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ABSTRACT

Recommender systems have to serve in online environments which
can be highly non-stationary.!. Traditional recommender algo-
rithms may periodically rebuild their models, but they cannot adjust
to quick changes in trends caused by timely information. In our
experiments, we observe that even a simple, but online trained
recommender model can perform significantly better than its batch
version. We investigate online learning based recommender algo-
rithms that can efficiently handle non-stationary data sets. We
evaluate our models over seven publicly available data sets. Our
experiments are available as an open source project?.

1 INTRODUCTION

The research of recommender systems became popular since the
Netflix prize [4]. As an effect of the competition, batch rating pre-
diction is considered the standard recommender evaluation task,
with one part of the data used for model training, and the other
for evaluation. In contrast to the Netflix Prize task, recommender
systems are typically not required to predict ratings, rather they
are required to present a ranked top list of relevant items for the
user. Also, most users give no explicit ratings and we have to infer
their preferences from implicit feedback [17]. Most importantly,
users request one or a few items at a time, and may get exposed
to new information that can change their needs and taste before
they return to the service the next time. In a real application, top
item recommendation by online learning is therefore more relevant
than batch rating prediction usually. There is vast literature on the
batch performance of collaborative filtering algorithms, while the
more realistic sequential or online evaluation received much less
attention. Information on recommendation performance is scarce
when collaborative filtering is evaluated online, sequentially.

In this work we intend to consider top recommendation in highly
non-stationary environments similarly to the conceptually sim-
pler classification task [22]. Our goal is to promptly update rec-
ommender models after user interactions using online learning
methods.

There are some indications [19] that the performance gains in
batch experiments do not necessary carry over to online learn-
ing environments. One result of the Netflix prize is that matrix
factorization [18] techniques provide strong baseline results on
non-temporal data sets. In our work we compare the online and
batch versions of the same matrix factorization algorithm. Due
to the highly non-stationary properties of the data set, we apply
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incremental stochastic gradient descent (SGD) based matrix factor-
ization. We show that the online version strongly outperforms the
batch version on non-stationary data sets.

In [23], the online DCG measure is defined as a side result to
track the performance of recommender algorithms over time. In
our present experiments, we heavily rely on online DCG, introduce
another measure, the online MRR, and show their importance for
evaluating streaming recommenders. Summarized, our main results
are the following:

e We provide some measures suited to non-stationary environ-
ments that are predictive of which algorithm would work
well on a particular data set.

e We show that simpler algorithms that can be updated online—
and therefore use the most recent data as well—often perform
better than more complex algorithms that can only be up-
dated periodically. This is in contrast to the case when the
testing is batch or the data is stationary.

e We also show that even though initialization by large batch
models may be required for optimal performance, online ma-
trix factorization combined with a simple sampling strategy
can perform comparably to more computationally intensive
models.

1.1 Related Results

The difficulty of evaluating streaming recommenders was first
mentioned in [19], although they evaluated models by offline train-
ing and testing split. Ideas for online evaluation metrics appeared
first in [23, 24, 33]. In [33], incremental algorithms are evaluated
using recall, which is a batch quality measure. In the other two
results, online evaluation appears as a side result of investigating
social influence. As the starting point of our results, the last paper
notices that some online methods perform better than their batch
counterpart.

Since our goal is to recommend different items at different times,
our evaluation must be based on the quality of the top list produced
by the recommender. This so-called top-k recommender task is
known to be hard [7]. A recent result on evaluating top-k recom-
menders is found in [6].

In our experiments, we apply widely used methods of matrix
factorization. The highly successful gradient descent matrix fac-
torization recommender is described among others by [11, 30].
Note that even though typically performing marginally better than
gradient descent, we do not investigate alternating least squares
[18, 27], since it is an inherently batch algorithm that cannot be
easily adapted to the online setting.

