Hands-on: a five day text mining course for humanists and social scientists
inR

Gregor Wiedemann
Natural Language Processing Group
Department of Computer Science
Leipzig University, Germany
gregor.wiedemann@uni-leipzig.de
aniekler@informatik.uni-leipzig.de

Abstract

The article introduces our concept and ex-
periences of teaching text mining in R to
humanists and social scientists in a one
week course. We teach methods to sup-
port the entire analysis workflow, from data
import and conversion, basic (linguistic)
preprocessing to actual analysis such as
key-term extraction, co-occurrence statis-
tics, topic models and text classification.
The use of the statistical programming lan-
guage R for the workshop enables par-
ticipants to learn about methodical back-
grounds at different depths levels, as well
as to meet their own specific analysis re-
quirements. Among other things, this is
possible by relying on a vast supply of
community-developed extensions for (tex-
tual) data analysis, visualization, and pre-
sentation. In detail, we introduce R Mark-
down tutorial sheets as a didactic core com-
ponent of the course, and how they can
be extended to alternative teaching formats
such as a text book for self-learners.

1 Motivation and background

With the emergence of digital humanities (DH) and
computational social science (CSS), large digital
text collections have become a primary source of
data for empiric analyses. During the last decade,
humanists and social scientists often cooperated
with computer scientists in interdisciplinary pio-
neer projects to approach such new large-scale data
sets. By opening up qualitative data analyses for
“big data”,! such projects paved the way for ac-
ceptance of these new technologies in the tradi-
tional disciplines. Text mining, defined as a set

'The term “big data” is associated with a variety of mean-
ings. In social science and humanities contexts, it is often

used as reference to data collections which significantly ex-
ceed close reading capabilities of a single researcher.

57

Andreas Niekler

of statistical and computer-linguistic methods to
(semi-)automatically extract semantic structures
from very large amounts of texts, started to become
a major innovation in various disciplines from po-
litical science and economics to modern history
(Lemke and Wiedemann, 2016).

Since more and more humanist scholars became
aware of the potential of computer-assisted text
analysis, the demand for skills and resources to
take text mining into their own hands increased.
Gesis, a research infrastructure facility for the so-
cial sciences in Germany, reacted to this develop-
ment by setting up a text mining course in 2014,
especially targeted to humanists and social scien-
tists. The course was integrated into the periodical
education program of the institution. Participants
usually are post-graduate scholars, predominantly
working in the (public) science sector. The goal
was not only to provide them with a theoretical
overview of text mining foundations and potential
applications, but to educate them to conduct analy-
ses using their own data. Instantly, this raised the
question whether the course should be based on (a
variety of) publicly available standalone tools? or
if it should take the effort to introduce participants
to coding. A few years back, in DH this question
culminated in the famous debate of ‘more hack’
versus ‘less yack’. Pioneers of the field demanded
that protagonists of DH should engage more in ac-
tual analysis and educating themselves by getting
hands on data (Nowviskie, 2014).

We were guided by the premise that for many
humanities scholars willing to engage in DH it is
actually no problem to acquire theoretical knowl-
edge. Their major challenge is to get on track with
the multiverse of potentially useful technical infras-
tructures. Additionally, we expected many partici-

2Commonly used standalone tools are AntConc (Anthony,
2014) or WordSmith (Scott, 2016). Examples for web-based
infrastructures for text are Voyant tools (Sinclair and Rockwell,
2012) or the Leipzig Corpus Miner (Niekler et al., 2014).



pants with concrete research projects in mind and,
at least in some cases, also already in possession of
their datasets. To fulfill their needs and in acknowl-
edgement of ‘hack vs. yack’, we opted to focus on
the coding approach. Relying on standalone tools
would have had the disadvantage of limitations in
analysis capabilities. To our knowledge, there is
no single tool covering all major analysis methods
from lexicometric analyses to machine learning.
Even more problematic, we expected format issues
of getting data in and out of a specific analysis tool.
Especially when combining several text mining
methods in a complex workflow, struggling with
data conversion to achieve interoperability between
tools undoubtedly creates severe dissatisfaction and
even can be a deal breaker for their use at all.

