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Abstract

Frames and subspaces, that are used to the reconstruction of the vector signal without phase measurements, repre-

sented. The new concept of equidistributed frames is considered. The possibility of reconstruction of the vector by

the norms of the projections on the subspaces is asserted. Particular attention is paid to systems of subspaces for which

there is the possibility of reconstruction by the norms of the projections on them and on their orthogonal complements.
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1. Basic facts. Phaseless recovery

Let HM denotes M-dimensional space with the scalar product.

Definition 1. A set of vectors Φ = {φk}Nk=1 is called a frame for the H
M , if there are positive constants A, B such

that for all x ∈ HM

A∥x∥2 ≤
N∑

k=1

|⟨x, φk⟩|2 ≤ B∥x∥2.

Numbers A and B are called the lower and upper frame bounds respectively. If we can choose A = B, then the frame

is called tight, and if A = B = 1, it is called a Parseval-Steklov frame (This name was proposed by Acad. V.S.

Vladimirov during a report of the second author in Math. Steklov Institute in 2008 instead of usual Parseval Frame).

Note that in the finite dimensional setting, a frame is simply a spanning set of vectors in the Hilbert space

(span{φk}Nk=1
= H

M) [1, 2].

There are three operators connected with a frame Φ:

analysis operator T : HM → ℓN
2
, defined by

T (x) = {⟨x, φk⟩}Nk=1,

adjoint synthesis operator

T ∗
(
{ak}Nk=1

)
=

N∑

k=1

akφk

and frame operator S := T ∗T on H
M , defined by

S (x) = T ∗T (x) =

N∑

k=1

⟨x, φk⟩φk.

The frame operator is positive, self-adjoint and invertible. Besides, we have

AI ≤ S ≤ BI,

where I is identity operator in H
M .

In particular, for the Parseval-Steklov frame the frame operator is the identity operator, so this frame is the most

useful for the reconstruction of signals. In fact, in this case for every x ∈ HM the following equality is true

x =

N∑

k=1

⟨x, φk⟩φk.
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The operator G = TT ∗ is Gram operator with the matrix



∥φ1∥2 ⟨φ2, φ1⟩, . . . ⟨φN , φ1⟩
⟨φ1, φ2⟩ ∥φ2∥2 . . . ⟨φN , φ2⟩

...
...

. . .
...

⟨φ1, φN⟩ ⟨φ2, φN⟩ . . . ∥φN∥2



and for the Parseval-Steklov frame coincides with the projection P : ℓ2
N
→ ℓ2

N
to the image of the analysis operator [1,

2].

An easy way is known to construct Parseval-Steklov frames. It is based on the following proposition.

Proposition 1. Let {φk}Nk=1
be a frame for HM with bounds A and B, and let P be the orthogonal projection in H

M

on the subspace W. Then {Pφk}Nk=1 is a frame for W with bounds A and B. In particular, if {φk}Nk=1
is Parseval-Steklov

frame for HM and P is the orthogonal projection on W, then {Pφk}Nk=1 is Parseval-Steklov frame for W.

Proof. We have for x ∈ W

A∥x∥2 = A ∥Px∥2 ≤
N∑

k=1

|⟨Px, φk⟩|2 =

=

N∑

k=1

|⟨x, Pφk⟩|2 ≤ B∥Px∥2 = B∥x∥2.

Corollary 1. Let {ek}Mk=1 be an orthonormal basis (ONB) in H
M , and let P be the orthogonal projection on the

subspace W. Then {Pek}Mk=1 is Parseval-Steklov frame for W.

Corollary 1 is the foundation of the following algorithm for construction of Parseval-Steklov frame. We construct

N×N unitary matrix for N ≥ M, then we choose any M rows, columns of thus obtaining M×N-matrix form Parseval-

Steklov frame in H
M . If we construct from the remaining N − M rows (N − M) × N-matrix, then its columns are

Parseval-Steklov frame in H
N−M .

The following theorem, actually proved by Naimark, shows that such process is essentially the only one for

constructing Parseval-Steklov frame [3].

Theorem 1.

Let Φ = {φk}Nk=1
be a frame in H

M with the analysis operator T, let {ek}Nk=1
be the standard basis in ℓ2

N
, let

P : ℓ2
N
→ ℓ2

N
be the orthogonal projection on Im(T ).

