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Abstract 

A system of semilinear parabolic equations with a manifold of steady states is considered and the conditions of stabilizability of this manifold 

are obtained in the paper. 
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1. Introduction 

Consider the system of differential equations: 

𝑑𝑎

𝑑𝑡
= 𝐴(𝑎, 𝑦, 𝑧),

𝑑𝑦

𝑑𝑡
= 𝐵𝑦 + 𝑌(𝑎, 𝑦, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝐶𝑧 + 𝑍(𝑎, 𝑦, 𝑧),

                           (1) 

where 𝑎, 𝐴 ∈ 𝑅𝑙; 𝑦, 𝑌 ∈ 𝑅𝑘; 𝑧, 𝑍 ∈ 𝑅𝑚.  Assume that 𝐴(𝑎, 0,0) ≡ 0, 𝑌(𝑎, 0,0) ≡ 0, 𝑍(𝑎, 0,0) ≡ 0.  Then the system (1) has a 

manifold of equilibrium states 𝔐 = {(𝑎, 0)|𝑎 ∈ 𝑅𝑙 , 0 ∈ 𝑅𝑘 × 𝑅𝑚}. 
Following [1, 2], let say that the manifold  𝔐 is stable with respect to variable 𝑥 = (𝑦, 𝑧),  if for any point 𝑎 ∈ 𝑅𝑙 and any 

neighborhood of zero W in phase space 𝑅𝑘 × 𝑅𝑚 we can specify such a neighborhood of zero 𝑊0 ⊂ 𝑅𝑘 × 𝑅𝑚, that  for any 

point 𝑥0 = (𝑦0, 𝑧0) ∈ 𝑊  the corresponding solution 𝑎 = 𝑎(𝑡, 𝑎0, 𝑥0), 𝑥 = 𝑥(𝑡, 𝑎0, 𝑥0) (𝑎(0, 𝑎0, 𝑥0) = 𝑎0, 𝑥(0, 𝑎0, 𝑥0) = 𝑥0) 

satisfies the ratio 𝑥 = 𝑥(𝑡, 𝑎0, 𝑥0) ∈ 𝑊 when 𝑡 ≥ 0. 
Let say that 𝔐 is asymptotically stable with respect to variable 𝑥 = (𝑦, 𝑧), if it is stable with respect to variable 𝑥  and, 

moreover, lim𝑡→∞ 𝑥(𝑡, 𝑎0, 𝑥0) = 0 for all 𝑥0 ∈ 𝑊. 
Let say that 𝔐  is stabilized, if it is asymptotically stable with respect to variable 𝑥  and when 𝑡 → ∞ {𝑎(𝑡, 𝑎0, 𝑥0),

𝑥(𝑡, 𝑎0, 𝑥0)} converge to some point of diversity 𝔐, if 𝑥0 ∈ 𝑊0. 

M.A. Ayzerman and F.R. Gantmakher established that the state of equilibrium of nonholonomic system is stable, if all roots 

of the characteristic equation, except for the zero roots, the number of which equals the number of equations of nonholonomic 

connections, have negative real parts [3, 4]. Each perturbed motion, which is close enough to unperturbed motion, is converge to 

one of the possible established motions, belong to a given manifold, when 𝑡 → ∞. [5] 

2. Model description 

Let consider the model of interaction of two populations of microorganisms in one-dimensional case. This system is based on 

the equations of Fisher-Kolmogorov-Petrovsky-Piskunov. Let 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) be concentrations of the two sub-types of a 

virus at a point 𝑥 and a time 𝑡. Consider the problem on the interval 𝑥 ∈ [0; 1]. The system has the form: 

{

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝐷1

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 + 𝑎1𝑢(𝑥, 𝑡)(1 − 𝑞1𝑣(𝑥, 𝑡))(1 − 𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡));

𝜕𝑣(𝑥,𝑡)

𝜕𝑡
= 𝐷2

𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2 + 𝑎2𝑣(𝑥, 𝑡)(1 − 𝑞2𝑢(𝑥, 𝑡))(1 − 𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡)),
       (2) 

where a1,a2 - the replacement rates for populations u and v accordingly, D1,D2 – the coefficients of diffusion, q1, q2 − the 

coefficients of the interaction between individuals of different populations. 

The condition of impermeability at the ends of the considered interval are considered as the boundary conditions in this 

problem. They look like: 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
|

𝑥=0
=

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
|

𝑥=1
= 0;

𝜕𝑣(𝑥,𝑡)

𝜕𝑥
|

𝑥=0
=

𝜕𝑣(𝑥,𝑡)

𝜕𝑥
|

𝑥=1
= 0.

                      (3) 

Continuous functions are chosen as the initial conditions. They have the form: 

𝑢(𝑥, 0) = {
0,9(−5(𝑥 − 1)2 + 1), 𝑢 > 0,

0, 𝑢 ≤ 0;

𝑣(𝑥, 0) = {
0,9(−5𝑥2 + 1), 𝑣 > 0,

0, 𝑣 ≤ 0.