In contrast, teaching basics of coding in a simple
and coherent scripting environment allows scholars
to create individual solutions tailored to their data
formats and specific analysis requirements. At the
same time, it poses the challenge to participants to
learn to think in terms of a programming language.
But especially in social science, many students
and scholars already have had contact with statisti-
cal analysis software such as SPSS, STATA or R.
Hence, writing syntax to manipulate data objects in
a procedural way is something which many of them
are familiar with. By choosing a convenient coding
environment and a selection of mature libraries for
text analysis, coding proved to be a manageable
endeavor for the vast majority of the participants
(see section 4).

Since 2014, the course was taught five times
reaching an audience up to 30 scholars per course,
among others political scientists, sociologists,
economists, historians and philologists. Over the
years, it underwent constant refactoring to adapt to
the specific requirements of the target group and
to integrate new technologies from the growing R
community. In the next section, we describe the
structure of the course as well as the technologies
we use. The third section introduces the different
text mining methods taught. In the fourth section,
we discuss our experiences of teaching the course.
The fifth section elaborates on our future plans to
extend the course for alternative teaching formats.

2 (Infra-)structure

The course is a five day, full-time workshop where
students are present in class. Two teachers, ide-
ally one with computer science background and

58

one with social science background, give lectures
and guide through tutorial sessions throughout the
entire week. The didactic concept relies on three
major pillars: 1. eight lectures on text mining and
its applications in DH projects (30 % of course
time), 2. eight tutorials on writing and discussing
text mining scripts in R (50 % of course time), 3.
presentation and discussion of user projects (20 %
of course time).

Lectures contain theoretical and methodological
foundations of text mining (1), example studies
from DH contexts (2), data acquisition (3), text
preprocessing (4), lexicometric analysis (5), unsu-
pervised machine learning (6), supervised machine
learning (7) and integration with conventional text
analysis methodologies (8) such as grounded the-
ory (Glaser and Strauss, 2005), discourse analysis
(Baker et al., 2008) or frame analysis (Waldherr et
al., 2016).

Tutorial sessions are the didactic core of the
course. In a preparatory phase to the workshop co-
ordinated through an e-Learning platform (ILIAS
Core Team, 2017), the students are requested to
setup a programming environment with the statisti-
cal programming language R and the IDE R-Studio.
Beginners in R are additionally requested to acquire
some basic coding skills in the language, in par-
ticular with respect to R-specific data types, data
selection and manipulation syntax, program blocks
and function definitions. Additionally, we provide
optional readings to the participants to introduce
them to the course topics theoretically. Tutorial ses-
sions are based upon the following technologies:

R (R Core Team, 2016): The R project is an
open source programming language primarily in-
tended for statistical analysis. Among scientists of
all disciplines interested in digital data, it gained
popularity over the last years. A huge community
of developers has created libraries (so-called pack-
ages) for specific purposes which suit almost every
imaginable analysis interest. Moreover, the R base
functions as well as extension libraries are docu-
mented excellently which makes it easy for learn-
ers. For textual data a variety of mature packages
exists, which provide functionality for reading file
formats, creating corpora, running linguistic pre-
processing methods and creating document-term
matrices (DTM).> Many of the packages are well

3DTMs encode counting of unique words (types) in doc-
uments of a collection. They are a core concept in statistical
text mining. For more information about the vector space



prepared to deal with large data sets of tenths of
thousands of documents. By using data objects
inherited from the same R base objects many pack-
ages are interoperable by default. For instance, a
DTM created by one package can be given to a
machine learning (ML) algorithm of a second pack-
age, or results of a clustering algorithm from that
ML package can be visualized by a third package.

