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Abstract Syllogisms and syllogistic reasoning has been the subject of
research and scientific discourse for more than two millennia. Syllogisms
sum quantified assertions into an overall statement, usually consisting
of two premises and one conclusion. While syllogistic reasoning can be
modeled by classical first-order logic in a straightforward manner, it is
an open question which of the possible syllogisms are accepted as valid
by human reasoners. In this paper, we present an approach that mod-
els the reasoning process with seven spaces of a set diagram. It can
easily be implemented by constraint logic programming. We distinguish
several assumptions that humans may make during their reasoning pro-
cess, in particular that all used categories are non-empty. In contrast
to pure logic-based approaches, the proposed procedure allows to repre-
sent diverse models human reasoners may follow. The results show good
correlation and coincidence with psychological investigations.

Keywords: syllogistic reasoning, set diagrams, constraint logic program-
ming.

1 Introduction

Syllogistic argumentation can be traced back to Aristotle [11]. A classical syl-
logism at first consists of two quantified assertions about categories, e.g. A, B,
and C, like ‘Some A are B’ and ‘No B are C’, connecting exactly two categories
each time. Other so-called generalized quantifiers like ‘Most’ or ‘Few’ are possi-
ble among others (see e.g. [10]). The task is to derive logical consequences from
these statements. For instance, ‘Some A are not C’ is a logical consequence of
the given two statements in classical first-order logic.

Example 1. Another example with the concrete categories ‘bakers’, ‘artists’, and
‘chemists’ (cf. [5]) is:

Some artists are bakers.
All bakers are chemists.
∴ Some artists are chemists.

For this example, most people and also classical logic accept the last assertion
as a consequence of the two premises.
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It is easy to express a syllogistic statement in classical logic, namely by
the logic of monadic assertions which is the subset of first-order logic where
predicates, which correspond to categories in this context, always have exactly
one argument. For instance, the assertion ‘All A are B’ can be expressed in
monadic logic as:

∀x
�
A(x) → B(x)

�

The overall syllogistic statement then consists of three such assertions ϕ1, ϕ2,
and ϕ3. It corresponds to the following logical implication:

ϕ1 ∧ ϕ2 → ϕ3

By means of a theorem prover or other kind of logical deduction system, valid
syllogisms – in the sense of classical logic – may be determined automatically.

However, human reasoning does not strictly follow the rules of classical logic.
Explanations for this may be incomplete knowledge, incorrect beliefs, or incon-
sistent norms. From the very beginning of artificial intelligence research, there
has been a strong emphasis on incorporating mechanisms for such kind of ratio-
nality into reasoning systems. Rationality may be bounded, simply because it
may be difficult for humans to have all possible cases in mind.

In addition, at latest since the famous Wason selection task [12], it is well-
known that it makes a significant difference whether people have to solve an
abstract reasoning task or a concrete task with concrete categories (like in Ex-
ample 1). Hence for psychological investigations surely this has to be taken into
account: It is very likely that the purely logical reasoning of humans is inter-
fered in the presence of concrete categories, in particular if the assertions are
not true in the real world. To see this consider again the assertion ‘All bakers
are chemists’ (Example 1) which might not be true in general. Therefore every
psychological experiment on syllogistic reasoning has to be carefully designed
accordingly and should not be too complex, i.e. involve too many categories.

In the following, we first make the terminology more precise and define among
others the meaning of the notions category, mood, and syllogism (Section 2).
Then, we briefly discuss related approaches, including works from cognitive psy-
chology (Section 3). After that, we state our approach that models the reasoning
process with seven spaces of a simple set diagram (Section 4), which can eas-
ily be implemented by constraint logic programming. We present some results
(Section 5) which show good correlation with other suited theories of syllogis-
tic reasoning and also with psychological investigations and end up with some
conclusions (Section 6).

2 Syllogisms – Notions and Terminology

Let us now define more precisely what a syllogism is. For this, we refer to mathe-
matical notions like sets and probabilities. Clearly, we cannot assume that people
without much training in mathematics and logic have knowledge on this. Even
trained people probably do not apply strict formal rules while deriving logical
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Figure 1. Venn diagram for three categorical sets A, B, and C. The spaces S1, . . . , S7

correspond to the respective marked subsets. For example, S1 = A ∩ B ∩ C and S7 =
A ∩B ∩ C.

consequences. Nevertheless in the following we try to capture the required no-
tions and terminology reasonably formally. On the one hand, this helps us to
analyze and model underlying assumptions made by human reasoners more pre-
cisely. On the other hand, the definitions lay a clear basis for the implementation
of the proposed set-based approach with seven spaces presented in this paper.

