
Revisiting Neighbourhood-Based Recommenders
For Temporal Scenarios

Alejandro Bellogín
Universidad Autónoma de Madrid

Madrid, Spain
alejandro.bellogin@uam.es

Pablo Sánchez
Universidad Autónoma de Madrid

Madrid, Spain
pablo.sanchezp@estudiante.uam.es

ABSTRACT
Modelling the temporal context efficiently and effectively is essen-
tial to provide useful recommendations to users. Methods such
as matrix factorisation and Markov chains have been combined
recently to model the temporal preferences of users in a sequential
basis. In this work, we focus on Neighbourhood-based Collabo-
rative Filtering and propose a simple technique that incorporates
interaction sequences when producing a personalised ranking. We
show the efficiency of this method when compared against other
sequence- and time-aware recommendation methods under two
classical temporal evaluation methodologies.

1 INTRODUCTION
Recommmender Systems have become a necessary tool for a large
number of online applications because of their ability to make
personalised recommendations by adapting to user profiles. They
are widely implemented in many online commercial platforms
like Amazon, Netflix, Youtube, etc. Each of them can use different
approaches like collaborative filtering, content-based, and hybrid
approaches. Since the purpose of these systems is to provide the best
possible suggestions, different types of information can be added
to the recommendations (location, type of product, time, ...), also
known as contextual information. Among the different contexts,
temporal information is one of the most interesting contexts to be
integrated into the recommendation algorithms, due to its facility
to be captured and because it usually discriminates better than
other dimensions [1]. Nonetheless, its formalisation in the area
has typically been proposed as heuristic filters, both in terms of
algorithmic approaches or evaluation strategies [4].

One of the earliest and most popular collaborative filtering ap-
proaches is the neighbourhood-based recommender, either user-
based or item-based (in this article we will focus on the user-based
variation). These approaches are normally represented as an aggre-
gation function of the ratings from the k most similar users over
item i; usually, this aggregation function is represented as [6]:

r̂ui =

∑
v ∈Ni (u)

rviwuv∑
v ∈Ni (u)

|wuv |
(1)

where wuv is the weight (or similarity) between users u and v
and Ni (u) represents user’s u neighbours that have rated item i .
Different normalisation functions can be applied to this formula,
like mean centering or Z-score [11, 18].

In this work, we generalise this classical formulation – borrow-
ing ideas from Aggregated Search and Information Retrieval in

RecTemp ’17, August 2017, Como, Italy
Copyright © 2017 for this paper by its authors. Copying permitted for private and
academic purposes.

general [2] – to one where each neighbour provides a list of sugges-
tions for each user, which are later combined into a single ranking.
Under this perspective, modelling the temporal aspect of user pref-
erences is straightforward – as we shall show here – and provides
an intuitive rationale about what is being recommended and why.

In the remaining of this paper, we will answer the following re-
search questions: (RQ1) Are neighbourhood-based recommenders
competitive in temporal scenarios, especiallywhen compared against
methods based on matrix factorisation or Markov chains? (RQ2)
Is there any advantage in using a rank aggregation formulation
for this problem? Furthermore, how can we incorporate temporal
sequences into this formulation?

After presenting our proposed method in detail in the next sec-
tion, we address the research questions experimentally on real in-
teractions from the Epinions website, using two evaluation method-
ologies to derive the temporal split. As we shall see, the empirical
results validate our approach, showing performance improvements
over state of the art memory-based alternatives and recent algo-
rithms specifically tailored for sequential recommendation.

2 INTEGRATING TEMPORAL SEQUENCES IN
NEIGHBOUR-BASED RECOMMENDERS

Neighbourhood-based recommenders can be revisited as ranking
fusion algorithms where each neighbour contributes a ranking (of
potential relevant items for the target user) and the goal of the
recommender system is to combine these rankings into one final
output. In terms of Aggregated Search [8, 15], each neighbour would
be denoted as a judge (in Information Retrieval these judges are
usually different search engines) who gives a complete ordering
of all the alternative items to be ranked; each of these rankings is
denoted as τ , and the final fused ranking is τ̂ . Formally, the process
of rank aggregation is divided into normalisation (where the scores
or the ranks of τ are normalised into a common scale, wτ (i), for
each item i) and combination (where the normalised weightswτ (i)
are combined into one fused score).