R-Studio (RStudio Team, 2015): is a user-
friendly integrated development environment (IDE)
for R. It provides a code editor with auto-
completion, syntax highlighting, simple code
checking, spell checking, integration with the git
version control system, a viewer for the state of
variables in the current R session environment, as
well as easy access to the R console, plotting and
help windows. For beginners as well as for ad-
vanced users, these tools facilitate the development
of new R code immensely.

Swirl (Kross et al., 2017): is an R package to
learn R, in R. We do not use it during the course,
but promote it during the preparatory e-Learning
phase to those participants who had not much con-
tact with R before. With swirl anybody can pro-
vide interactive R tutorials on any topic of interest
and share them easily by a single install command.
For preparation of the course, we show how to in-
stall and run a range of beginner tutorials which
introduce to R programming. Depending on the
background of coding experience and willingness
to learn a new programming language, spending a
few hours with these tutorials usually is enough to
prepare the course.

Packages for text analysis: For the actual anal-
ysis we rely on a selection of mature packages
providing most of the functionality of text min-
ing covered in the course. For management of
documents as corpus objects and text preprocess-
ing, we use the tm package (Feinerer et al., 2008).
For data acquisition, we introduce web crawling
and scraping with rvest (Wickham, 2016) and im-
port of PDF- and Word-documents with readtext
(Benoit and Obeng, 2017). Advanced prepro-
cessing such as POS-tagging is performed with
openNLP (Hornik, 2016). For unsupervised clus-
tering the topicmodels (Griin and Hornik, 2011)
package is used. For supervised classification we
rely on LiblineaR (Helleputte, 2017).

model of semantics see (Turney and Pantel, 2010).

59

Packages for visualization: Results from analy-
sis processes are visualized in various ways using
some plot functions from the R base package, but
also additional libraries such as wordcloud (Fel-
lows, 2014), ggplot2 (Wickham, 2009) for time
series and topic model visualizations, and igraph
(Csardi and Nepusz, 2006) for co-occurrence net-
works.

knitr (Xie, 2014): is a package which provides
convenient methods for reproducible research pur-
poses. With knitr one can create HTML, PDF or
WORD documents from R analysis scripts. We
use this functionality to prepare the tutorial sheets
for the courses. See Fig. 1 for a code example
and Fig. 2 for the rendered result. The tutorial
sheets contain scripts which run an entire analy-
sis chain from reading data, preprocessing, to the
actual analysis and result visualization. For bet-
ter understanding, program scripts of the entire
workflow are divided into separate blocks. The
purpose of each block is explained in textual form.
Text explanations can be formatted easily using
“markdown”-syntax. Further, literature references
to main algorithms are given. For this, KnitR is able
to automatically render references lists from bibtex
files. The final rendered scripts contain nicely for-
matted code blocks, textual explanations, console
outputs of evaluated code blocks, and visualization
plots. In printed form, provided to the students as
hand-out, they can be read as an analog document
entirely comprehensible on its own and as a famil-
iar way to take notes. Additionally provided in
digital form (preferred as HTML file), they serve
as a starting point to re-produce the analysis in an
own R-script.

3 Contents

Participants should learn not only about single text
mining applications, but also how to combine sev-
eral applications to complex analysis workflows.
For this, we decided to use the same data source
for each single tutorial. By building up the tuto-
rials from simple to more complex applications,
students get an idea how different approaches may
be combined with each other. Students are writing
and running the scripts on their own machines.*

40f course, the institution offering the course could also
provide computer infrastructure. But, by using their own
computers participants are guaranteed to have a working setup
in their own hands. Another option would be to provide a
central installation of a scripting environment such as R-Studio
Server or Jupyter notebook on a dedicated classroom server.



Figure 1: Example code of Rmarkdown (Tutorial 2).

38

39

40~ "~ {r eval=T, echo=T}

41 table(textdatal[, "president"])
42 e

**How many speeches do we have per president?** This can easily be counted
with the command ‘table®, which can be used to create a cross table of
different values. If we apply it to a column, e.g. *president® of our data
frame, we get the counts of the unique *president® values.