The following assertions are equivalent:

1. Φ is Parseval-Steklov frame for HM .

2. For all k = 1, . . . ,N we have Pek = Tφk.

3. There are vectors {ψk}Nk=1
⊂ H

N−M such that {φk ⊕ ψk}Nk=1
form ONB in H

N .

Besides, {ψk}Nk=1
are Parseval-Steklov frame in H

N−M .

Proof.

(1) ⇔ (2). As noted, the system {φk}Nk=1
forms Parseval-Steklov frame iff Gram operator TT ∗ coincides with the

projection P. So (1) and (2) are equivalent according to equality T ∗ek = φk for k = 1, . . . ,N.

(1)⇒ (3). Let’s put dk = ek − Tφk, k = 1, . . . ,N. According to (2), dk ∈ (Im(T ))⊥ for all k. For a unitary operator

Φ : (Im(T ))⊥ → H
N−M

let’s put

ψk := Φ dk, k = 1, . . . ,N.

We have using the isometry of the operator T,

⟨φi ⊕ ψi, φk ⊕ ψk⟩ = ⟨φi, φk⟩ + ⟨ψi, ψk⟩ =
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= ⟨Tφi,Tφk⟩ + ⟨di, dk⟩ = δik.

(3)⇒ (1). Let’s apply corollary 1.

As in [4], we call vectors {ψk}Nk=1
Naimark complement of the frame Φ .

For Parseval-Steklov frame, written as {Pek}Nk=1 , Naimark complement is the system of vectors {(I − P)ek}Nk=1
.

Naimark complements are defined only for Parseval-Steklov frames, and they are defined up to unitary equiva-

lence. If {φk}Nk=1
⊂ HM and {ψk}Nk=1

⊂ H
N−M complement each other, U and V are unitary operators (U∗U = UU∗ = I) ,

then {Uφk}Nk=1 , {Vψk}Nk=1 also complement each other.

An important application of frames is the reconstruction of a signal with incomplete data. In particular, much

attention is attracted to the problem of the reconstruction phase information. In recent papers on this topic two aspects

of the problem were emphasized: phaseless reconstruction and phase retrieval [7]. This paper focuses on the first

aspect.

Definition 2. The set of vectors Φ = {φi}Ni=1
in R

M (or CM) provides phaseless reconstruction (PLR), if equalities

of measurement modules

|⟨x, φi⟩| = |⟨y, φi⟩|, x, y ∈ RM (CM), i = 1, . . . ,N,

imply the equality of vectors-signals up to unimodular factor, i.e. x = cy with some c = ±1 for RM or c ∈ T for CM ,

where T is the unit circle in C.

In the rest of the text sets, which are satisfied the definition of 2, is called PLR-systems or PLR-sets. The next

property is important in these questions.

Definition 3 [4, 5]. The set Φ = {φn}Nn=1
in H

M has complement property (CP), if for any S ⊆ {1, . . . ,N} {φn}n∈S
or {φn}n∈S c is complete in H

M . Complement property in R
M is equivalent to PLR (theorem 2 below).

Definition 4 [4, 5, 6]. The spark of the set Φ = {φn}Nn=1
⊂ H

M is the cardinality of the smallest linear dependent

subset of Φ. If spark(Φ) = M + 1, then any subset with M vectors linear independent, in thus case Φ is called full

spark set.

In earlier works the term ”girth” was used instead of the term ”spark”. Spark of the linear independent system, for

example, basic, is assumed to be zero.

Theorem 2 [5, 8].

Frame {φn}Nn=1
in R

M is the PLR-system iff it has complement property. In particular, full spark frame with at least

2M − 1 vectors is PLR-system. If {φn}Nn=1
is PLR-system in R

M , then N ≥ 2M − 1, any subset with 2M − 2 vectors

can’t be PLR-system.

Generally speaking, the recovery without phases is possible not only by full spark frames. Each frame, containing

(2M − 1) full spark frame, will also provide recovery without phases. However, if the frame contains exactly 2M − 1

elements, it is a PLR-system only for full spark frame [5, 8.

If Φ is the Parseval-Steklov frame for HM with N elements, the analysis operator is isometric according to

∥T x∥2 =
N∑

n=1

|⟨x, φn⟩|2 = ∥x∥2 , x ∈ HM .