There are several methods for each of these stages, see [15] for
an in-depth review of the most prominent ones. Interestingly, by
taking the identity normaliser for the scores (wτ (i) = τ (i)) and
the so-called CombSUM combiner (where the normalised weights
are simply added for each item) with a preference weight for each
ranking equals to the similarity between the neighbour and the tar-
get user, we obtain a linear combination of the normalised weights,
which is equivalent to the classical formulation of a neighbourhood-
based recommender. In fact, when we take into account the ratings
of the neighbours, the “score” of user u to item i using CombSum
and the identity normaliser produces the numerator of Equation 1.
In this situation, each ranking τ is composed of the item-rating pairs
rated by a particular neighbour, excluding, as a standard practice in

the community, those items already rated by the target user in train-
ing. Further extensions and ad-hoc modifications could be made to
these normalisers and combiners so that other formulations of this
problem – such as mean-centering or Z-score normalisation [6] –
can be achieved.

Oncewe have reformulated the problem of neighbourhood-based
recommendation as a ranking fusion technique, we now describe
how we can incorporate temporal information in the process. The
main idea is that each neighbour will find which is her last
common interaction with the target user and will create a
ranking of her candidate alternatives iterating around that
item, taking into account the order in which she rated each of
those alternatives. Although in this case we are not taking into
account the actual moment of the interaction (i.e., we can end up
recommending items from a neighbour whose last common item
was rated long time ago), we can easily improve this approach by
filtering neighbours whose last common item was rated before a
certain threshold date; in this paper we will not explore this option
and leave it as future work.

Note that the temporal aspect is considered twice in this model: it
is used to involve the target user (through the last common interac-
tion) in setting the actual moment (context) of the recommendation
and, at the same time, to exploit the actual (temporal) order in
which the neighbour interacted with the items. In the following,
we present our model, consisting in a method to compute the last
common interaction and different strategies to exploit the order of
the neighbour ratings.

The last common interaction between two users u and v is:
n∗ (u;v) = max

k

(
ik ∈ I

t
u : ik ∈ Itv

)
(2)

where Itu are the items rated by user u ordered by timestamp in
ascending order (recent interactions appear later in the list), that is:

Itu = sort (Iu , t) =
(
itk

) |Iu |
k=1 , with t

(
itk

)
< t
(
itk+1
)

(3)

Note that the last common interaction n∗ will not be symmetrical
in general – that is, n∗ (u;v) , n∗ (v;u) – since it makes reference
to the preferences of the first user.

Once we have sorted the preferences by timestamp (Itu and Itv)
and calculated the last common interactions (n∗ (u;v) and n∗ (v ;u))
for target user u and neighbour v , we propose three strategies
to build the lists with candidate items from each neighbour: (a)
taking the most recentm items rated by the neighbour after the
last common interaction (we denote this list as L+m (v) and the
strategy as forward or F), (b) taking the most recentm items rated
before the last common interaction (L−m (v), backward or B), and
(c) concatenating them1 items rated before and them2 items rated
after the last common interaction (L±m1,m2 (v), backward-forward
or BF). More specifically, these lists are generated as follows:

Let It (v ;u) = sort (Iv − Iu , t)

L+m (v) =
(
itk

)n∗+m
n∗

, itk ∈ I
t (v ;u) (4)

L−m (v) =
(
itk

)n∗
n∗−m

, itk ∈ I
t (v ;u) (5)

L±m1,m2 (v) =
(
L+m1 (v),L

−
m2 (v)

)
(6)

Therefore, for each neighbour we obtain a list L(v) with all the
candidate items from that neighbour, which will be later normalised
and combined, as explained before, to produce a single ranking,
containing the recommendations for the target user.