Figure 2: Rendered output by knitR (Tutorial 2).
How many speeches do we have per president? This can easily be counted with the command
table , which can be used to create a cross table of different values. If we apply it to a column,
e.g. president of our data frame, we get the counts of the unique president values.

table(textdatal, "president"])

##

## Abraham Lincoln Andrew Jackson Andrew Johnson
## 4 8 4
## Barack Obama Benjamin Harrison Calvin Coolidge
## 8 - 6
##H Chester A. Arthur Donald J. Trump Dwight D. Eisenhower
##t 4 1 9
## Franklin D. Roosevelt Franklin Pierce George H.W. Bush
## 12 4 4

Since R is distributed for various operating systems
in pre-compiled binary versions, we only experi-
enced minor problems due to different platforms
so far.>

3.1 Data and resources

As data set we utilize the “State of the Union” ad-
dresses (SOTU) of the 45 presidents of the United
States published between 1790 and 2017. The
speeches® are freely available via Wikisource and
come with the president’s name and a publication
date as metadata. The long-term, diachronic na-
ture of the data is ideal for time series analysis
and observation of characteristic changes over time.
The corpus consists of 231 documents, containing
roughly 28,000 types and 1,400,000 tokens. This
is certainly not a very large corpus. But for the
practical work during the course it has several ad-

SWindows and Mac users are sometimes encountering en-
coding issues, since these operating systems do not operate
with UTF-8 as default encoding. Then, this problem pro-
vides a good opportunity to talk about encoding standards and
conversion issues in class.

6President Woodrow Wilson started the tradition to deliver
SOTU addresses as a speech. Before, they were published as
written message.

60

vantages. The size is large enough for statistical
analysis, but not too large to exclude participants
working on their own machines with potentially
low computational power. Further, certain prepro-
cessing steps or text mining applications such as
creating DTMs or topic modeling do not take too
much time during tutorials. This allows teaching of
concepts such as model selection and parameter op-
timization relying on repeated runs of an algorithm
with changing parameters.

Additionally to the SOTU addresses, we uti-
lize freely available language resources. Sentence
segmentation and POS-tagging is realized with
openNLP and publicly available pre-trained mod-
els (Morton et al., 2005). As reference corpora for
key-term extraction we use data from the Leipzig
Corpora Collection (Biemann et al., 2007).

3.2 Tutorials

During the course, we provide printed and digital
versions of tutorial sheets and an R project skele-
ton.” The tutorial sheets introduce complete analy-

"The project skeleton contains a folder structure with the
SOTU data and linguistic resources such as reference corpora



sis scripts for several text mining tasks and explain
newly introduced functionality. Users can read
through the sheets, type code lines (or copy and
paste from the digital version of the sheet). Step
by step, they are guided through different stages of
the workflow. During half time and at the end of
each tutorial session, parts of script are explained
by an instructor, performing the analysis as a live
demonstration on the projector in the class room.
During the tutorial session both instructors help
with individual problems of participants.

For fast learners or students with R experience,
each tutorial sheet provides optional exercises. For
these exercises, only output of result computations
are given, but no code how to obtain them.

Contents of the individual tutorial sessions are
covering a wide range of text mining techniques
popular throughout DH and CSS. We begin with
data management and preprocessing tasks, which
are essential basics for any computer-assisted text
analysis. Lexicometric analyses such as frequency
and co-occurrence statistics or key term extraction
are introduced as a selection of simple approaches
on the word level. In the final three tutorials we in-
troduce advanced preprocessing and text analyses
based on machine learning. These methods become
increasingly popular among social scientists, since
they allow for insights into more complex seman-
tic structures beyond isolated words (Wiedemann,
2013).