In this case, we obtain the reconstruction identity x =
∑N

n=1 |⟨x, φn⟩|φn, or x = T ∗T x. In this case, we also have

that the Gramian G := TT ∗ is a rank-M orthogonal projection, because G∗G = TT ∗TT ∗ = TT ∗ = G and the rank of

G equals the trace, trG = M.

Definition 5. Two frames Φ = {φn}Nn=1 and Φ′ =
{
φ′n

}N
n=1 for a finite dimensional space H

M are called unitarily

equivalent if there exists an orthogonal or unitary operator U on H
M such that φn = Uφ′n for n = 1, . . . ,N.

Each equivalence class of frames is characterized by the corresponding Gram matrix.

Proposition 2 [13]. The Gramians of two frames Φ = {φn}Nn=1 and Φ′ =
{
φ′n

}N
n=1 for HM are identical if and only if

the frames are unitarily equivalent.
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In [13] the new class of frames is introduced.

Definition 6. Let Φ = {φn}Nn=1 be Parseval-Steklov frame for HM , let G be its Gramian. The frame Φ is called

equidistributed if for each pair p, q ∈ ZN there exists a permutation π on ZN such that
∣∣∣G j,p

∣∣∣ =
∣∣∣Gπ( j),q

∣∣∣ for all j ∈ ZN .

In other words, Φ is equidistributed if and only if the magnitudes in any column of the Gram matrix repeat in any

other column, up to a permutation of their position.

Proposition 3. If Φ = {φn}Nn=1 is an equidistributed Parseval-Steklov frame in H
M , then ∥φn∥2 = M/N, n =

1, 2, . . . ,N.

Proof. By assumption, for each n there exists π such that
∣∣∣Gn,p

∣∣∣ =
∣∣∣Gπ(n),1

∣∣∣ holds for the entries of the associated

Gram matrix G for all n. By the Parseval-Steklov identity

∥∥∥φp

∥∥∥2
=

N∑

n=1

∣∣∣⟨φp, φn⟩
∣∣∣2 =

N∑

n=1

∣∣∣Gn,p

∣∣∣2 =
N∑

n=1

∣∣∣Gπ(n),1

∣∣∣2 = ∥φ1∥2 .

The trace condition
∑N

n=1 Gn,n =
∑N

n=1

∥∥∥φp

∥∥∥2
= M for the Gram matrices of Parseval-Steklov frames implies that

∥φn∥2 = M/N, n = 1, 2, . . . ,N.

Examples:

1. Equiangular Parseval-Steklov frames.

Let Φ = {φn}Nn=1 be an equal-norm frame and there exists C ≥ 0 such that
∣∣∣⟨φn, φ

′
n = C⟩

∣∣∣ for all n, n′ ∈ ZN with

n , n′. Such frames are called equiangular. Such Parseval-Steklov frames exist only with some restrictions on N

and M [13]. The simplest example of the equiangular Parseval-Steklov frame in R
2 is a well-known ”Mercedes-Benz

frame”.

Magnitudes of the entries of any column of G for such frame consist of N − 1 instances of C and one instance of

M/N, so Φ is equidistributed.

2. Mutually unbiased bases.

Such frame is union of orthonormal bases such that the modulus of the inner product between any two vectors

from distinct bases is constant. Such examples are widely used in quantum information theory. The simplest example

of mutually unbiased bases in C
2 is given by the following three bases:

M0 =

(
1 0

0 1

)
, M1 =

1
√

2

(
1 1

1 −1

)
, M2 =

1
√

2

(
1 1

i −i

)
.

To get the Parseval-Steklov frames one should renorm vectors to Φ because of these 3 matrices must the multiplied to

1/
√

3. We get the Gram matrix

G =



1
3

0 λ λ λ λ

0 1
3

λ −λ −iλ iλ

λ λ 1
3

0 1−i
6

1+i
6

λ −λ 0 1
3

1+i
6

1−i
6

λ iλ 1+i
6

1−i
6

1
3

0

λ −iλ 1−i
6

1+i
6

0 1
3



,

where λ =
√

2/6.

3. Group frames.

Let Γ be a finite group of size N = |Γ| and π : Γ → B
(
H

M
)

be an orthogonal or unitary representation of Γ on the

real or complex space H
M respectively.