Figure 1: Example of user interactions in the movie domain.
The yellow border corresponds to the last common interac-
tion between u and each neighbour, the red border repre-
sents those movies included in L−2 (v), and the green border
those in L+2 (v).

In summary, when using this formalisation, we obtain a model
equivalent to classical formulations that can further incorporate
the temporal information under different models.

Finally, let us illustrate the whole process with an example shown
in Figure 1 using the movie domain. For the sake of simplicity, we
do not include the user’s rating, so the reader should assume that
all sequences are composed of articles that the user has equally
liked. In the case of movies, the temporal component is usually
determinant, since newer movies tend to be consumed more often
than older ones. In the presented example, user u is the user to
whom we want to make the recommendations, and we represent
three neighbours v1, v2, and v3, where v1 and v3 have 3 items in
common whereas v2 shares 4 items with the target user. According
to these interactions, the candidate items generated with respect to
the different strategies presented before (limited to size 2) will be
(considering that n∗ (v1;u) = i9,n∗ (v2;u) = i10,n∗ (v3;u) = i7):

L+2 (v1) = (i14, i13),L
−
2 (v1) = (i6, i2),L

±
1,1 (v1) = (i14, i6)

L+2 (v2) = (i12, i13),L
−
2 (v2) = (i2),L

±
1,1 (v2) = (i12, i2)

L+2 (v3) = (i12, i15),L
−
2 (v3) = (i5, i6),L

±
1,1 (v3) = (i12, i5)

Let us now consider that items i12, i13 and i14 are in the test set (as
mentioned before, newer films are more likely to be chosen by user
u). A standard neighbourhood-based recommender which does not
take the temporal aspect into account would probably recommend
item i2 whereas this item only appear in our approach once for
strategy L± and twice for L−, mostly in favour of the more recent
movie i12. Moreover, we believe that moving forward from the last
common interaction is more useful in terms of recommendation
performance – especially for novelty purposes –; this is evidenced
by the strategies L+ and L± that recommend i13 and i14.

3 EMPIRICAL EVALUATION
3.1 Evaluation Methodology
We test the proposed approach on a dataset collected from Epin-
ions.com by the authors of [21], also used in [10]. It includes all
actions of all users on the website spanning January 2001 to No-
vember 2013, for a total of 193, 571 actions on 42, 447 items by

117, 323 users; it hence has a density of 0.004%.1 This dataset fits
naturally the purpose of exploiting the temporal dimension of the
user preferences, since it represents an unbiased sample of the web-
site; other datasets more common in the area – like MovieLens – are
not well-suited because they have been filtered or their timestamps
are artificial [9].

As described in [4], there are several evaluation conditions worth
of exploration when evaluating time-aware recommender systems.
In this work, we use a time-dependent rating order (the timestamps
of the test split for each user occur after those of the training split)
in two evaluation methodologies: one with a user-centered base
set and a fixed size condition (the last 2 actions of each user with
at least 4 actions are included in the test split) and another with a
community-centered base set and a proportion-based size condition
(the same timestamp is used for all the users, in such a way that
we retain the data corresponding to the 80% of the most recent
rating times for training, and the rest for testing). We name the
first configuration as Fix and the second as CC. There are obvious
differences between these two evaluation methodologies: whereas
in CC the test set is always (for every user) after the training set,
in Fix this may not be the case; besides, (almost) every user will
be included in the test set of Fix and this will not be the case in
CC. In other terms, the CC methodology represents better a real
environment, where there are some users that may not be active
at some point, whereas with the Fix evaluation we can analyse the
recommendations for all the users, not only the most active (or
active in the last period of time) ones.

Using the terminology in [19], we report the results obtained
following the TrainItems strategy to select the candidate items to
be ranked by each algorithm; that is, a ranking is generated for
each user by predicting a score for every item that has a rating in
the training set. We then compute standard Information Retrieval
metrics on the ranking, considering as relevant every item rated
with a 5 in the test split. We report here the values for precision and
recall at 5 and 50, and nDCG at 5 and 10. We also report the user
space coverage metric (cvg) as defined in [20], that is, the number of
users for which the system is able to recommend at least one item.
Complete code and evaluation scripts can be found in the following
Bitbucket repository: PabloSanchezP/BFRecommendation.