1. Data acquisition: We start with two basic
questions. Where can I get data from and how can
I get it into my analysis environment? For this,
we introduce basics of web crawling and scraping
using the rvest package. The package allows for
downloading and parsing HTML pages from the
web and extracting elements via XPATH. In two
steps the idea of crawling is built up: First, we show
how to extract single document texts and metadata
such as publication date from a single page. Sec-
ond, we demonstrate how to extract links to docu-
ment URLs from an overview page to prepare the
crawling of multiple documents. Additionally to
web crawling, this tutorial introduces a procedure
to extract text from files already stored locally on
the hard disk. For this, we provide a sample set
of document files in various formats (PDF, HTML,
DOC, and TXT) and show how to read them into
an R data object for further text processing.

and pre-trained machine learning models.

61

2. Text processing: the second tutorial intro-
duces basic text processing with the tm package.
Concepts of a corpus, metadata, tokenization and
DTMs are explained. Characteristics of distribu-
tions in language data (Zipf’s law), stop words and
low-frequent words are explored both, statistically
and visually. Further preprocessing concepts such
as lowercase reduction, stop word removal, vocab-
ulary pruning and stemming are introduced step by
step throughout the following tutorials.

3. Frequency analysis: The goal of this tuto-
rial is to introduce to the potential of word counts
for time series or dictionary analysis. The fre-
quency of selected key-terms is observed in the
speeches aggregated by decades. As a very basic
approach to sentiment analysis, positive/negative
terms from SentiWordNet (Esuli and Sebastiani,
2006) are used to count sentiment categories per
president. As an alternative visualization for fre-
quencies, we introduce heat maps to trace term
usage over time.

4. Key term extraction: The previous tutorials
showed that mere frequency is not necessarily a
good indicator of the significance of a term. This
tutorial introduces TF-IDF and the log-likelihood
ratio test (Rayson et al., 2004) in comparison to
a reference corpus as ways to identify key terms.
First, key terms are extracted from a single doc-
ument. In a second step, key terms are extracted
from all speeches of each president separately and
visualized as wordcloud. Visualizations are ex-
ported to disk in PDF-format.

5. Co-occurrence analysis: Following the no-
tion of distributional semantics, we extract statisti-
cally significant co-occurrences of words from the
president’s speeches. For this, speeches are first
separated into single sentences using the openNLP
sentence segmentation. Then, word co-occurrences
are measured by different statistics (frequency,
Dice, mutual information, log-likelihood). Effects
of different statistical measures are compared. Fi-
nally, a graph network of co-occurring terms is
drawn to visualize the semantic environment of
terms.

6. Unsupervised machine learning: Topic
models became pretty popular in various fields of
the humanities and social sciences (Schmidt, 2012).
We apply the initially introduced and most widely
used LDA topic model (Blei et al., 2003). Students



Figure 3: Topic shares in SOTU data over time (Tutorial 6).

proportion

1880~
1910~

learn how to compute a model, visualize term and
topic distributions for interpretation and tune pa-
rameters to influence the model outcome. For fur-
ther application of model results, we show how to
filter the document collection with regard to certain
topics and how to track topic proportions over time.
As an example, Fig. 3 visualizes topic proportions
in SOTU speeches throughout the centuries.

7. Supervised machine learning: Since social
scientists often do not look for content patterns in-
ductively, but actually want to observe theoretically
derived categories in a deductive setting, super-
vised machine learning can be very useful. We
introduce the use of linear SVM classification for
automatic content analysis by categorizing single
paragraphs of the speeches as related to domestic
or foreign affairs. For this, we provide a manu-
ally annotated training data set containing of 300
paragraphs related to either of the two categories.
With this, a classification model to infer categories
for all 21,300 paragraphs from all speeches is built.
The tutorial shows how to optimize parameters of
the SVM classification as well as the features used
(e.g. stop word removal, stemming, bi-grams).