We also evaluate basic item-to-item recommenders. Recent
works [26] show that most industry recommendation tasks are
item-to-item, since the only information available is the present
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time

Figure 1: Temporal evaluation of the online ranking predic-
tion problem.

user session. The first item-to-item recommender methods [20, 29]
were using similarity information to directly find nearest neighbor
[8] transactions. Nearest neighbor methods were criticized for two
reasons. First, similarity metrics typically have no mathematical
justification. Second, the confidence of the similarity values is of-
ten not involved when finding the nearest neighbor, which leads
to overfitting in sparse cases. A new method to give session rec-
ommendations was described in [28] by Rendle et al. that models
the users by factorizing personal Markov chains. Koenigstein and
Koren [17] improve the basic transition model by computing la-
tent item factors to represent all items in a low dimensional space.
While certainly giving performance gains in batch testing, these
algorithms are overly costly to be updated online.

Finally we mention that item-to-item recommendation was also
considered as a special context aware recommendation problem. In
[14] sequentiality as context is handled using pairwise associations
as features in an alternating least squares model by Hidasi et al.
They mention that they face the sparsity problem in setting mini-
mum support, confidence and lift of the associations and they use
the category of last purchased item as fallback. In a follow-up result
[15], they use the same context-aware ALS algorithm, however they
only consider seasonality as context in that paper. Our result can
be used independently of the ALS based methods and can easily be
combined with user personalization. Most recently, context infor-
mation learning was also performed by recurrent neural networks
[13].

2 TEMPORAL EVALUATION

In the implicit top-k recommendation task [6], the goal is not to
rate individual items, but to recommend the best candidates. In a
time sensitive or online recommender that potentially re-trains the
model after each new item, we have to generate a new top list for
every recommendation request. The online top-k task is therefore
different from the standard recommender evaluation settings, since
there is always only a single relevant item. In an online setting, as
seen in Figure 1, we

(1) request a top-k recommendation for the active user,
(2) evaluate against the single relevant item,
(3) train the model on the revealed user-item pair.

Next we introduce natural evaluation techniques for the online
ranking prediction problem, extending the methods of [23]. In our
setting, model training and evaluation happen simultaneously, iter-
ating over the data set only once, in chronological order. Whenever
we see a new user-item pair, we assume that the user becomes
active and requests a recommendation. The recommendation is
online, hence it may depend on all events before the exact time of

the interaction. If a user u views item i at time ¢, our models predict
a score F(u, i’, t) for each item i’ that appears in the data so far, and
recommend the k items with the largest values from those that u
has not seen before.

One possible measure for the quality of a recommended top list
could be precision and recall [35, 36]. Note that we evaluate against
a single item. Both the number of relevant (1) and the number of
retrieved (K) items are fixed. Precision is 1/K if we retrieve the
single item viewed and 0 otherwise. Recall is 0 if we do not retrieve
the single relevant item and 1 otherwise. Hence up to a constant
factor K, precision and recall are identical and are binary indicators
of whether the item viewed is on the recommended list.

Recently, measures other than precision and recall became pre-
ferred for measuring the quality of top-k recommendation [2]. The
most common measure is NDCG, the normalized version of the
discounted cumulative gain (DCG). Since the decrease of DCG as
the function of the rank is smoother than the decrease of precision
and recall, it is more advantageous, since we have a large number of
items of potential interest to each user. Our choice is in accordance
with the observations in [2] as well.

DCG computed individually for each event and averaged in time
is an appropriate measure for real-time recommender evaluation.
If i is the next consumed item by the user, the online DCG@XK is
defined as the following function of the rank of i returned by the
recommender system:

0 if rank(i) > K;

DCG@K(i) = o)

W otherwise.
The overall evaluation of a model is the average of the DCG@K
values over all events of the evaluation period. Note that in our
unusual temporal setting of DCG evaluation, there is a single rele-
vant item and hence no normalization is needed as opposed to the
original NDCG measure.

Another possible ranking evaluation measure with a natural
online extension is Mean Reciprocal Rank (MRR), the average of
1/rank of the first relevant item [34]. In online evaluation, there
is a single relevant item i, therefore online MRR @K is equal to
1/rank(i) if rank(i) < K and is 0 otherwise. Hence the difference
between online DCG and MRR the rank discount function, which
is reciprocal for MRR and inverse logarithmic for DCG.

3 ALGORITHMS

In this section, we describe the algorithms used in our experiments,
both in batch and online setting. The simplest algorithms, for ex-
ample the count based ones, are online by nature. Most of the
algorithms discussed have more or less natural online counterparts.
Our goal is to include a variety of count, nearest neighbor, session
and matrix factorization based methods to see how these algorithms
can adapt to non-stationary environments. Many of the algorithms
will have parameters to handle decay in time, i.e. forget older events
and emphasize new ones.