                    (4) 
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3. Analysis of the model 

Let find the conditions of stability for the model (2). First of all, let find the equilibrium states of the system. These 

stationary solutions are obtained by equating all partial derivatives to zero in equations of model. Introduce functions 𝑓
1
, 𝑓

2
, 

which defined by the following equations: 

𝑓1 = 𝑎1𝑢(1 − 𝑞1𝑣)(1 − 𝑢 − 𝑣) = 0;

𝑓2 = 𝑎2𝑣(1 − 𝑞2𝑢)(1 − 𝑢 − 𝑣) = 0.
                                      (5) 

From equations (5) it is easy to obtain the equilibrium states of the system: 

(𝑢1, 𝑣1) = (0, 1);        (𝑢2, 𝑣2) = (1, 0);        (𝑢3, 𝑣3) = (0.5, 0.5).              (6) 

To obtain the closest linear system, where (𝑢, 𝑣)  is close to (𝑢, 𝑣), let introduce the infinitesimal perturbations: 

𝜉(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑢;   𝜂(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) − 𝑣.                                  (7) 

Consider the approximation of functions 𝑓1(𝑢, 𝑣), 𝑓2(𝑢, 𝑣) near any equilibrium states (𝑢, 𝑣). Multivariable calculus 

may be used to obtain the following approximations: 

𝑓1(𝑢, 𝑣) ≈ 𝑓1(𝑢, 𝑣) +
𝜕𝑓1

𝜕𝑢
𝜉 +

𝜕𝑓1

𝜕𝑣
𝜂;

𝑓2(𝑢, 𝑣) ≈ 𝑓2(𝑢, 𝑣) +
𝜕𝑓2

𝜕𝑢
𝜉 +

𝜕𝑓2

𝜕𝑣
𝜂.

                                        (8) 

Members of the second and higher orders can be neglected since the perturbations are infinitely small. Taking into 

consideration equations (5), let receive: 

𝑓1(𝑢, 𝑣) ≈
𝜕𝑓1

𝜕𝑢
𝜉 +

𝜕𝑓1

𝜕𝑣
𝜂;

𝑓2(𝑢, 𝑣) ≈
𝜕𝑓2

𝜕𝑢
𝜉 +

𝜕𝑓2

𝜕𝑣
𝜂.

                                            (9) 

Finally, substituting equations determining the perturbations (7) into the equations defining the model (2), leads to a set 

of equations showing how the perturbance will develop in time: 
𝜕𝜉

𝜕𝑡
= 𝐷1

𝜕2𝜉

𝜕𝑥2 +
𝜕𝑓1

𝜕𝑢
𝜉 +

𝜕𝑓1

𝜕𝑣
𝜂,

𝜕𝜂

𝜕𝑡
= 𝐷1

𝜕2𝜂

𝜕𝑥2 +
𝜕𝑓2

𝜕𝑢
𝜉 +

𝜕𝑓2

𝜕𝑣
𝜂.

                                         (10) 

Let consider the Jacobian matrix for the system (10). The signs of the eigenvalues of this matrix will give the 

conditions of stability of the stationary solutions. 

Α = (

𝜕𝑓1

𝜕𝑢

𝜕𝑓1

𝜕𝑣
𝜕𝑓2

𝜕𝑢

𝜕𝑓2

𝜕𝑣

).                                               (11) 

Accounting that 𝑓1 = 𝑎1𝑢(1 − 𝑞1𝑣)(1 − 𝑢 − 𝑣), 𝑓2 = 𝑎2𝑣(1 − 𝑞2𝑢)(1 − 𝑢 − 𝑣),  let calculate the partial derivatives of 

these functions on variables 𝑢, 𝑣. Then, the Jacobian matrix Α takes the form: 

Α = (
𝑎1(1 − 𝑞1𝑣)(1 − 2𝑢 − 𝑣) 𝑎1𝑢(𝑞1(𝑢 + 2𝑣 − 1) − 1)

𝑎2𝑣(𝑞2(𝑣 + 2𝑢 − 1) − 1) 𝑎2(1 − 𝑞2𝑢)(1 − 𝑢 − 2𝑣)
).                        (12) 

Following the research conducted by Juan Carlos Cantero and Andrei Korobeinikov [6], consider the position of 

equilibrium (𝑢3, 𝑣3) = (0.5, 0.5). 

Substitute (𝑢3, 𝑣3) = (0.5, 0.5) in (12):  

Α = (
−0.5𝑎1(1 − 0.5𝑞1) −0.5𝑎1(1 − 0.5𝑞1)

−0.5𝑎2(1 − 0.5𝑞2) −0.5𝑎2(1 − 0.5𝑞2)
).                               (13) 

The determinant of the Jacobian matrix equals to zero, and the stability of the solution will depend on the trace of the 

matrix Α. If the trace of the matrix is negative, then the solution is stable. Then if 𝑎1𝑞1 + 𝑎2𝑞2 < 2(𝑎1 + 𝑎2), the stationary 

solution is stable. And if 𝑎1𝑞1 + 𝑎2𝑞2 > 2(𝑎1 + 𝑎2), the solution is not stable. 