8. Advanced preprocessing: The last tutorial
introduces to Part-of-Speech (POS) tagging and
Named Entity (NE) recognition as more complex

62

Topics

constitut state union territori presid
. unit state treati citizen claim
. gold silver note bond reserv
. bank public currenc money treasuri
. war men enemi great fight
. object war nation peac tribe
. state nation unit war congress
man nation corpor work great
. program year dollar million billion
depart court american canal foreign
. america work job year american
program develop feder administr energi
. terrorist america iraq terror iraqi
. countri interest present subject great
world nation free peac freedom
govern law peopl state justic
. year fiscal law report indian
. agricultur industri nation cooper congress
govern treati commiss island question

. mexico texa war mexican armi

1960 ~
1970~
1980~
1990~
2000~
2010

preprocessing methods. We use openNLP meth-
ods and pre-trained models to tag syntactical word
types (nouns, verbs, adjectives) and NEs (per-
sons, places, organizations). POS-tags appended
to tokens allow for disambiguation between ho-
mographs (e.g. state_ NOUN # state_VERB), and
filtering of word types for subsequent steps such
as key term extraction or co-occurrence analysis.
As an example, we extract NEs to create a network
visualization of associations between persons and
places occurring together in speech paragraphs.

4 Teaching experience

The last section made clear that the course is com-
mitted to introduce to a broad variety of computa-
tional text analysis approaches instead of focusing
deeply on a few single methods. Evaluations reg-
ularly done by Gesis after the course show that
participants extremely welcome the broad variety
of the course contents (see Table 1 for evaluation
results of the 2016 course). The idea is to pro-
vide beginners with a broad overview in a way that
enables them to decide which approach fits best
to their research problem. Once they can identify
what is actually possible and how that may help
them for their analysis, they have enough material
at hand to get deeper into a single method on their
own. To support this endeavor, we introduced user



project discussions into our concept. One day at
the end of the week is reserved for participants to
introduce their research ideas. Together with the
audience, operationalization strategies using appro-
priate text mining methods are discussed. By this,
students learn from illustrative examples how to
approach a text mining based analysis, even if they
do not present their own project.

More than 95 % of the participants considered
the structure of the course as good or very good.
Beyond learning achievements of each single tu-
torial, the concept of investigating a single text
resource with multiple methods allows to grasp
the potentials for combining single analysis instru-
ments to complex workflows. In such workflows
output results of one process could be utilized as
input for the next. For instance, document selection
via topic models allows for very specific thematic
selection of sub corpora. Single words in such sub
corpora can then be investigated further with the
help of co-occurrence analysis. In this regard, more
than 85 % highlighted the successful combination
of theoretical and practical knowledge transfer.

The high level of satisfaction is also achieved by
constant improvements of the tutorial sheets. Over
the years, we reduced complexity of the presented
R code to concentrate on only a few new func-
tions to introduce in each unit. This allows learners
to successfully get acquainted with the new func-
tions by reading the provided documentation on
the tutorials sheets and the integrated R documen-
tation. The tutorial sheets are designed in a way
that allows reproduction of the analysis scripts in
everyone’s own pace. Each tutorial sheet is con-
ceptualized as independent from the others. If one
is not able to finish a sheet during the designated
session, no frustration is produced for following
tutorials. Participants which finish a sheet early
can start to figure out the (slightly more complex)
optional exercises provided for each session. These
exercises are extensions of the analysis workflows
which further clarify concrete usage scenarios of
the specific text mining applications. The evalu-
ation shows that most participants not only gain
theoretical knowledge from the course, but actu-
ally feel prepared to engage in their own analysis.
While more than two thirds at least partly agree that
after finishing the course they are able to apply text
mining methods on their own, 100 % of the par-
ticipants (strongly) agree that the course materials
were useful to advance in that direction.