3.2 Recommendation algorithms
We compare our methods against different well-known state-of-
the-art recommenders. We report a popularity-based recommender
(ItemPop) that recommends items based on their popularity in the
system.We also include a classical nearest-neighbour recommender
optimised for ranking (that is, without normalisation, as proposed
in [5]) using the Jaccard coefficient as similarity (KNN). A modifica-
tion of this algorithm is also tested including an exponential time
decay weight as introduced in [7] (TD). These three algorithms
were based on the implementation found in the RankSys2 library.

Additionally, we include some purely sequential-based algo-
rithms as a comparison with the results reported in [10] (we use the
same implementation as the one used in that paper). In the model
named FMC (Factorised Markov Chains) the item-to-item transition
matrix is factorised to capture the likelihood that an arbitrary user
transitions from one item to another, using a first-order Markov

1Note these statistics do not match those from [10] or [21] because we do not put any
constraint on the minimum number of ratings on users and items.
2http://ranksys.org

chain. As an extension to this method, we include Factorised Per-
sonalized Markov Chains (FPMC), a method that combines Matrix
Factorisation and first-order Markov Chains [17]. Finally, we also
include as a baseline the Fossil method introduced in [10] (Fac-
torised Sequential Prediction with Item Similarity Models), where
Markov chains are combined with a similarity-based algorithm.

We compared these baselines against different instantiations of
the rank aggregation formulation presented in Section 2. For the
sake of space, we only report results when the backward-forward
(BF) strategy to build the lists with candidate items is used, mostly
due to its better performance with respect to the backward and
forward strategies. We do experiment with a variation where the
similarity is used to weight the contribution of each neighbour
(as in standard user-based CF) and denote it as BFwCF; when no
weight is used in the combination step we denote it as BFuCF.

Unless stated otherwise, we use 100 neighbours in KNN and TD,
a λ factor of 1/200 in TD, and L = 1,K = 10, λΘ = 0.1, and α = 0.2
in FMC, FPMC, and Fossil, as specified in the original paper [10] for
this dataset; that is, we have not performed an exhaustive search
to find the optimal parameters of these algorithms.

3.3 Results and Discussion
As described previously, we test our approaches under two evalua-
tion conditions that consider differently the temporal dimension
when splitting the dataset into training and test. As shown in Ta-
ble 1, the CC methodology is slightly more difficult than Fix, as
evidenced by the lower values obtained in most of the metrics by
the baseline algorithms. This observation is in line with previous re-
sults in the area [4]. It should be noted that CC replicates a situation
closer to what we would find in an online experiment, where the
test split is set in the future no matter the user we are considering;
this is not true in Fix, where the test split of each user could exist
at different timestamps, but on the other hand, every user contains
the same number of test interactions, which may decrease the bias
towards users more active in the most recent portion of the dataset.

We now assess the research questions RQ1 (Are neighbourhood-
based recommenders competitive in temporal scenarios, especially
when compared against methods based on matrix factorisation or
Markov chains?) and RQ2 (Is there any advantage in using a rank
aggregation formulation for this problem?) raised at the beginning
of the paper, in light of the results summarised in Table 1. To ad-
dress RQ1 we compare the performance of FMC, FPMC, and Fossil
(combinations of Markov chains and matrix factorisation) against
the KNN baseline. We observe that, in contrast to the original pa-
per [10], Fossil is not always the best performing method amongst
these baselines (this only holds when using the CC methodology).
Actually, the results obtained for these methods are worse than
KNN in both methodologies. We argue that a possible reason for
this inconsistency with respect to the previous reported results is
that here we evaluate using a more common setting in the area
(top-N recommendation) and not AUC, which these algorithms
are optimised for. Furthermore, in [10] no classical recommender
algorithms like KNN appear in their comparison.