Online recommenders seem more restricted, since they may
not iterate over the data several times, hence we would expect
inferior quality. Online methods however have the advantage of
putting much more emphasis on recent events. In an online setting
[1], the model needs to be retrained after each new event and



hence reiterations over the earlier parts of the data is ruled out. We
may implement an online recommender algorithm by allowing a
single iteration over the training data only, with this single iteration
processing the events in the order of time.

3.1 Popularity (POP)

In this non-personalized method, we recommend the most popular
items. The method may be both batch and online depending on the
granularity of the item frequency measurement update. For each
data set, we selected the best time frame, which had a wide range
of variety between 10 minutes and a year.

3.2 Time sensitive nearest neighbor (t-NN)

One of the earliest and most popular collaborative filtering algo-
rithms in practice is the item-based nearest neighbor [29]. For
these algorithms similarity scores are computed between item pairs
based on the co-occurrence of the pairs in the preference of users.
Non-stationarity of the data can be accounted for e.g. with the
introduction of a time-decay [9].

Describing the algorithm more formally, let us denote by U; the
set of users that visited item i, by I, the set of items visited by user
u, and by s;; the index of item i in the sequence of interactions of
user u. The frequency based time-weighted similarity function is
defined by

sim(i.i) = Zueu;nu; f(Sui = Suj)
Uj|

; @

where f(r) = y7 is the time decaying function. For non-stationary
data we sum only over users that visit item j before item i, setting
f(r) = 0if < 0. For stationary data the absolute value of 7 is used.
The score assigned to item i for user u is

score(u, i) = Z f (Ilul —suj) sim(j, i). 3)

jelu

The model is represented by the similarity scores. Since computing
the model is time consuming, it is done periodically. Moreover, only
the most similar items are stored for each item. When the prediction
scores are computed for a particular user, all items visited by the
user can be considered, including the most recent ones. Hence, the
algorithm can be considered semi-online in that it uses the most
recent interactions of the current user, but not of the other users.
We note that the time decay function is used here to quantify the
strength of connection between pairs of items depending on how
closely are located in the sequence of a user, and not as a way to
forget old data as in [9].

3.3 Item-to-item transition model (TRANS)

A simple algorithm that focuses on the sequence of items a user
has visited is one that records how often users visited item i after
visiting another item j. This can be viewed as particular form of
the item-to-item nearest neighbor with a time decay function that
is non-zero only for the immediately preceding item. While the
algorithm is more simplistic, it is fast to update the transition fre-
quencies after each interaction, thus all recent information is taken
into account.

sampling set S ... instances for learning

positive samples

445* ?
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Figure 2: Sampling from the past.

3.4 Batch and online matrix factorization (MF)

One of our methods is the popular gradient descent matrix factoriza-
tion recommender described among others by [11, 30]. The original
algorithm builds a batch model by iterating over a fixed training
data set a certain I number of times in random order, perform-
ing stochastic gradient descent, until convergence. The algorithm
builds F latent factors, P, ¢ for user u and Q;¢ for item i, to predict
the rating by

F
Fui) = ) PupQif- ()
f=1
Given an actual rating r(u, i), the factors P, s are updated by regu-
larized gradient descent as
PO = PO - () = D) - Qi = m2BS). )
where 7 is the learning rate and A is the regularization coefficient.
Item factors Q; ¢ are updated similarly.

In our tasks, all of the ratings are implicit. Whenever we observe
a user-item interaction (u, i), we may only infer positive feedback
r(u, i) = 1. We follow the approach of [27] by treating all unknown
elements (u’,i’) of the matrix as negative feedback, i.e we assume
r(u’,i’) = 0. In order to avoid the model fitting to r = 1, we
generate negative samples for each item interaction. In other words,
after training on (u, i), we train according to equation (5) for a
fixed negative rate nRate number of (u, i’) pairs. Item i’ is drawn
uniformly nRate times for user u from the set of items that the u
has not interacted with.

Online matrix factorization takes the same steps, including
negative sample generation, but strictly in the order of the events.
In the update equation (5), we may consider the superscript ¢ as
time, and process interactions (u, i, t) in the order of t. For negative
samples, we generate items i’ such that no (u,i’,t’) interaction
exists with ¢/ < t.