The orbit Φ =
{
fg = π(g) fe

}
g∈Γ

, generated by a vector fe of norm
√

N/M, indexed by the unit e of the group,

forms the Parseval-Steklov frame, if the representation is irreducible [14].In this case Φ is equidistributed, because⟨
fg, fh

⟩
=

⟨
π
(
h−1g

)
fe, fe

⟩
, and left multiplication hyh−1 acts as a permutation on the group elements. So the entries

of Gram matrix has equal modules, up to a permutation in rows (columns).

4. Cycle frames.
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Consider the Discrete Fourier Transform matrix

F =
1
√

N

(
ω jl

)N

j,l=1
, where ω = e

2πi
N .

Its columns form an orthonormal basis for CN . If A is a M × N matrix obtained by deleting any choice of N − M

rows from F, then its columns form a Parseval-Steklov frame for CN .

Definition 7. Let b1, . . . , bM ∈ {1, 2, . . . ,N} be any choice of distinct integers. F frame Φ = {φn}n ∈ ZN , where

φn =
1
√

N

(
ωnlm

)N

m=1
, f or all n ∈ ZN ,

is called a cycle frame.

Every cycle frame is equidistributed, and, because the construction described above works for every pair of positive

integers M and N with M < N, the existence of equidistributed frames is ensured in the complex setting.

Theorem 3.

For every N > M there exists equidistributed Parseval-Steklov frame in C
M with N vectors.

Let’s see if the possibility of recovery without phases is transferred to the Naimark complements. We require the

following theorem for this.

Theorem 4 [9].

Let P be an projection in H
N with ONB {en}Nn=1

and S ⊂ {1, 2, . . . ,N}.
The following assertions are equivalent:

1. {Pei}i∈S linear independent.

2. span {(I − P)ei}i∈S c = (I − P)
(
H

N
)
.

Proof.

(1)⇒ (2). Let’s suppose, that

span {(I − P)ei}i∈S c , (I − P)
(
H

N
)
.

It means, that there exists 0 , x ∈ (I − P)
(
H

N
)

such that x ⊥ span {(I − P)ei}i∈S c . As x =
N∑

i=1

⟨x, ei⟩(I − P)ei, then

⟨x, (I − P)ei⟩ = ⟨(I − P)x, ei⟩ = ⟨x, ei⟩ = 0

for any i ∈ S c. Hence, x =
∑
i∈S
⟨x, ei⟩ei, so

∑

i∈S
⟨x, ei⟩ei = x = (I − P)x =

∑

i∈S
⟨x, ei⟩(I − P)ei,

i.e.
∑
i∈S
⟨x, ei⟩Pei = 0, and, thus, {Pei}i∈S are linearly dependent.

(2) ⇒ (1). Let’s suppose, that {Pei}i∈S are linearly dependent: there exist numbers {bi}i∈S , among which there are

nonzero, and
∑

i∈S biPei = 0. Then

x :=
∑

i∈S
bi(I − P)ei =

∑

i∈S
biei ∈ (I − P)

(
H

N
)
.

Let’s consider

⟨x, (I − P)e j⟩ = ⟨(I − P)x, e j⟩ =
⟨∑

i∈S
biei, e j

⟩
=

∑

i∈S
bi⟨ei, e j⟩ = 0,
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if j ∈ S c. Thus, x⊥span {(I − P)ei}i∈S c , and hence,

span {(I − P)ei}i∈S c , (I − P)
(
H

N
)
.

Proposition 4. Parseval-Steklov frame is a full spark frame iff Naimark complement of this frame is a full spark

frame also.

Proof. By theorem 1, Parseval-Steklov frame can be written as {Pei}Ni=1 ,where {ei}Ni=1
is an ONB in H

N and P is the

orthogonal projection in H
N . Naimark complement for Parseval-Steklov frame looks as {(I − P)ei}Ni=1 . By definition

{Pei}Ni=1 is a full spark frame, if for any S ⊆ {1, . . . ,N} with |S | = M {Pei}i∈S is a basis in the range of the projection P.

By theorem 3, we have that {(I − P)ei}i∈S c is a basis in the range of the projection I − P, so {(I − P)ei}Ni=1 is a full spark

frame also. The reverse assertion is proved similarly.

