
Verifying Description Logic Ontologies based on Competency
Questions and Unit Testing

Camila Bezerra1,2, Fred Freitas1

1Centro de Informática – Universidade Federal de Pernambuco
(UFPE) – Recife - PE – Brazil

{cbs,fred}@cin.ufpe.br

camila.bezerra.br@gmail.com

Abstract. Ontology testing can help guarantee ontology quality, by finding er-
rors and inconsistencies in the ontology. There are few approaches for ontology
testing inspired in methods employed by software engineering, and usually they
depart from software requirements. Requirements in ontologies are the set of
competency questions. A drawback of some ontology testing approaches resides
on the fact that testing takes place only at the assertional level, since the query
language SPARQL is relied on. In this work, we propose an approach and its
implementation to test semi-automatically OWL-DL ontologies with both asser-
tional and terminological queries, by using competency questions and the con-
cept of unit testing. The tests accomplished in small ontologies sounds promising
with good results.

1. Introduction
With the growing interest in ontologies, several methodologies have appeared to build
them, some with similar aspects to methodologies employed in software engineering
[Uschold and Gruninger 1996][Fernández-López et al. 1997][Suárez-Figueroa et al. 2012].
In ontology development, ontology verification means that the ontology was building
correctly, according to expected [Gómez-Pérez 2004].

As an approach to enable ontology verification, ontology testing is a way to
detect errors and inconsistences during (or in the end) of development phase. It en-
ables the development of an ontology with a minimal quality, i.e. consistency and
completeness. However, there are few tools and methodologies for ontology testing
[Blomqvist et al. 2012] [Vrandečić and Gangemi 2006]. In a scenario with OWL-DL on-
tologies, none of them supports tests the terminological level.

Current approaches to test OWL ontologies work only at the assertional level, by
using the query language SPARQL [Angles and Gutierrez 2008]. SPARQL is a query
language that is as expressive as relational algebra [Angles and Gutierrez 2008] which
yelds a lack of expressive power and reasoning capabilities to check OWL ontologies. In
other words, SPARQL is not shaped to entail an answer which may be deduced by the
ontology using subsumption if not made explicit in the ontology.

Competency questions (CQs) can play a crucial role in this cenario and they con-
sist of a set of questions stated and replied in natural language, that the ontology must be
able to answer correctly [Noy and Hafner 1997]. They play an important role both in re-
quirements specification as well as in the evaluation phase of most ontology engineering
methodologies.



Bearing this in mind, in this work we propose an approach and a tool to test semi-
automatically OWL-DL ontologies with both ABox and TBox queries, by using compe-
tency questions and checking whether they are being met or not. We rely on the idea of
unit testing, which aims to testing the individual units of a code in Software Engineering
[Pressman 2001].

This paper is organized as follows: section 2 describes presents the proposed
method; section 3 presents a tool that implements the method, section 4 shows prelimi-
nary results, section 5 is devoted to related work; and section 6 presents some conclusions
and future work.

2. A method for ontology testing

To introduce our ontology testing approach with DL, we start by presenting an ontology
formalization:
Definition 1. Vocabulary of Ontology. Voc(O) is the vocabulary, i.e., defined and used in
ontology O, defined over the triple (NC , NR, NO) as explained before. We denote by O |=
δ if δ is true in all the possible models of O.

Definition 2. Competency Questions. A competency question is a 〈Q, σ〉 such that Q is
a query expressed in a formal language and σ is an answer to this query expressed as a
variable substitution.

Definition 3. Satisfied competency question. A competency question 〈Q, σ〉 is satisfied
by an ontology O if O ∪ Q |= σ.

Since we are dealing with controlled natural language, we are dealing with some
patterns of CQs that we have found, below some of them:

Pattern: Which + <class> + <property> + <class> + not + <property> + <class>?
Pattern: From which + <property> + <class>?
Pattern: Is + <individual>+ a +<class>?
Pattern: Is <class> + <individual> + or + <individual>?