A natural option to combine the advantages of the batch and the
online model is to periodically (e.g. weekly) build batch factors P
and Q and continue from the same P and Q with the online gradient
descent method. We call this method batch & online.

3.5 Sampling from the past for matrix
factorization

While batch & online matrix factorization naturally combines the
advantages of the two methods, the periodic re-training of the
batch model may be computationally inefficient. We propose an
online, efficient technique that approximates the batch and online
combination. Similar to the online MF model, we only allow a
single iteration for the model in a temporal order. However, for each
interaction, we generate not only negative but also positive samples.
The positive samples are selected randomly from past interactions,



i.e. we allow the model to re-learn the past. We generate pRate
positive samples along with nRate negative samples, hence for ¢
events, we only take (1 + nRate + pRate) - t gradient steps.

The samples are not drawn uniformly from the past, but selected
randomly from pool S with maximum size s. This avoids oversam-
pling interactions that happened at the beginning of the data set.
More specifically, as seen in Fig. 2, for each observed new training
instance, we

o update the model by pRate random samples from S,
o delete the selected samples from S if |S| > s,
e and add the new instance pRate times to S.

3.6 Asymmetric Matrix Factorization (AMF)

Asymmetric Matrix Factorization [25] computes item-to-item
similarity with the help of latent vectors for items. In contrast to
Section 3.4, both latent matrices P and Q correspond to items. Using
the notations and time decaying function from Section 3.2, the score
assigned to item i for user u is:

score(u, i) = Z f(IIuI - Suj) P;Q;. (6)

j€lu

Sampling negative instances and updating the latent vectors online
using stochastic gradient descent can be done in a similar way to
the one described in Section 3.4.

4 DATA

We compare the performance of the batch and the online algorithms
of Section 3 over seven data sets described next. For each data set,
we discard items that appear less than ten times in interactions. We
apply no filtering for the users.

Twitter. We use 400M tweets over four months between Feb-
ruary 1 and May 30, 2012 from a crawl introduced in [10]. We
recommend new hashtags that the user has not used before.

Last.fm We recommend artists and tracks in the 30Music data
set [31]. New tracks appear more frequently than new artists. We
expect that user-track events are highly non-stationary, more than
user-artists events.

MovieLens data sets [12], first released in 1998, contain times-
tamped explicit movie ratings. We use the ML10M data set, consist-
ing of 10,000,064 ratings of 69,878 users for 10,681 movies. In our
experiments, we consider these records as implicit interactions.

Amazon data sets [21] are browsing and co-purchasing data
crawled from Amazon. We use four categories, Books, Electronics
as well as Movies and TV.

4.1 Statistics

Before turning to explaining the findings, we show two statistics
that highlight the non-stationary properties of the data sets.

Burstiness. The inter-event time (Fig. 3) is the time elapsed
between consecutive events of the same user. In accordance with
several results [3, 16, 32], the distribution is highly skewed for
all data, which show their burstiness in the approximate order
from strongest to weakest as Twitter, Amazon, Last.fm and finally
MovieLens (Fig. 3, right to left).
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Figure 3: Statistics over the 7 datasets. Top: Inter-event dis-
tribution. Bottom: Transition matrix statistics.

Item-to-item transitions. Users of online music services very
often follow playlists, which result in artificially very strong per-
formance of the item-to-item methods. When listening to playlists,
users do not actually request recommendations and hence eval-
uating user sequences for recommendation quality is somewhat
artificial. Next we examine if the data sets contain trivial item-to-
item transitions by computing the item-to-item transition matrix,
i.e. the number of times j followed i in the music listening session of
the same user. For each item i we count the least number of unique
i — j item transitions needed to cover 90% of the item’s transitions.
In Figure 3 we plot the fraction of these against the total number of
unique i — j transitions. We observe that for the Last.fm track data,
the MovieLens data set, and for the Twitter data lower fractions
are possible, hence these data sets may involve trivial transitions.

Shuffling the temporal order. In order to assess the impor-
tance of the time dimension in the streaming recommendation task,
we compare our results over the same data sets but with randomly
shuffled order of time. In other words, we evaluate over the shuffled



stationary variant of each data, where we expect that the temporal
effects disappear.