Furthermore, it is interesting to note that a time decay modifica-
tion of KNN does not improve under this setting unless many items
are considered in the ranking, since TD outperforms KNN only
for Precision@50 and Recall@50. In any case, it seems that basic
KNN algorithms are competitive against state-of-the-art algorithms
specifically designed to address the sequential recommendation

https://bitbucket.org/PabloSanchezP/bfrecommendation

Table 1: Summary of comparative effectiveness, including improvement (∆) in terms of nDCG@5 with respect to two of the
baselines. Best values for each evaluation methodology and metric are in bold.

(a) CC methodology

Method Precision@5 nDCG@5 Recall@5 nDCG@10 Precision@50 Recall@50 cvg ∆ wrt KNN ∆ wrt Fossil

ItemPop 1.81E-04 8.89E-04 2.25E-03 1.21E-03 3.80E-04 4.69E-02 100.00% -144.08% -36.88%
KNN 2.29E-04 2.17E-03 2.17E-03 2.94E-03 4.59E-05 4.34E-03 100.00% – 43.92%
TD 2.29E-04 2.17E-03 2.17E-03 2.17E-03 6.88E-05 6.51E-03 100.00% 0.00% 43.92%

FMC 0.00E+00 0.00E+00 0.00E+00 4.49E-04 2.69E-05 1.22E-03 85.21% NA NA
FPMC 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.69E-05 1.22E-03 85.21% NA NA
Fossil 2.69E-04 1.22E-03 2.43E-03 1.22E-03 2.69E-05 2.43E-03 85.21% -78.31% –

BFuCF 2.29E-04 2.17E-03 2.17E-03 2.17E-03 6.88E-05 4.49E-03 100.00% 0.00% 43.92%
BFwCF 4.59E-04 3.10E-03 4.34E-03 3.10E-03 9.17E-05 6.66E-03 100.00% 30.10% 60.80%

(b) Fix methodology

Method Precision@5 nDCG@5 Recall@5 nDCG@10 Precision@50 Recall@50 cvg ∆ wrt KNN ∆ wrt Fossil

ItemPop 3.32E-04 1.28E-03 1.74E-03 2.12E-03 4.06E-04 2.19E-02 100.00% -200.02% -5.48%
KNN 1.05E-03 3.84E-03 5.56E-03 4.94E-03 3.83E-04 2.05E-02 97.20% – 64.84%
TD 3.15E-04 1.09E-03 1.99E-03 1.62E-03 2.97E-04 1.68E-02 97.20% -252.10% -23.79%

FMC 4.34E-04 1.39E-03 2.42E-03 2.27E-03 2.91E-04 1.57E-02 100.00% -176.32% 2.85%
FPMC 4.08E-04 1.08E-03 1.93E-03 1.67E-03 2.20E-04 1.10E-02 100.00% -255.14% -24.86%
Fossil 3.32E-04 1.35E-03 1.64E-03 2.28E-03 2.60E-04 1.38E-02 100.00% -184.43% –

BFuCF 1.05E-03 3.89E-03 5.56E-03 4.75E-03 3.62E-04 1.96E-02 97.20% 1.39% 65.33%
BFwCF 9.46E-04 3.48E-03 4.96E-03 4.65E-03 3.55E-04 1.91E-02 97.20% -10.50% 61.15%

problem, even beating the ItemPop recommender, which is fre-
quently a very strong baseline due to the inherent popularity bias
found in this type of systems [12].

We now focus on the models generated using the rank aggre-
gation formulation to address RQ2. We observe that these models
(BFuCF and BFwCF) show very positive results in both evaluation
methodologies. In fact, we experimented with several instantiations
of the framework described in Section 2. We found that the best
normalisation method is the identity normaliser, since a rank-based
approach or the standard normaliser [15] produces worse results
(not reported here because of space constraints). Our preliminary
results also showed that the best strategy to select the candidate
items is generating lists as L±m1,m2 ; because of this we report in
Table 1 results for this strategy usingm1 =m2 = 5, Jaccard as simi-
larity, and 100 neighbours, so the comparison is as fair as possible
with respect to the rest of the baselines, even though an exhaustive
tuning of these parameters may achieve better performance values.