In Software Engineering, the phase of testing is very important to guarantee soft-
ware quality, since it aims at detecting errors, and, to check if the software was imple-
mented in accordance with the requirements and user expectations. The motivation of
this work is applying the very same idea in the context of Ontology Engineering.

Analogously, CQs represent user demands for knowledge regarding a domain of
discourse. They usually enable developers to define the ontology. Given that domains of
discourse and user requirements may change through time, ontologies should evolve in or-
der to represent them accordingly. Thus, it is important that a permanent correspondence
among the users goals and the ontology requirements exists. This must be accomplished
using a method of systematic testing.

In this paper, we propose description logic ontology testing, relying on compe-
tency questions as the units to test single requirements. Following, we formalize the
components of an ontology testing approach.



Definition 4. Test case, test plan. A Test case is represented by a CQ that is represented
as already defined pair 〈Q, σ〉. A Test Plan contains a set of test cases, besides other
information like author and date. A Test Plan is represented by {〈Q, σ〉}ni=1,where n is
the number of CQs.

Definition 5. Test suite and execution result. A Test Suite is a subset of Test cases of
a Test Plan, i.e, if ts is a Test Suite, and tp is its Test Plan then ts ⊆ tp. A test suite
is important to reuse a set of test cases between test executions. A Test Execution result
is an instance of a test suite that corresponds a set of test cases selected to be tested,
the result of the tests, the author the performed the test, and date. The execution result
is represented by the tuple < {〈Q, σ〉ni=1}, {〈Q, σ

′〉ni=1}author, date >, where σ is the
expected result, and σ

′
is the result of the test for each CQ of the suite, whereas the suite

has n CQs.

Definition 6. Base Ontology and Testing Ontology. Given an ontology O, we assume that
exists (defined by the developer or by the test engineer) a small set of O that represents
a base set Ob, so that Ob ≡ ∑

a∈setofaxiomsfromO a ∪
∑

i∈setofinstancesofO i ,on the other
hand, we assumed that the complement of Ob is Ot, which is the part the needs to be
tested, such that O = Ob ∪Ot, e Ob ∩Ot = ∅.

Definition 7. Representative Testing Ontology. Given an ontology O, a representative
testing ontology Ot’ is a subset of axioms and/or a set of representative instances from
Ot, defined by the test engineer as Ot′ ≡ ∑

a∈setofaxioms a ∪
∑

i∈setofaxioms i.

These definitions rely in the initial knowledge contained in the ontology, i.e. the
base ontology, which requires no competency questions. An example of such type of
ontology can be upper-domain ones, like BTL2 [Schulz and Boeker 2013] and GFO-Bio
[Hoehndorf et al. 2008]. The extending ontology is the one required to be tested. There-
fore, not the whole content, e.g. classes and individuals, but a representative set selected
by the ontology engineer should and can be used for testing.

3. OWL TESTING TOOL

With the aid of this tool, a user can manage test plans, test suites, test cases and execute
test suites through the modules of the layer. First, it is required to create a test plan
that contains test cases. As put before, we consider here a test case as a CQ. Figure 1
displays our testing method steps. Considering the Pizza ontology, a test case could be
“From which nation is the American Pizza”, “America”, where “From which nation is the
American Pizza” is the small piece from the ontology to be tested, while “America” is the
expected result from the test. In the test execution, besides the test case there is a field
that indicates if the test case passes or not.

Figure 1. Cycle of testing ontology method



In a test execution module, the user chooses which test suite will be executed and
the ontology to be tested. The execution is performed by the CQChecker, a tool to support
the automation of verifying CQs against OWL ontologies. It provides a mechanism to
verify whether the ontology meets its corresponding CQs. CQChecker supports both
assertional and terminological queries.