We start with the notion category: A category C stands for a set of individuals
or objects. It is associated with a monadic predicate C(x), saying that x is an
individual of the respective category. A classical syllogism combines in total
three categories: A, B, and C. A space S is one of the seven possible subsets of
A ∪ B ∪ C in the set diagram for the three involved categories (see Figure 1).
The set of all such spaces is:

M = {A∩B∩C,A∩B∩C,A∩B∩C,A∩B∩C,A∩B∩C,A∩B∩C,A∩B∩C}

A categorical assertion or just assertion for short for two categories A and
B is a statement of the form ‘A certain quantity of A is (not) B’. Classically,
four different moods of assertions are distinguished. They correspond to the
quantifiers ‘All’ or ‘Some’ and are optionally combined with the negation of the
second category involved in the assertion. In addition to the four classical moods,
which are abbreviated A, E, I, and O, we also consider a fifth one, which we call
U. Every mood can be directly interpreted by means of conditional probabilities
P (B|A) as follows:

A: ‘All A are B’
This means P (B|A) = 1. Since P (B|A) = P (A ∩ B)/P (A) and A is the
disjoint union of A ∩ B and A ∩ B, this is equivalent to P (A ∩ B)/

�
P (A ∩

B) + P (A ∩B)
�
= 1 and hence P (A ∩B) = 0.
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E: ‘All A are not B’
This means P (B|A) = 1. Since P (B|A) = 1− P (B|A), this is equivalent to
P (A ∩B) = 0.

I: ‘Some A are B’
This means P (B|A) > 0, which is equivalent to P (A ∩B) > 0.

O: ‘Some A are not B’
This means P (B|A) > 0, which is equivalent to P (A ∩B) > 0.

U: ‘Some but not all A are B’
This means 0 < P (B|A) < 1. It corresponds to the conjunction of mood I
and the negation of mood A which is equivalent to mood O. Therefore we
have P (A ∩B) > 0 and P (A ∩B) > 0.

We consider the mood U here, because it allows to state more specific cate-
gorical assertions than with the mood I: Human reasoners or the experimental
setting may assume that at most one assertion should be accepted as conse-
quence of the premises, but from a logical point of view, there can be more than
one valid conclusion, in particular if the classical mood I is used. For instance,
‘All A are B’ (mood A) implies ‘Some A are B’ (mood I) provided that the cat-
egories A and B are non-empty, but not ‘Some but not all A are B’ (mood U).
In addition, mood I is a symmetric operator, i.e. ‘Some A are B’ and ‘Some B
are A’ are logically equivalent. Thus for mood I the order of the categories in the
conclusion does not matter, whereas in general it does for mood U. Interestingly,
the variation of mood U ‘Some but not all A are not B’ is logically equivalent
with mood U. To see this, just replace B by B and vice versa.

Now, three categorical assertions ϕ1, ϕ2, and ϕ3 are combined to an overall
statement, called syllogistic statement or just syllogism for short. In this context,
ϕ1 and ϕ2 are the premises and ϕ3 is called conclusion of the syllogism. If ϕ1

and ϕ2 together logically imply ϕ3, then we speak of a valid syllogism. The
categorical assertion ϕ1 relates the categories A and B with each other, ϕ2 the
categories B and C, and ϕ3 the categories A and C.

In each of the assertions, the two involved categories can occur in two orders,
e.g. A–B or B–A for ϕ1. Therefore the premises ϕ1 and ϕ2 can have four different
orders in total, called figures (cf. Figure 2). Hence, a problem can be completely
specified by the moods of the first and second statement and the figure. The
conclusion ϕ3 is also a quantified statement where the categories A and C can
appear in either order.

Assertion Figure 1 Figure 2 Figure 3 Figure 4

ϕ1 A–B B–A A–B B–A
ϕ2 B–C C–B C–B B–C

Figure 2. Four different figures of a syllogism. Note that in the literature – as done in
this table, too – only the order of the categories in the premises are considered.
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How many syllogisms are there to worry about? Actually, there is only a
small, finite number of cases: Each categorical assertion may be in one of the
classical n = 4 or extended n = 5 moods. The categories in each assertion may
be in one of two orders. Hence, for the three categorical assertions ϕ1, ϕ2, and
ϕ3, we have altogether

N = (n · 2)3

different syllogisms to consider. This yields us N = 512 or N = 1000 for n = 4
or n = 5 moods, respectively. Although conjunction is a commutative operator
in classical logic, the presentation of the order of premises may play a role for
human reasoners. However, since we already consider both possible orders of the
categories A and C in the conclusion, this aspect is already covered and thus
needs no special treatment.