5 RESULTS

In this section, we describe our results, including the performance
of the algorithms described in Section 3 and our experiments with
matrix factorization training strategies. In Table 1, we summarize
the performance of our models by online DCG. Online MRR behaves
almost identical and is not shown for space limitations.

Twitter data is very sparse and bursty with the highest fraction
of small inter-events (Fig. 3). As a result, factorization methods per-
form worse and popularity models perform well. The Last.fm track
data set is similar, but it incorporates playlist and album listening
data, hence transition and similarity models perform better than
factorization and popularity. The number of items in the Last.fm
artist data are significantly lower than for the track data: as a result
factorization gets close to transition and similarity models on this
data set . In Fig. 3 we can observe that the Last.fm track data, the
MovieLens data set, and the Twitter data contain several predictable
item-to-item transitions. This observation is consistent with per-
formance of the transition model, as it provides the strongest DCG
values in case of these three data sets.

For batch rating prediction, MF is known in the literature to per-
form very strong. For ranking prediction, however, our results show
the superiority of item-to-item nearest neighbor methods. Further-
more, performance of batch MF models drop considerably when the
data is non-stationary. For example, for MovieLens, MF is the best
performing algorithm after shuffling, but the worst for the original
temporal order. Popularity, the simplest algorithm, performs well
for many data sets in non-stationary setting, although the strong
performance is mainly due to users with few interactions. AMF
performs between MF and NN, slightly better for non-stationary
data. The transition model is constantly inferior to NN, but despite
its simplicity, it is competitive with more complex factorization
models for non-stationary data.

5.1 Online training strategies for MF

The high performance of transition models indicates the existence
of trivial item-to-item transitions. In music data, such as the Last.fm
data set, the listening of predefined playlists or albums results
in predictable item-to-item transitions. These are easy to predict,
however they are not valuable for the actual user, therefore they bias
recommender evaluation. We filtered the Last.fm artist data before
comparing different factor model training strategies to reduce the
above effects. We only considered records after at least 30 minutes
of user inactivity, i.e. the start of each user session. Statistics of the
filtered 30M data are shown in Fig. 4.

