
A Modeling Tool for
PHILharmonicFlows Objects

and Lifecycle Processes

Sebastian Steinau, Kevin Andrews, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{firstname.lastname}@uni-ulm.de

Abstract. As opposed to contemporary activity-centric, process-aware
information systems (PAIS), for which a multitude of concepts and im-
plementations exist, there is only a very limited number of PAIS imple-
menting data-centric, artifact-centric or object-aware approaches. This
demo paper presents the implementation of a modeling environment for
the object-aware approach to business process management. Our imple-
mentation is based on the PHILharmonicFlows framework, which allows
for the definition and execution of business object models. The current
implementation of the modeling environment supports the modeling of
objects, their attributes as well as relations to other objects. Further-
more, it allows modeling object lifecycle processes, which define the run-
time behavior of the various objects. Finally, the modeling environment
features a simple app design, reducing complexity for process modelers
while still supporting all features of PHILharmonicFlows.

1 Introduction

Increasing flexibility in process management and execution has been broadly dis-
cussed in literature in recent years [5]. While most research has focused on the
flexibility of traditional activity-centric process execution, a number of entirely
new process management paradigms have emerged [2,3,4]. Their focus lies more
on the data or cases involved in a process and less on the strict ordering of ac-
tivities in a single process model. One of these paradigms is object-aware process
management, which takes the business objects present in real-world processes
as the basis for composing an executable process model, which, itself, comprises
models for each object, as well as its lifecycle during process execution and
its data. By creating processes revolving around largely independent objects,
object-aware processes, in many cases, allow for greater flexibility compared to
activity-centric processes [4].

As the concept of object-aware process management is sophisticated and
requires a shift in perspective and thinking, when creating the modeling envi-
ronment for object-aware processes, our main goal was to reduce complexity for
users to a minimum. We consider this a prerequisite for future studies of the
paradigm, as participants should be able to collaboratively model object-aware



processes without having vast amounts of prior knowledge. We achieve this goal
by using a simplistic app design as well as real-time verification. Real-time veri-
fication helps reduce the difficulty of modeling as it can guide users, preventing
them from modeling defective processes. Furthermore, the modeling tool should
be extensible, to support future conceptual additions, such as schema evolution
and process variants.

The tool we present in this paper1 uses the PHILharmonicFlows implemen-
tation of object-aware process management at its core, thereby allowing for the
graphical creation of process models that run on the existing PHILharmon-
icFlows runtime environment [1]. As we are currently in the process of com-
pletely restructuring the architecture of the PHILharmonicFlows engine to cre-
ate a highly scalable distributed process execution architecture, an additional
challenge was to ensure that the modeling environment as well as its collabo-
rative modeling and real-time verification capabilities are compatible with both
the current client-server architecture, and the new distributed architecture.

2 Modeling Objects and Relations

The object-aware approach to process modeling utilized by the modeling tool
can be illustrated using a comprehensive scenario (cf. Example 1).

Example 1. Simplified recruitment process
In the context of recruitment, applicants may apply for job offers. The overall
process goal is to determine the applicant best suited for the job. To evaluate
an application, reviews need to be performed. Depending on the concerned de-
partment, the number of reviews may differ. Department employees write the
reviews and either reject the applicants or suggest inviting them for an inter-
view. In the meantime, more applications may have arrived, for which further
reviews are required. This allows for the evaluation of different applications in
parallel. If the majority of reviews are in favor of an application, the applicant
is invited for an interview, in which he may be hired or rejected. Finally, when
one applicant is hired, all other applicants shall be rejected.

At design time, PHILharmonicFlows uses various types, which serve as tem-
plates to create instances at runtime. As a first step to modeling, it is necessary
to identify the object types involved. These are directly derived from the busi-
ness objects and persons involved in the real-world process. In Example 1, object
types include Job Offer, Application, Review, and Interview. Employee is a user
type, a special case of an object type representing a person. Each object type has
a set of attribute types, describing the data of the corresponding objects. The
attribute types are primitives, as they are required for the generation of indi-
vidual form fields at runtime. An example attribute type could be Comment, a
String defined in the Review object type. Finally, each object type may be con-
nected other object types with relation types, allowing their logical association
at runtime. Together, object types and relation types form the data model.
1 A screencast is available at https://vimeo.com/222018637



Figure 1 illustrates the creation of the data model related to the example.
The data model comprises object types Employee, Job Offer, Application, Review
and Interview and is shown in main area 1�. On the left 2�, all modeling elements
available in the given context are shown. The data model is expanded by dragging
a modeling element and dropping it onto the main area. The edges representing
the relation types can be created by connecting object types with a simple mouse
gesture. The layouting of the data model graph is done automatically, i.e., users
need not concern themselves with layouting.