If Parseval-Steklov frame ensures recovery without phases, Naimark complement can not provide recovery without

phases. The thing is including, in particular, that in Naimark complement may be insufficient number of vectors.

Proposition 5. If Parseval-Steklov frame {φn}Nn=1
ensures recovery without phases in R

M , and Naimark comple-

ment to this frame also ensures recovery without phases in R
N−M , then

2M − 1 ≤ N ≤ 2M + 1.

Proof. If {φn}Nn=1
ensures recovery without phases in R

M , then N ≥ 2M − 1 (theorem 2). If Naimark complement

ensures recovery without phases in R
N−M , then N ≥ 2(N − M) − 1, or N ≤ 2M + 1.

But Naimark complement can fail to ensure recovery without phases even under conditions of proposition 3.

Example. Let {φm}2M
m=2

be the full spark frame in R
M , M ≥ 3. Let’s put φ1 = φ2, and let S be the frame

operator for {φm}2M
m=1

. Note that
{
S −

1
2φm

}2M

m=2
is full spark frame, and ensures recovery without phases. For any partition

S,Sc ⊂ {1, . . . , 2M} one of the sets S or Sc has at least M elements from the full spark frame
{
S −

1
2φm

}2M

m=2
and hence

complete in R
M .

Now let’s show, that Naimark complement for
{
S −

1
2φm

}2M

m=1
does not ensure recovery without phases. Let’s break

{
S −

1
2φm

}2M

m=1
on

{
S −

1
2φm

}2

m=1
and

{
S −

1
2φm

}2M

m=3
. None of them is linear independent, as φ1 = φ2, and M ≥ 3. According

to theorem 3, Naimark complements for each of these sets are not comlete in R
2M−M = R

M . Thus, there is a partition

of Naimark complement which contradicts the complement property and does not ensure phaseless recovery.

If Parseval-Steklov frame is full spark frame, then phaseless recovery is inherited by Naimark complement.

Proposition 6. If Φ = {φn}Nn=1
is full spark Parseval-Steklov frame, 2M − 1 ≤ N ≤ 2M + 1, then Φ ensures

phaseless recovery in R
M , and Naimark complement for Φ ensures phaseless recovery in R

N−M .

Proof. By proposition 2 Naimark complement for Φ is full spark frame in R
N−M . We have 2M − 1 ≤ N and

2(N − M) − 1 ≤ N, then, by theorem 2, both Φ and its Naimark complement have complement property in relevant

spaces.

2. Recovery by the norms of projections

Following [4, 10] we define the recovery of a vector-signal by the norms of projections on subspaces.

Definition 8. Let {Wn}Nn=1 be the set of subspaces in H
M , let {Pn}Nn=1 be orthogonal projections on these subspaces.

We say, that {Wn}Nn=1 (or {Pn}Nn=1) ensures recovery by the norms of projections, if for any x, y ∈ H
M equalities

∥Pnx∥ = ∥Pny∥ for n = 1, . . . ,N imply x = cy for some c with |c| = 1.

Further such sets of subspaces will be called RNP-sets.
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A lot of attention to such recovery is paid in [10]. For one-dimensional subspace Wn the number ∥Pnx∥ can be

received only from two vectors ±Pnx. For subspaces Wn with higher dimensions we have continuum of vectors with

∥Pnx∥.
Nevertheless the map

A(x)(n) = ∥Pnx∥

can be injective for subspaces with higher dimensions. The proof of this result uses the scheme of [10], we need some

auxiliary assertions.

Lemma 1.

Let {φn}Nn=1
be full spark frame in R

M . Let’s define ONB in R
M using the following algorithm: ψ1 is a random

vector, ψ2 is a random vector from
[
span(ψ1)

]⊥
, . . . , ψk is a random vector from

[
span({ψn}k−1

n=1
)
]⊥
. Then {φn}Nn=1

∪
{ψm}Mm=1

is the full spark frame with the probability 1.

Proof.