When the proposed approaches are used, a high improvement is
achieved with respect to both KNN and Fossil baselines; however,
depending on the actual evaluation methodology our approach may
actually degrade its performance (see Fix methodology). In these
cases, the coverage is limited by the coverage of the user similarity,
which results in the same coverage as that obtained for KNN and TD
algorithms. It is interesting to observe that the largest improvement
is obtained for the more realistic scenario, that is, the CC methodol-
ogy. Regarding the difference between similarity-weighted (BFwCF)
and unweighted (BFuCF) versions of these methods, the conclu-
sions are not clear, since this parameter seems to depend on how
the split was performed. We hypothesise that the similarity values
in the CC methodology are more meaningful because the timeline

is the same for every user, even though the similarity used (Jaccard)
does not take the temporal dimension into account.

4 CONCLUSIONS AND FUTUREWORK
In this paperwe have presented a new formulation for neighbourhood-
based recommendation that allows to integrate the temporal di-
mension seamlessly and successfully, according to the reported
experiments. The two research questions proposed have been an-
swered positively, evidencing that this type of recommendation
algorithms is competitive in temporal scenarios, outperforming
recent state-of-the-art algorithms specifically tailored to sequential-
based recommendation. Furthermore, when formulating the rec-
ommendation problem as an aggregation of several rankings and
introducing the temporal dimension in the process, the performance
clearly improves, up to a 30% with respect to another neighbour-
based recommender without using the temporal component and
up to a 65% with respect to a sequential-based baseline.

Since the framework introduced in this work is general enough
to work with other aggregation functions, in the future we plan to
explore the behaviour of our proposal when alternative aggregation
functions – such as those based on the score distribution [14] – are
used. Furthermore, an exhaustive analysis – with more datasets,
baselines such as SVD++ [13] and BPR for implicit data [16], and
evaluation methodologies – should be made to better understand
each component of the proposed model, for instance, the number
of items allowed to be selected after and before the last common in-
teraction and the impact of the similarity when weighting the final
result. An important aspect that deserves further research is the
definition of sequence-aware similarity metrics [3], so that the tem-
poral dimension can be considered when selecting the neighbours
in the proposed approach.

Acknowledgments
This work was funded by the national Spanish Government under
project TIN2016-80630-P.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2015. Context-Aware Rec-

ommender Systems. In Recommender Systems Handbook, Francesco Ricci, Lior
Rokach, and Bracha Shapira (Eds.). Springer, 191–226. DOI:https://doi.org/10.
1007/978-1-4899-7637-6_6

[2] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. 2011. Modern Information
Retrieval - the concepts and technology behind search, Second edition. Pearson
Education Ltd., Harlow, England.

[3] Alejandro Bellogín and Pablo Sánchez. 2017. Collaborative Filtering based on
Subsequence Matching: A New Approach. Submitted to Information Sciences
(2017).

[4] Pedro G. Campos, Fernando Díez, and Iván Cantador. 2014. Time-aware recom-
mender systems: a comprehensive survey and analysis of existing evaluation
protocols. User Model. User-Adapt. Interact. 24, 1-2 (2014), 67–119.

[5] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
recommender algorithms on top-n recommendation tasks. In RecSys. ACM, 39–
46.

[6] Christian Desrosiers and George Karypis. 2011. A Comprehensive Survey of
Neighborhood-based Recommendation Methods. In Recommender Systems Hand-
book. 107–144.

[7] Yi Ding and Xue Li. 2005. Time weight collaborative filtering. In CIKM. ACM,
485–492.

[8] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. 2001. Rank aggrega-
tion methods for the Web. In Proceedings of the Tenth International World Wide
Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, Vincent Y. Shen,
Nobuo Saito, Michael R. Lyu, and Mary Ellen Zurko (Eds.). ACM, 613–622. DOI:
https://doi.org/10.1145/371920.372165

[9] F. Maxwell Harper and Joseph A. Konstan. 2016. TheMovieLens Datasets: History
and Context. TiiS 5, 4 (2016), 19:1–19:19. DOI:https://doi.org/10.1145/2827872

[10] Ruining He and Julian McAuley. 2016. Fusing Similarity Models with Markov
Chains for Sparse Sequential Recommendation. In ICDM. IEEE, 191–200.

