with the following parameters values:  

51 / 60, 2, 10 , 20, 1.n            

 
Fig. 1. The solutions of system (3) with ε=0.00053. 

Using a program written in the Java language in the NetBeans 8.0.1 environment, the errors in the deviation of the plots of the 
solutions to the complete and reduced systems were determined. For the three cases considered, the errors between the graphs of 
the solutions of the original and reduced systems are 0.00010, 0.00012 and 0.00015, respectively. In Figure 5 one can see the 
solutions of the original and reduced systems. The figure clearly demonstrates the almost complete coincidence of the solutions 
plots, which confirms the correctness of the reduction performed. Thus, the conclusions drawn about the qualitative behavior of 
the solutions to the reduced system can be transferred to the original model (3). 
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Fig. 2. The solutions of system (3) with ε=0.00204. 

 
Fig. 3. The solutions of system (3) with ε=0.00476. 

 
Fig. 4. The solutions of system (6). 

6. Conclusion 

In the present work, the tuberculosis model has been investigated via methods of qualitative analysis. It has been shown that 
the model has several time scales, so it can be represented as a singularly perturbed system of ODEs. The reduction of the 
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system has been carried out, as a result of which, the original system of five differential equations was replaced by its projection 
on the slow integral manifold. It should be noted that, due to the stability of the slow integral manifold, this reduction is correct, 
and the reduced system of two differential equations preserves the essential properties of the original model. The conditions 
under which the system has the globally asymptotically stable equilibrium have been found. This result means that under the 
appropriate selection of treatment and preventive measures, the spread of the tuberculosis epidemic can be completely 
suppressed. 

 

Fig. 5. The solutions 
1 2( ), ( )x t x t  of systems (3) and (6) with ε=0.00053. 
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