Let 1 ≤ k < M. We suppose, that {φn}Nn=1
∪ {ψm}km=1

is full spark frame, we need to check, that {φn}Nn=1
∪ {ψm}k+1

m=1

is full spark frame too. For this we have to show that ψk+1 does not lie in the span of any M − 1 vectors from

{φn}Nn=1
∪ {ψm}km=1

. Choose any M − 1 such vectors and denote them by A. Put Wk :=
[
span({ψm}km=1

)
]⊥

and pick ψk+1

as a random unit norm vector from this (M − k) -dimensional space. Then {φn}Nn=1
∪ {ψm}k+1

m=1
is full spark system⇔

ψk+1 < span(A). The last is truly with probability 1 iff

dim
(
span(A) ∩Wk

) ≤ (M − k) − 1. (1)

In fact, span(A) ∩Wk is a subset in (M − k) -dimensional space Wk, and so inequality (1) implies that this intersection

has zero measure. Hence, we have with probability 1 ψk+1 < span(A) ∩Wk and ψk+1 ∈ Wk. Now we are going to the

proof of inequality (1).

Let’s apply the method of mathematical induction. A vector ψ1 is chosen randomly from W0 = R
M . If A any M−1

vectors from {φn}Nn=1
, then

dim(span(A) ∩W0) = M − 1,

and {φn}Nn=1
∪ ψ1 is full spark frame with probability 1.

Let’s suppose that {φn}Nn=1
∪{ψm}km=1

is full spark frame. We denote by A any M−1 vectors from {φn}Nn=1
∪{ψm}km=1

.

Let’s consider two possible cases.

1. ψk < A. We have Wk ⊂ Wk−1 and

span(A) ∩Wk =
(
span(A) ∩Wk−1

) ∩Wk.

Note that dim Wk = M − k, dim
(
span(A) ∩Wk−1

) ≤ M − k, because ψk < A. So for the proof (1) it’s suffice to check

that these subspaces do not match. Let’s suppose that span(A) ∩Wk−1 = Wk. We remember that ψk ∈ W⊥
k
, and hence,

ψk ∈
[
span(A) ∩Wk−1

]⊥
, this subspace has dimension k. As ψk < W⊥

k−1
, dim Wk−1 = k − 1, and

W⊥k ⊂
[
span(A) ∩Wk−1

]⊥
,

it turns to be that ψk lies in one-dimensional subspace, determined by span(A) and Wk−1. It’s possible only with zero

probability for randomly chosen vector from M − (k − 1)-dimensional subspace Wk−1.

2. ψk ∈ A. Let’s note that

dim
(
span(A) ∩Wk

) ≤ M − k,

as dim (Wk) = M − k. For contradiction, we suppose that

dim
(
span(A) ∩Wk

)
= M − k. (2)

We have further that

Wk ⊂ span(A). (3)
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Pick φ ∈ {φn}Nn=1
so that φ < A. Then

dim
(
span(A \ ψk) ∩Wk

) ≤ dim
(
span(A \ ψk ∪ φ) ∩Wk

) ≤ (M − k) − 1.

The last inequality is a result of the first case above.

On the other hand as ψk⊥Wk and ψk ∈ A, we receive from (2) and (3)

dim
(
span(A \ ψk) ∩Wk

)
= dim

(
span(A) ∩Wk

)
= M − k.

This contradiction proves (1).

Corollary 3. The finite set of ONB, which are built by the algorithm of random choice of lemma 1, is full spark

frame with the probability 1.

Proof. Let’s apply consistently the lemma 1.

Lemma 2. For an integer M ≥ 2 let’s pick integers M − 1 ≥ I1 ≥ I2 ≥ . . . ≥ I1 ≥ 1. There is a real invertible

M × M-matrix with 0 − 1 instances such that the k-row has exactly Ik ones.

Proof.

We apply induction by M. The claim is obvious for M = 2. Let’s suppose that the assertion is valid for M. Let’s

look at the set of M + 1 numbers such that

M = I1 = . . . = Is > Is+1 ≥ . . . ≥ IM+1 ≥ 1

for some s ≤ M + 1. By induction assumption for the set of numbers

I1 − 1 = . . . = Is − 1 ≥ Is+1 ≥ . . . ≥ IM ≥ 1

there is the invertible M × M-matrix A =
[
ai j

]M

i, j=1
with Ik−1 − 1 = M − 1 ones in k-row for k = 1, . . . , s and Ik ones in

k-row for k = s + 1, . . . , M. Let’s define (M + 1) × (M + 1)-matrix B =
[
bi j

]M+1

i, j=1
defining

bi j =



ai j, 1 ≤ i, j ≤ M,

1, 1 ≤ i ≤ s, j = M + 1,

1, i = M + 1, 1 ≤ j ≤ M + 1,

0, for other indexes.

