
A Model-Driven Framework for Domain Specific

Process Design and Governance

Adrian Mos1, Mario Cortes-Cornax1, José Miguel Pérez-Álvarez1,2,
Maŕıa Teresa Gómez-López2

1 Xerox Research Center, 6 Chemin de Maupertuis, Meylan, France
{adrian.mos, mario.cortes, jose.perez,}@xrce.xerox.com

2 Universidad de Sevilla, C/ S. Fernando, 4, C.P. 41004-Sevilla, Spain
{josemi, maytegomez}@us.es

Abstract. Current BPM approaches and standards have not su�ciently
reduced the Business-IT gap. Indeed, today’s solutions are mostly domain-
independent and platform-dependent, which limits the ability of business
matter experts to express business intent and enact process change. In
contrast, the tool presented in this paper supports an approach that
focuses on BPM and SOA environments in a domain-dependent and
platform-independent way. We propose to add a domain specific-layer
on top of current solutions so that business stakeholders can design and
understand their processes in a more intuitive way. This significantly
improves the agility and governance of processes. The demo shows the
appropriateness and the feasibility of the approach.

Keywords: Model-driven engineering, Process Design, DSL, Governance

1 Introduction

Today, the Business Process Model and Notation [6] (BPMN 2.0) has become
the de-facto standard for business process modelling. With the aim at filling
the Business-IT gap, significant e↵ort has been put into bringing BPMN closer
to Service Oriented Architectures (SOA). A BPM Suite (BPMS) manages the
process execution directing SOA calls to the appropriate services and generally
provides some monitoring infrastructure. While these components help alleviate
agility problems, we observed that most of the existing solutions are domain-
independent and platform-dependent, which significantly limits the involvement
of business matter experts, especially when targeting execution. Business ana-
lysts require dedicated means (i.e., specific type of task with implicit domain
knowledge) to e↵ectively model processes in their business domains such as lo-
gistics, healthcare, transportation, etc. [7]. Domain Specific Languages (DSLs)
are an e↵ective means to deal with application domains providing improvements
in expressiveness and ease of use. More specifically, it has been shown that
domain-specific process modelling languages (DSPML) [1] can have significant
advantages over BPMN. However, domain specific language development is hard,



2

requiring both domain knowledge and language development expertise [2]. In ad-
dition, such languages typically do not benefit from the kind of advanced tooling
support and platform integration that BPMN has. In previous work [5] we de-
scribe the problems that tool providers face and propose a solution to generate
appropriate graphical studios for DSPMLs. Overall, regardless of the specific
approach, a framework that helps building the technical infrastructure to use

DSPMLs is critical.
The presented tool combines technical solutions [3,4] in a domain-dependent

and platform-independent way. This paper focuses on the added novelty of the
support and automatic artefact generation for data and forms in the domain-
specific layer. The addition of these new features enables the actual BPMN
generation and deployment (BonitaBPM3 in our case) through a one-click action.
As mentioned, the framework relies on a model-driven approach, which facilitates
the development of studios in order to take advantage of the DSPMLs.

2 Tool Significance for BPM

The environment presented here is essentially an additional layer over the typical
BPM stack. The idea is to design using a DSPML, which will be converted to an
enriched BPMN that executes in a BPMS. The approach has two main steps: 1)
the Domain Specification, where the main concepts of a domain are well defined,
and 2) the Process Definition, where a non technical analyst will compose the
predefined building blocks. This separation has the potential to bring better

governance and re-usability, faster process evolution, multi-target deployment,
and non-ambiguous monitoring. Figure 1 gives an overview of the framework.
Each number corresponds to one key component described below.

Fig. 1. Framework Overview

The Domain Specification relies on the definition of the domain concepts
(Data, Services, Activity Types and Forms), which correspond to the organi-
zational know-how [3]. A Strategy (or Domain) Expert assisted by technical
sta↵ will specify, incrementally, all the common information that any domain

3 http://www.bonitasoft.com/



3

process should have access to. To support this, a generic domain meta-model
(DomainMM) is used, which can be extended for specific organization needs.
The individual domain descriptions (one per domain) correspond to instances of
the DomainMM.

The Domain-Specific Process Studio Specification corresponds to the
definition of several configurable templates that manage the studio functionali-
ties. At this stage, a Technical Expert supported by the Strategy Expert defines
the functionalities that the studios should have (i.e., transformation capabilities,
monitoring capabilities, etc). The framework provides the possibility to enable
them easily. Here is where the graphical constructs for the domain concepts are
defined. We propose some default ones, but they can easily be changed.

The Generated Domain-Specific Process Studio brings a design and
governance layer on top of existing BPM technology infrastructure for a busi-
ness domain. The process design is supported by the Mangrove Meta-model4

that has been extended to support domain connections. Business Analysts cre-
ate their domain specific processes (DSPs) which are eventually transformed
to a common BPMN denominator, which can leverage the BPMS investments
while preserving the specificity and power of DSPMLs. Our hypothesis is that
a reduced amount of symbols (semantically enriched) is enough to define high-
level domain-specific process models. These models could potentially be refined
in an analysis level [8], using BPMN 2.0. However if all the details are consid-
ered correct and no additions are needed, the generated BPMN models can be
automatically deployed in one-click. The framework provides the connection to
a (generated) platform-independent layer for managing persistence and forms. If
at any time, new elements are identified by the business analysts while designing
their process models, they could request an update of the domain which in turn
will eventually trigger an injection of the new element in the studio palette. This
ensures that needs that are identified in the context of a process could benefit
the entire domain if deemed important across the domain scope.