4. Numerical modeling 

To solve the problem (2)-(4) let make an explicit finite-difference scheme. To do this, replace the differential operators of 

their mesh analogues. Receive: 

{

𝑢𝑖
𝑘+1−𝑢𝑖

𝑘

𝜏
= 𝐷1

𝑢𝑖+1
𝑘 −2𝑢𝑖

𝑘+𝑢𝑖−1
𝑘

ℎ2 + 𝑎1𝑢𝑖
𝑘(1 − 𝑞1𝑣𝑖

𝑘)(1 − 𝑢𝑖
𝑘 − 𝑣𝑖

𝑘);

𝑣𝑖
𝑘+1−𝑣𝑖

𝑘

𝜏
= 𝐷2

𝑣𝑖+1
𝑘 −2𝑣𝑖

𝑘+𝑣𝑖−1
𝑘

ℎ2 + 𝑎2𝑣𝑖
𝑘(1 − 𝑞2𝑢𝑖

𝑘)(1 − 𝑢𝑖
𝑘 − 𝑣𝑖

𝑘).
                           (14) 

The boundary conditions will take the form: 
𝑢1

𝑘+1−𝑢−1
𝑘+1

ℎ
= 0;

𝑣1
𝑘+1−𝑣−1

𝑘+1

ℎ
= 0.

                                                  (15) 

Define the initial conditions as follows: 

𝑢𝑖
0 = {

0,9(−5(𝑥𝑖 − 1)2 + 1), 𝑢𝑖
0 > 0,

0, 𝑢𝑖
0 ≤ 0;

𝑣𝑖
0 = {

0,9(−5𝑥𝑖
2 + 1), 𝑣𝑖

0 > 0,

0, 𝑣𝑖
0 ≤ 0.

                                       (16) 

Their graphs are presented in figure1. 
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Fig. 1.  Graph of the initial conditions for u and v. 

To solve the problem (14)-(16) the program was realised in Matlab, which calculates the values of the grid functions on the 

time interval 0 ≤ t ≤ 600. 

5. Different cases 

Consider the case when the coefficients of the first and the second equations are equal, i. e. 𝑎1 = 𝑎2 = 1,  𝐷1 = 𝐷2 = 0.001,
q1 = q2 . Separating the variables and solving the task on eigenvalues, find the value of parameters q1 = q2 = 2 , in the 

transition through which the bifurcation happens in the system. To illustrate this phenomenon, consider the three different cases: 

1. q1 = q2 < 2 

2. q1 = q2 ≈ 2 

3. q1 = q2 > 2 
In the first case, the trajectories of system converge to the equilibrium (0,5;0,5), belonging to the manifold of equilibrium 

states of the system. By Ayzerman-Gantmacher`s theorem, the state of equilibrium of system is stable. Thus, manifold is 

stabilized. In the second case, there is a soft loss of stability of the system when passing through the critical value, and in the 

third case, it is possible to observe a complete loss of stability. 

5.1. Case, when q1 = q2 < 2. 

For the first case , when q1 = q2 = 1.5,  the dynamics of function u(x,t) is presented in figure 2. The dynamics of function 

v(x,t) is presented in figure 3. In figure 4 a solution in a finite time t=600 is presented.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  The dynamics of function 𝑢(𝑥, 𝑡) for case 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  The dynamics of function 𝑣(𝑥, 𝑡) for case 1. 
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Fig. 4.  A solution in a finite time t=600 for case 1. 

5.2. Case, when q1 = q2 ≈ 2. 

For the second case, when q1 = q2 = 2.05,  the dynamics of function u(x,t) is presented in figure 5. The dynamics of 

function v(x,t) is presented in figure 6. In figure 7 a solution in a finite time t=600 is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  The dynamics of function 𝑢(𝑥, 𝑡) for case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  The dynamics of function 𝑣(𝑥, 𝑡) for case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  A solution in a finite time t=600 for case 2. 
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5.3. Case, when q1=q2>2. 

For case 3, when 𝑞1 = 𝑞2 = 2.5, the dynamics of function u(x,t) is presented in figure 8. The dynamics of function v(x,t) is 

presented in figure 9. In figure 10 a solution in a finite time t=600 is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  The dynamics of function 𝑢(𝑥, 𝑡) for case 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  The dynamics of function 𝑣(𝑥, 𝑡) for case 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  A solution in a finite time t=600 for case 3. 

6. Conclusion 

Hence, it is shown that for q1 = q2 < 2 the manifold of equilibrium states of the system is stabilized, and when passing 

through the value of the coefficients of the interaction q1 = q2 = 2 loss of stability occurs in the system. 
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