CQChecker module [Bezerra et al. 2014] supports the automation of checking
CQs during Ontology Evaluation, and particularly for asserting functional requirements
expressed as CQs. The basic functioning of the tool can be summarized in the following
terms: first, it analyzes the CQ in order to classify it into one of three types, according to
the possible answer it is supposed to retrieve (over classes or instances). Then, the system
directs the CQ to the corresponding module, where it will be converted and checked. To
accomplish this, our algorithm [Bezerra et al. 2014] basically takes a CQ, splits it into
tokens and tries to find the concepts and relations from the ontology described in OWL
DL, which the CQ referred to.

Consider the CQ “What is the base of Real Italian Pizza?” about the Pizza ontol-
ogy. With it and the CQChecker, we want to check if there is any class that would provide
an individual for the image of RealItalianPizza, through the relation hasBase, which is
a PizzaBase. For this to be achieved, we first search for an object property which can
be a verb or a noun, and afterwards we look for the class, which has an image that is a
PizzaBase in the relation, in this case ThinAndCrispyBase.

4. Preliminaries Experiments

As a validation, we performed tests with three ontologies: Pizza, Travel and Wine ontolo-
gies, which are available on the Protégé website. We created a test plan with 12 test cases
and 3 test suites. The preliminaries experiments were preformed by the authors.

The CQs are related to several constructs of OWL-DL like class hierarchies, in-
dividuals, disjoint classes, intersection (A ∩ B) and union of classes (A ∪ B); equivalent
classes(A ≡ B), universal (∀), existential quantification(∃) and “has-value” restrictions;
and cardinality restrictions.

We performed a test execution in each of them. Each test suite contains the test
result. The tool deploys the CQ set, so that the user can select CQs to test. The user can
also compare the answer of the test with the expected answer, thus checking if the test
passed.

The first measured used is accuracy that is % of execution test correctly answered
by the tool. For the Pizza test we get 90% of accuracy. For the Travel test we get 80% of
accuracy, and for the Wine test we get 90% of accuracy.

We show now a demonstration of our approach with the pizza on-
tology. First we create the test cases to the test plan and two test suites
available in https://www.dropbox.com/sh/ec6dwv83anqp64s/
AAB-7VgJytljII9f5jqpgw2sa?dl=0. The test suite number 1 is showed
below:

CQ1: What is the spiciness of a chicken Topping? Correct answer: Mild

CQ2: What is the base of Real Italian Pizza? Correct answer: ThinAndCrispyBase



CQ3: What is the country of Origin of American Pizza? Correct answer: American

CQ4: Which are the pizzas disjoint of Vegetarian Pizza? Correct answer: NonVegetar-
ianPizza

Considering an user named joseph that takes this test suite to do a test execution
on 08/10/2016. The goal is to verify if the ontology follows this set of CQs.

So, Joseph load the pizza ontology, the test suite number 1, and test each CQ. The
tool returned an answer that can be equal or not the correct answer. If the the returned
answer is equal to correct answer then, Joseph will check this CQ as correct. In the end,
the tool will save the results from the table, moreover who did and date, in this case,
Joseph and the date 08/10/2016.

5. Related Work
Few engineering methodologies cite how, for what purpose, and by which means the
ontology engineer has to use CQs. However, there are few proposals of test ontologies
approaches. [Vrandečić and Gangemi 2006] discusses in their paper the need for unit
testing and describes some possible approaches that can be applied. However, it seems to
be a position paper, as no concrete approach or tools were provided.

[Blomqvist et al. 2012] provides a methodology and a tool for dealing with on-
tology testing. It resembles ours in some aspects; however, they use CQs only at the
assertional level by relying on SPARQL. Also, a method and a tool called Ontolo-
gyTest been proposed to test the functional requirement of an ontology-OWL DL by
[Garcı́a-Ramos et al. 2009]. The queries must be defined in SPARQL.

In relation to these works, ours deals at both assertional and terminological levels.
Moreover, while [Blomqvist et al. 2012] represent the test plan and test cases as an on-
tology, our approach stores them in CSV files, to provide more flexibility to the ontology
engineering.