Fig. 1. Object and relation type modeling view

In the right-hand sidebar 3�, object types and relation types may be config-
ured after selecting them in the main area. Figure 1 shows the attributes of the
Review object type in the attributes tab. The existing attributes can be altered
or deleted and new attributes may be added.

3 Modeling Lifecycle Processes

Each object and user type is required to have a lifecycle process (cf. Fig. 2).
As lifecycle processes in object-aware process management are data-driven, they
describe which attributes need to have assigned values before an object may
change its state. States 4�, in turn, become necessary to coordinate the processing
of an object with the processing of others based on their current states. Within
states, steps 5� are used to require an attribute value at runtime. Each step is
assigned to an attribute type and connected to other steps by transitions 6�,
thereby determining the order in which values for the various attributes are
required at runtime, i.e., the logic of the corresponding electronic form.



Fig. 2. Lifecycle modeling view

The lifecycle modeling view (cf. Fig. 2) is arranged analogously to the object
and relation modeling view (cf. Fig. 1), thereby ensuring a familiar user interface
for all parts of the modeling tool. The right-hand sidebar is not displayed, but
opens upon selecting an element in the main area, allowing for its configuration.

Overall, the modeling tool aims at providing support for the complex model-
ing concept of PHILharmonicFlows in as simple a fashion as possible. All mod-
eling actions are immediately synchronized to the PHILharmonicFlows server
for immediate verification and to allow for collaborative modeling. Immediate
verification and feedback helps users to not model incorrect processes.

4 Model Verification

Model verification is necessary to prevent incorrect process models from being
deployed to the PHILharmonicFlows runtime environment. The verification is di-
vided into different verification components, each checking one aspect of a model,
e.g., graph acyclicity or steps without outgoing transitions. The separation of
verification into individual components becomes necessary, as verification of the
entire data model after every modeling action is not feasible. Immediate verifica-
tion, therefore, only uses a subset of all available verification components. These
verification components provide meaningful error messages, which are necessary
for guiding the user through the complexities of PHILharmonicFlows process
modeling. Figure 3 shows an error message for multiple start steps in a state 7�.
Furthermore, upon selecting the error message, the involved process elements in
the main area are marked to help the user pinpoint the error location 8�. Prior
to deployment, a full verification with all components is required.



Fig. 3. Error message and colored modeling elements

5 Summary and Outlook

The modeling tool presented in this paper is a first step in our ongoing effort
to make modeling object-aware processes feasible without needing an in-depth
knowledge of the entire object-aware concept. Furthermore, the tool offers a
simple user interface with real-time model verification feedback while modeling.
Without such tooling support, modeling an object-aware process can be compli-
cated, as changes may impact entirely other parts of the data model. Finally, the
modeling environment is extensible with further capabilities, as necessary for our
future research into schema evolution and variability of object-aware processes.

References

1. Andrews, K., Steinau, S., Reichert, M.: A Runtime Environment for Object-aware
Processes. In: BPM Demo Session (BPMD). CEUR Workshop Proceedings (2015)

2. Haddar, N., Tmar, M., Gargouri, F.: Opus Framework: A Proof-of-Concept
Implementation. In: IEEE/ACIS 14th Int’l Conf. Computer and Information
Science (ICIS). pp. 639–641 (2015)

3. Heath, T.F., Boaz, D., Gupta, M., Vaculín, R., Sun, Y., Hull, R., Limonad, L.:
Barcelona: A Design and Runtime Environment for Declarative Artifact-centric
BPM. In: 11th Int’l Conf. on Service-Oriented Comp. (ICSOC). pp. 705–709 (2013)

4. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for
Object-aware Process Management. Journal of Software Maintenance and
Evolution: Research and Practice 23(4), 205–244 (2011)

5. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information
Systems: Challenges, Methods, Technologies (2012)