[11] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. 1999.
An Algorithmic Framework for Performing Collaborative Filtering. In SIGIR ’99:
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, August 15-19, 1999, Berkeley, CA, USA,
Fredric C. Gey, Marti A. Hearst, and Richard M. Tong (Eds.). ACM, 230–237. DOI:

https://doi.org/10.1145/312624.312682
[12] Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac. 2015.

What recommenders recommend: an analysis of recommendation biases and
possible countermeasures. User Model. User-Adapt. Interact. 25, 5 (2015), 427–491.
DOI:https://doi.org/10.1007/s11257-015-9165-3

[13] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD ’08. ACM, 426–434. DOI:https://doi.org/10.
1145/1401890.1401944

[14] R. Manmatha, Toni M. Rath, and Fangfang Feng. 2001. Modeling Score Distribu-
tions for Combining the Outputs of Search Engines. In SIGIR 2001: Proceedings of
the 24th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA,
W. Bruce Croft, David J. Harper, Donald H. Kraft, and Justin Zobel (Eds.). ACM,
267–275. DOI:https://doi.org/10.1145/383952.384005

[15] M. Elena Renda and Umberto Straccia. 2003. Web Metasearch: Rank vs. Score
Based Rank Aggregation Methods. In Proceedings of the 2003 ACM Symposium on
Applied Computing (SAC), March 9-12, 2003, Melbourne, FL, USA, Gary B. Lamont,
Hisham Haddad, George A. Papadopoulos, and Brajendra Panda (Eds.). ACM,
841–846. DOI:https://doi.org/10.1145/952532.952698

[16] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI 2009,
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
Montreal, QC, Canada, June 18-21, 2009, Jeff A. Bilmes and Andrew Y. Ng (Eds.).
AUAI Press, 452–461. https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&
smnu=2&article_id=1630&proceeding_id=25

[17] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized Markov chains for next-basket recommendation. InWWW.
ACM, 811–820.

[18] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. 1994. GroupLens: An Open Architecture for Collaborative Filtering of
Netnews. In CSCW ’94, Proceedings of the Conference on Computer Supported
Cooperative Work, Chapel Hill, NC, USA, October 22-26, 1994, John B. Smith,
F. Donelson Smith, and Thomas W. Malone (Eds.). ACM, 175–186. DOI:https:
//doi.org/10.1145/192844.192905

[19] Alan Said and Alejandro Bellogín. 2014. Comparative recommender system
evaluation: benchmarking recommendation frameworks. In RecSys. ACM, 129–
136.

[20] Guy Shani and Asela Gunawardana. 2011. Evaluating Recommendation Systems.
In Recommender Systems Handbook. 257–297.

[21] Tong Zhao, Julian J. McAuley, and Irwin King. 2014. Leveraging Social Con-
nections to Improve Personalized Ranking for Collaborative Filtering. In CIKM.
ACM, 261–270.

https://doi.org/10.1007/978-1-4899-7637-6_6
https://doi.org/10.1007/978-1-4899-7637-6_6
https://doi.org/10.1145/371920.372165
https://doi.org/10.1145/2827872
https://doi.org/10.1145/312624.312682
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/383952.384005
https://doi.org/10.1145/952532.952698
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1630&proceeding_id=25
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1630&proceeding_id=25
https://doi.org/10.1145/192844.192905
https://doi.org/10.1145/192844.192905

	Abstract
	1 Introduction
	2 Integrating Temporal Sequences in Neighbour-Based Recommenders
	3 Empirical Evaluation
	3.1 Evaluation Methodology
	3.2 Recommendation algorithms
	3.3 Results and Discussion

	4 Conclusions and Future Work
	References