63

5 Adaptations and future work

Offering the course within the Gesis training pro-
gram leads to a highly skilled and motivated tar-
get audience consisting of scholars mostly at the
Ph.D. or post-doc level. For other target audiences,
course contents could be reduced or requirement
levels could be lowered. Such a variant of the
course was taught during a DH summer school
in 2015. For this, the format had to be adapted
to a half-day course. We left out the parts about
machine learning in lectures as well as tutorial ses-
sions. By focusing on lexicometric measures such
as frequency and co-occurrence analysis, we were
able to easily fit to the time constraints.

Other types of adaptations are realizable in an
easy manner, too. Especially in university contexts
using R in combination with rendering outputs and
textual descriptions via knitr, provides interesting
new possibilities for teaching. To modify the work-
shop to a semester course, alternating sessions of
lectures and tutorials can be held in weekly manner.
We further suggest excluding the optional exercises
from the work sheets. More advanced students who
finish the tutorial sessions early can then be moti-
vated to help other students who need more time
or have problems getting familiar with the code.
The concept of optional exercises from our course
material (describing tasks and providing result out-
puts, but not the code how to produce them) can be
used at the end of the semester for in-class exams
to assess student’s ability to produce certain mea-
surements or visualizations from given input data.
Alternatively, they can be used as a basis for home-
work assignments where students are requested to
write a paper including text mining analysis, result
interpretations and theoretical embedding of their
work. By requesting students to hand in papers
as HTML files rendered from Rmarkdown scripts,
teachers are able to fully reproduce the student’s
work. On a voluntary basis, student papers could
be published to provide alternative solutions to the
class.

As a follow-up to the 2017 course, we plan to
publish the tutorial sheets under an open source
license on Github.® We further plan to publish
the course material as an open source textbook
for self-learners. Since the code and its textual
explanation already exists in Rmarkdown syntax,
rendering the course as a digital and/or printed book
project comes with (almost) no extra cost for layout.

8https://tm4ss.github.io



Table 1: Course evaluation 2016 (N =21)

Survey question / scale 1 2 3 4 5
The course is well structured.* - 47 - 38.1 57.1
The knowledge transfer between theory and practice works well.* - 47 95 286 57.1
I feel enabled to approach my own text mining analysis.* 47 19.1 333 238 19.1
The course materials were useful.* - - - 238 76.2
I have learned a lot in the course.* - - 47 476 47.6
How do you assess the quantity of the course contents?** - - 38.1 47.6 14.3
How do you assess the amount of time for discussion?** - 95 905 - -
How do you assess the amount of time for practical work?** 4.7 28.6 66.7 - -

* scale: strongly disagree (1), rather disagree (2), neither/nor (3), rather agree (4), strongly agree (5)
** gcale: way too low (1), rather too low (2), just right (3), rather too much (4), way too much (5)

For the text book version, an extended theoretical
introduction to the course is planned.

6 Conclusions

In this paper, we share our experience of four years
teaching a text mining course for social scientists
and humanities scholars. We highlight the use of
the R programming language as a flexible and easy
to learn environment for many complex text anal-
ysis tasks. We further recommend using R exten-
sions such as knitr to create tutorial sheets for gain-
ing practical experience in hands-on sessions which
make up to 50 % of the course time. The course ma-
terial will be made publicly available and can easily
be adapted for alternative teaching formats such as
semester courses or as text book for self-learners.

References

Laurence Anthony. 2014. Antconc.

Paul Baker, Costas Gabrielatos, Majid KhosraviNik,
Michael Krzyzanowski, Tony McEnery, and Ruth
Wodak. 2008. A useful methodological synergy?
combining critical discourse analysis and corpus lin-
guistics to examine discourses of refugees and asy-
lum seekers in the uk press. Discourse & Society,
19(3):273-306.

Kenneth Benoit and Adam Obeng. 2017. readtext: Im-
port and handling for plain and formatted text files.

Chris Biemann, Gerhard Heyer, Uwe Quasthoff, and
Matthias Richter. 2007. The leipzig corpora collec-
tion: Monolingual corpora of standard size. In Pro-
ceedings of Corpus Linguistic 2007, Birmingham.