The matrix B has Ik ones in k-row for k = 1, . . . , M+1. The matrix A =
[
ai j

]M

i, j=1
=

[
bi j

]M

i, j=1
is invertible, so the matrix

B by row reduces can be reduced to the step form B̃ =
[̃
bi j

]M+1

i, j=1
, where

[̃
bi j

]M

i, j=1
= IM×M , and the row (M + 1) is not

changed. If we suppose that B̃ is not invertible, then the row (M + 1) by row reduces can be reduced to the zero row

and hence
IM+1∑

i=1

b̃M+1,i = 0. (5)

Let’s define for each l ∈ {1, . . . , IM+1} the matrix B̃l. It is obtained from the matrix B̃ changing b̃M+1,M+1 = 0 to

b̃M+1,l = 1.

If B̃ is not invertible, then by row reduces the last row is reduced to the zero row, and we have

IM+1∑

i=1,i,l

b̃M+1,i = −1. (6)

The equality (6) is valid for any l ∈ {1, . . . , IM+1}, that’s contradict to (5). Hence at least one of the matrixes B̃ or B̃l

for some l ∈ {1, . . . , IM+1} has to be invertible.
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Theorem 6. There exists RNP-set in R
M consisting from 2M−1 subspaces, dimension of each subspace < M−1.

Proof.

Let {φn}2M−1
n=1

be the set of vectors in R
M with complement property and with additional requirement of orthogo-

nality and normalization (∥ · ∥ = 1) to the sets {φn}Mn=1
and {φn}2M−1

n=M+1
. The corollary 2 ensures the existence of such set.

Let Ik ⊆ {1, . . . , M} for k = 1, . . . , M, and Jk ⊆ {M + 1, . . . , 2M − 1} for k = M + 1, . . . , 2M − 1, let PIk
and PJk

be

projections on span
({φn}n∈Ik

)
and span

({φn}n∈Jk

)
respectively. The next construction ensures phaseless recovery for

x ∈ RM by
∥∥∥PIk

x
∥∥∥ and

∥∥∥PJk
x
∥∥∥ for k = 1, . . . , 2M − 1.

Let A =
[
akz

]M
k,z=1 be M × M-matrix, its rows are agreed with Ik, i. e. akz = 1, for z ∈ Ik, and akz = 0 for other z.

Similarly we define the matrix B =
[
bkz

]M−1
k,z=1 as (M − 1) × (M − 1)-matrix with bkz = 1 for z + M ∈ Jk, and bkz = 0

for other z.

Let’s look at the subspaces span
({φn}n∈Ik

)
for k = 1, . . . , M. For x ∈ RM we have

∥∥∥PIk
x
∥∥∥2
=

∑

n∈Ik

|⟨x, φn⟩|2 ,

whence 

∥∥∥PI1
x
∥∥∥2

...∥∥∥PIM
x
∥∥∥2


= A



|⟨x, φ1⟩|2
...

|⟨x, φM⟩|2


.

This equation may be solved upon {|⟨x, φn⟩|}Mn=1 , if the matrix A is invertible. Similar equation may be written with the

matrix B. Hence if the matrixes A and B are invertible, we obtain the complete set of ”measurements” {|⟨x, φn⟩|}2M−1
n=1 .

The set {φn}2M−1
n=1 has complement property and according to theorem 2, phaseless recovery is possible using subspaces

span
({φn}n∈Ik

)
and span

({φn}n∈Jk

)
for k = 1, . . . , 2M − 1. To complete the proof we choose {Ik}Mk=1 and {Jk}2M−1

k=M+1 to

provide the invertibility of the matrixes A and B.

Let’s note that the quantity of ones in each row coincides with the dimension of the appropriate subspace. Such

selection is possible according to lemma 2 for any subsets Ik, Jk, with 1 ≤ |Ik | ≤ M − 1 and 1 ≤ |Jk | ≤ M − 2.

The answer to the next question is unknown [4]:

Question. Is it possible phaseless recovery by norms of projections in R
M with the set of subspaces {Wn}Nn=1 for

N < 2M − 1?
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