6. Conclusions
In this paper, we proposed a new method to ontology testing based on competency ques-
tions for OWL-DL ontologies, for this, we use the concept of unit testing. Furthermore,
we proposed a tool that implements this method. Ontology testing helps to guarantee the
quality of ontologies, by detecting errors and inconsistences in the ontology. Competency
questions can be used both in requirements specification as in evaluation phase.

There are some limitations of our approach, for instance, only treats simple En-
glish sentences by identifying key words. It is necessary to build a mechanism to accept
complex sentences like “Does a bouquet or body of a specific wine change with vintage?”.

For future work, solving these deficiencies is certainly the main task. However, in
general, we believe that our approach and the tool can make the job of to test description
logic ontologies efficiently and rapidly. And, we intend in the future to make experiments
with other users outside of the project.

References
Angles, R. and Gutierrez, C. (2008). The expressive power of sparql. In Sheth, A., Staab,

S., Dean, M., Paolucci, M., Maynard, D., Finin, T., and Thirunarayan, K., editors, The



Semantic Web - ISWC 2008, volume 5318 of Lecture Notes in Computer Science, pages
114–129. Springer Berlin Heidelberg.

Bezerra, C., Santana, F., and Freitas, F. (2014). Cqchecker: A tool to check ontologies in
owl-dl using competency questions written in controlled natural language. Learning &
Nonlinear Models, 12(2):115–129.

Blomqvist, E., Seil Sepour, A., and Presutti, V. (2012). Ontology testing - methodology
and tool. In ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M.,
Nikolov, A., Aussenac-Gilles, N., and Hernandez, N., editors, Knowledge Engineering
and Knowledge Management: 18th International Conference, EKAW 2012, Galway
City, Ireland, pages 216–226, Berlin, Heidelberg. Springer Berlin Heidelberg.

Fernández-López, M., Gómez-Pérez, A., and Juristo, N. (1997). Methontology: From
ontological art towards ontological engineering. In Proceedings of the Ontological
Engineering AAAI-97 Spring Symposium Series. American Asociation for Artificial
Intelligence. Ontology Engineering Group ? OEG.

Garcı́a-Ramos, S., Otero, A., and Fernández-López, M. (2009). Ontologytest: A tool
to evaluate ontologies through tests defined by the user. In Omatu, S., Rocha, M. P.,
Bravo, J., Fernández, F., Corchado, E., Bustillo, A., and Corchado, J. M., editors, 10th
International Work-Conference on Artificial Neural Networks, IWANN 2009 Work-
shops, Salamanca, Spain, pages 91–98, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Gómez-Pérez, A. (2004). Ontology Evaluation, chapter 13, pages 251–274. Springer
Berlin Heidelberg.

Hoehndorf, R., Loebe, F., Poli, R., Herre, H., and Kelso, J. (2008). Gfo-bio: A biological
core ontology. Applied Ontology, 3(4):219–227.

Noy, N. F. and Hafner, C. D. (1997). The state of the art in ontology design: A survey
and comparative review. AI Magazine, 18:53–74.

Pressman, R. S. (2001). Software Engineering: A Practitioner’s Approach. McGraw-Hill
Higher Education, 5th edition.

Schulz, S. and Boeker, M. (2013). Biotoplite: An upper level ontology for the life sci-
encesevolution, design and application. In Informatik 2013, 43. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), Informatik angepasst an Mensch, Organisation
und Umwelt, 16.-20. September 2013, Koblenz, pages 1889–1899.

Suárez-Figueroa, M. C., Gómez-Pérez, A., and Fernández-López, M. (2012). The neon
methodology for ontology engineering. In Ontology Engineering in a Networked
World., pages 9–34.

Uschold, M. and Gruninger, M. (1996). Ontologies: principles, methods and applications.
The Knowledge Engineering Review, 11:93–136.

Vrandečić, D. and Gangemi, A. (2006). Unit tests for ontologies. In Meersman, R., Tari,
Z., and Herrero, P., editors, On the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops: OTM Confederated International Workshops and Posters, Montpel-
lier, France, pages 1012–1020, Berlin, Heidelberg. Springer Berlin Heidelberg.