David M. Blei, Andrew Y. Ng, and Michael 1. Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993—-1022.

64

Gabor Csardi and Tamas Nepusz. 2006. The igraph
software package for complex network research. In-
terJournal, Complex Systems:1695.

Andrea Esuli and Fabrizio Sebastiani. 2006. Senti-
wordnet: A publicly available lexical resource for
opinion mining. In Proceedings of LREC’06, pages
417-422.

Ingo Feinerer, Kurt Hornik, and David Meyer. 2008.
Text mining infrastructure in r. Journal of Statistical
Software, 25(5):1-54.

Tan Fellows. 2014. wordcloud: Word clouds.

Barney G. Glaser and Anselm L. Strauss.  2005.
Grounded theory: Strategien qualitativer Forschung.
Huber, Bern, 2 edition.

Bettina Griin and Kurt Hornik. 2011. Topicmodels: an
r package for fitting topic models. Journal of Statis-
tical Software, 40(13):1-30.

Thibault Helleputte. 2017. Liblinear: Linear predic-
tive models based on the liblinear c/c++ library.

Kurt Hornik. 2016. opennlp: Apache opennlp tools
interface.

ILIAS Core Team.
learning.

2017. Tlias: Open source e-

Sean Kross, Nick Carchedi, Bill Bauer, and Gina Gr-
dina. 2017. swirl: Learn r, in . R package version
24.3.

Matthias Lemke and Gregor Wiedemann, -editors.
2016. Text Mining in den Sozialwissenschaften:
Grundlagen und Anwendungen zwischen qualita-
tiver und quantitativer Diskursanalyse. Springer
VS, Wiesbaden.

Thomas Morton, Joern Kottmann, Jason Baldridge, and
Gann Bierner. 2005. Opennlp: A java-based nlp
toolkit.



Andreas Niekler, Gregor Wiedemann, and Gerhard
Heyer. 2014. Leipzig corpus miner: A text mining
infrastructure for qualitative data analysis. In Termi-
nology and Knowledge Engineering (TKE ’14).

Bethany Nowviskie. 2014. On the origin of “hack”
and “yack”. Journal of Digital Humanities, 3(2).

R Core Team. 2016. R: A language and environment
for statistical computing.

Paul Rayson, Damon Berridge, and Brian Francis.
2004. Extending the cochran rule for the compari-
son of word frequencies between corpora. In Pro-
ceedings of JADT 04, pages 926-936.

RStudio Team. 2015. Rstudio: Integrated develop-
ment environment for r.

Benjamin M. Schmidt. 2012. Words alone: disman-
tling topic models in the humanities. Journal of Dig-
ital Humanities, 2(1).

Mike Scott. 2016. Wordsmith tools.

Stéfan Sinclair and Geoffrey Rockwell. 2012. Voyant
tools (web application).

Peter D. Turney and Patrick Pantel. 2010. From
frequency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research,
37:141-188.

Annie Waldherr, Gerhard Heyer, Patrick Jahnichen,
Gregor Wiedemann, and Andreas Niekler. 2016.
Mining big data with computational methods. In
Gerhard Vowe and Philipp Henn, editors, Political
communication in the online world: Theoretical
approaches and research designs, pages 201-217.
Routledge, New York.

Hadley Wickham. 2009. ggplot2: Elegant Graphics
for Data Analysis. Springer-Verlag New York.

Hadley Wickham. 2016. rvest: Easily harvest (scrape)
web pages.

Gregor Wiedemann. 2013. Opening up to big data:
computer-assisted analysis of textual data in social
sciences. Historical Social Research, 38(4):332—
357.

Yihui Xie. 2014. knitr: A comprehensive tool for
reproducible research in r. In Victoria Stodden,
Friedrich Leisch, and Roger D. Peng, editors, Imple-
menting reproducible research. Taylor and Francis,
Boca Raton.

65