3 Prototype Implementation

This prototype (see video5) relies on a the set of mature and open-source Eclipse
technologies. We believe they are highly relevant for any BPMS, many of which
are actually built using Eclipse. Figure 2 shows the architecture of the solution.

The domain-specific studio relies on a plugin-based infrastructure based on
Eclipse Rich Client Platform (RCP)6 and Equinox (OSGI implementation)7.
The Eclipse Modelling Framework (EMF)8 is used for the definition of the meta-
models such as the Domain MM, the Mangrove MM (i.e. the process MM), the
abstract binding repository (ABR MM) and the BPMN MM. The Mangrove

4 https://www.eclipse.org/mangrove/
5 http://xerox.bz/2oc6X5W
6 https://eclipse.org/ide/
7 http://www.eclipse.org/equinox/
8 http://www.eclipse.org/modeling/emf/



4

Fig. 2. Technology-Oriented Architecture of the Implemented Prototype

MM9 is used as the pivot meta-model that enables the link between the Do-
mainMM and the BPMN 2.0 MM for generation purposes. The ABR defines
the bindings between the domain services and the actual technical services, in-
dicating the method, the URI, the port, etc. On top of EMF, the Eclipse Xtext
framework10 generates a fully featured textual editor for domain descriptions
relying on the DomainMM. The EMF ecore meta-models are the inputs for the
Sirius domain-specific editor11, which allows an easy creation of configurable
graphical modeling studios. The BPMN 2.0 transformations are managed by a
generator coded in Java.

The data-centric aspects as well as the form generation are managed using
the Spring framework12. Concerning data, the framework generates Data Ac-
cess Objects (DAO) in order to reach an H2 Database through a REST API.
BonitaBPM is used as target platform. Using the public APIs, the technical in-
formation (e.g., the called service) is injected13 in the generated activity tasks
and gateways. In a similar way, forms are generated relying on the domain data
objects and then deployed in a Model View Contoller (MVC) infrastructure eas-
ily accessible from any process engine. The generators use Xtend14 to create the
necessary files and place them into a base project (containing a static skeleton

9 https://www.eclipse.org/mangrove/
10 https://eclipse.org/Xtext/
11 https://eclipse.org/sirius/
12 https://projects.spring.io/spring-framework/
13 https://github.com/jozemi/bonita.explore
14 http://www.eclipse.org/xtend/



5

of the project). Once the forms are deployed, the framework permits the regen-
eration and update of the files at runtime, with no need to modify the process
model nor redeploy the process.

4 Conclusion and Future Development

The presented framework provides the business stakeholders with means to de-
sign and govern their processes from a high-level, with impact to the entire collec-
tion of business processes in a domain, if required. A domain concept repository
enables easier re-usability of data, services, activity types and forms indepen-
dently from the target platform. Relying on the generative approach, changes are
spread through the di↵erent layers. The framework is supported by tools that
automate generation and synchronization. We used a mature set of open-source
tools to implement a prototype and used a running example that illustrates the
interest and applicability of our approach. Our next explorations include the
integration of complex decisions at the domain level as well as state tracking
in order to pro-actively help the process designers in the design and analysis of
their processes.

Acknowledgment

The authors would like to acknowledge the support of the European Regional
Development Fund (ERDF/FEDER) and the Spanish Ministry of Science and
Technology (TIN2015-63502-C3-2-R) that are partially funding the work of the
IDEA research group in U. of Seville.

References

1. Jablonski, S., Volz, B., Dornstauder, S.: Evolution of business process models and
languages. In: 2nd International Conference on Business Process and Services Com-
puting (BPSC). pp. 46–59. Citeseer (2009)

2. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM computing surveys (CSUR) 37(4), 316–344 (2005)

3. Mos, A.: Domain specific monitoring of business processes using concept probes. In:
Service-Oriented Computing (ICSOC Workshops). pp. 213–224. Springer (2015)

4. Mos, A., Cortes-Cornax, M.: Business matter experts do matter: A model-driven
approach for domain specific process design and monitoring. In: Business Process
Management (BPM –Forum). pp. 210–226. Springer (2016)

5. Mos, A., Cortes-Cornax, M.: Generating domain-specific process studios. In: Enter-
prise Distributed Object Computing Conference (EDOC). pp. 1–10. IEEE (2016)

6. OMG: Business process model and notation (BPMN) version 2.0 (2011). Available
on: http://www. omg. org/spec/BPMN/2.0 (2011)

7. Pinggera, J., Zugal, S., Weber, B., Fahland, D., Weidlich, M., Mendling, J., Reijers,
H.A.: How the structuring of domain knowledge helps casual process modelers. In:
Conceptual Modeling (ER), 2010, pp. 445–451. Springer (2010)

8. Silver, B.: BPMN Method and Style: A levels-based methodology for BPM process
modeling and improvement using BPMN 2.0. Cody-Cassidy Press, US (2009)