We compared multiple different learning strategies of MF mod-
els: batch, online, batch & online, and sampling methods. In the
experiments we use the following best parameters. We train batch
MF weekly with = 0.05, nRate = 69 and 9 iterations in random
order. For online MF we set 7 = 0.2, nRate = 99. The parameters are
the same for batch & online. For the sampling model, we use lower
learning rate n = 0.05 and nRate = 39. Best results are achieved
by generating pRate = 3 positive samples from the past for each
record with pool size 3,000.
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Figure 4: Statistics over the 30M data set. Top: number of
records per week. Bottom: number of weekly new users and
items.
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original POP | TRANS | t-NN batch MF online MF, F = batch | AMF | SVD
full | sample 10 100 | 1,000 | & online ++
Twitter all 0.350 0.149 | 0.027 | 0.010 0.006 | 0.335 | 0.337 | 0.340 0.269 | 0.332 | 0.348
Twitter from 10th 0.416 0.267 | 0.036 | 0.008 0.005 | 0.523 | 0.527 | 0.532 0.457 | 0.516 | 0.516
Last.fm track 0.006 0.276 | 0.298 | 0.007 0.009 | 0.022 | 0.066 | 0.010 0.021 | 0.030 | 0.028
Last.fm artist 0.024 0.051 | 0.064 | 0.032 0.031 | 0.048 | 0.042 | 0.004 0.049 | 0.049 | 0.051
MovieLens10M 0.086 0.148 | 0.148 | 0.012 0.012 | 0.140 | 0.142 | 0.038 0.133 | 0.167 | 0.172
Books all 0.026 0.033 | 0.042 | 0.008 0.007 | 0.025 | 0.032 | 0.009 0.016 | 0.025 | 0.026
= | Books from 10th 0.017 0.046 | 0.074 | 0.010 0.012 | 0.042 | 0.053 | 0.018 0.021 | 0.040 | 0.042
§ Electronics 0.035 0.015 | 0.014 | 0.006 0.006 | 0.016 | 0.018 | 0.019 0.011 | 0.018 | 0.019
g Electronics from 10th | 0.023 0.024 | 0.035 | 0.017 0.018 | 0.046 | 0.049 | 0.050 0.023 | 0.048 | 0.050
Movies 0.066 0.029 | 0.034 | 0.023 0.007 | 0.035 | 0.039 | 0.014 0.024 | 0.035 | 0.037
Movies from 10th 0.048 0.037 | 0.062 | 0.040 0.016 | 0.064 | 0.068 | 0.037 0.038 | 0.060 | 0.064
shuffled NN
Twitter all 0.020 0.041 | 0.055 | 0.050 0.045 | 0.034 | 0.039 | 0.045 0.050 | 0.044 | 0.044
Twitter from 10th 0.017 0.047 | 0.091 | 0.073 0.082 | 0.060 | 0.068 | 0.074 0.073 | 0.066 | 0.067
Last.fm track 0.004 0.002 | 0.043 | 0.010 0.021 | 0.008 | 0.009 | 0.002 0.010 | 0.006 | 0.008
Last.fm artist 0.023 0.014 | 0.036 | 0.043 0.041 | 0.035 | 0.025 | 0.005 0.043 | 0.033 | 0.037
MovieLens10M 0.059 0.058 | 0.065 | 0.088 0.085 | 0.080 | 0.052 | 0.004 0.088 | 0.072 | 0.080
Books all 0.009 0.016 | 0.027 | 0.009 0.010 | 0.007 | 0.009 | 0.008 0.011 | 0.010 | 0.010
o Books from 10th 0.004 0.010 | 0.042 | 0.013 0.016 | 0.012 | 0.015 | 0.013 0.014 | 0.013 | 0.013
§ Electronics 0.020 0.010 | 0.011 | 0.009 0.007 | 0.007 | 0.008 | 0.009 0.009 | 0.011 | 0.011
€ | Electronics from 10th | 0.013 0.008 | 0.025 | 0.020 0.012 | 0.019 | 0.020 | 0.020 0.020 | 0.021 0.021
< Movies 0.023 0.018 | 0.023 | 0.016 0.014 | 0.011 0.012 | 0.013 0.016 | 0.015 | 0.015
Movies from 10th 0.007 0.010 | 0.034 | 0.024 0.024 | 0.019 | 0.021 0.021 0.024 | 0.019 | 0.020

Table 1: Online DCG@100 of different algorithms. Duplicate data marked “from 10th” are re-evaluation over items past the
10th interaction only, for each user. Top: original data. Bottom: shuffled data.

In Fig. 5 we plot the average weekly DCG over a one year period.

While sampling appears to keep up with batch & online in the
beginning, its performance drops in the second part. If we start
each factor model from the batch model of week 18, sampling
produces similar results to batch & online. In Fig. 6, as a function
of k, we start with the batch model of week k. Then, we only use
online updates with or without further sampling. It can be seen
that sampling performs roughly the same as batch & online for
k > 10. Note that the number of weekly incoming new users and
items drops after the first 10 weeks as seen in Fig. 4. The single
iteration online model produces a comparable, but slightly worse
results than the sampling version.

In summary, in a non-stationary environment, multiple passes
(i.e. batch models) are required over the data to fully incorporate
many new users and items into the system. However, if a large
component of the user-item matrix is previously learned by a robust
batch model, a simple online sampling algorithm is sufficient to keep
up in performance with periodic batch re-training, while requiring
only 3 additional positive samples from the past per iteration and
thus being much more efficient.

6 CONCLUSIONS

Despite the fact that a practical recommender system processes
events and generates top lists in an online sequence, the literature
payed relative little attention to designing and evaluating online
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Figure 6: Performance of the online and sampling methods
started from a batch model at week k. Averages are taken
between week 25 and 45.

learning methods in highly non-stationary environments. We pro-
posed and evaluated a variety of algorithms as well as measures that
are predictive of which algorithm would work well on a particular
data. We showed that simpler algorithms that can use most recent
data by updating their models online perform better than more
complex algorithms that can be updated only periodically. We also
showed that sampling from past events may completely replace



batch modeling needs in a real time recommender system, thus
reducing latency. We released our code as an open source project®.

3https://github.com/rpalovics/Alpenglow


https://github.com/rpalovics/Alpenglow
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