3 Related Works

Syllogistic reasoning has been extensively investigated by cognitive psychologists
(cf. the meta-study in [5]). A common result is that the conclusions humans
draw differ from those of classical first-order logical reasoning. Therefore, many
theories have been developed to explain the human behavior, among them are:
heuristic theories that capture principles that could underlie intuitive responses,
e.g. probabilistically valid conclusions [10], theories based on formal rules which
may include non-monotonic logic, and theories based on diagrams, models, or
sets, e.g. Venn diagrams [9].

Analyses of syllogisms based on first-order logic formalizations cause sev-
eral problems (cf. [5]): The meaning of quantifiers often cannot be expressed in
first-order logic adequately, because it is not powerful enough to represent many
determiners in ordinary language, such as ‘more than half’ or ‘most’. One way
out could be second-order predicate calculus, which allows quantification over
sets (and hence categories) as well as over individuals. Unfortunately, from a
psychological standpoint, these generalized quantifiers are infeasible: The com-
putation of, say, the set of all sets containing all individuals of category C is
intractable and is likely to be too large to fit inside anyone’s brain [2].

Heuristic theories of syllogistic reasoning assume more or less that human
reasoners do not apply any formal rules: According to the so-called atmosphere
theory [15], people may be predisposed to accept a conclusion that fits the mood
of the premises. This means, if a premise contains ‘Some’, use it in the conclu-
sion; if a premise is negative, use a negative conclusion. Other theories claim the
preference of conclusions in the same mood as the most informative or conser-
vative premise [10,13]. In this context the moods are sorted in some preference
ordering. For more details, the interested reader may consult [5] which provides
a thorough review of several theories about syllogistic reasoning.

According to [5], at least some of the disadvantages of first-order logic can
be overcome, if categorical assertions are stated as relations between sets. This
approach accommodates the quantifiers that cannot be expressed in first-order
logic. Cognitive scientists have argued that mental representations of quantified
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assertions are set-theoretic (e.g. [3]). It is also consistent with various diagram-
matic systems of syllogistic reasoning. The mental model theory [4] also follows
this line. It postulates that human reasoners can represent a set iconically and
build a mental model of its members.

From a set-theoretic point of view, [6,16] introduce a syllogistic system that is
transformed into fuzzy rules for syllogistic reasoning. Fuzzy existential quantifiers
are introduced covering the range from ‘Some’ to ‘All’ in several steps. From that,
relative truth ratios are calculated based on the cardinalities of the syllogistic
cases. The approach is similar to the one presented in this paper. It is also based
on set diagrams. However, we do not consider fuzzy or multi-valued logics here.
We explain our approach in more detail in the next section (Section 4).

In summary, there are many different theories trying to explain the exper-
imental findings. However, probably no single theory provides an adequate ac-
count (cf. [5]). It may be the case, that different persons apply very distinct
reasoning strategies (cf. [13]). This would mean that only a collection of differ-
ent theories can explain the whole picture.

4 Implementing Syllogistic Reasoning

In the literature and in the corresponding psychological experiments, often sev-
eral prerequisites are assumed for human reasoners, e.g. that all categories are
non-empty. This is done implicitly or explicitly, namely as part of the instruc-
tions to the test persons in psychological experiments. These assumptions have
also to be modeled. We do this using probabilistic notions:

Let us consider the probability space where an event E may be a set in
M , i.e. one of the seven spaces (cf. Section 2), or a finite union thereof. The
cardinality of the whole probability space is thus 27 = 128. Let P be a probability
measure, assigning probabilities to the events. The following assumptions may
be considered:

1. If a space S is non-empty, it has a non-zero probability, i.e. P (S) > 0 for
S �= ∅. In the following, we always adopt this assumption.

2. Quantification with ‘Some’ (moods I andO) induces the existence of individ-
uals or objects of the respective category. Furthermore it can be understood
non-inclusive, i.e. as ‘Some but not all’ (mood U).

3. All categories are non-empty, i.e. A,B,C �= ∅ and thus P (A) > 0, P (B) > 0,
and P (C) > 0.

4. All categories are non-equivalent, i.e. A �= B �= C �= A. Each of these three
inequalities can be interpreted probabilistically, e.g. A �= B by P (A\B ∪
B\A) > 0, because A �= B is equivalent to A � B or B � A and hence to
A\B ∪ B\A �= ∅.

Since assumption 1 is of more or less purely technical nature, we always
adopt it hereinafter. The other assumptions may hold or not and can therefore
be switched on or off explicitly in our implementation, although human rea-
soners may not even be aware whether they apply them. Assumptions 2 and 3
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can be traced back to Aristotle’s original works on analytics (Analytica priora
and Analytica posteriora, cf. [1]). In contrast to this, assumption 4 seems to be
considered explicitly only recently (e.g. in [6,16]).

Syllogistic reasoning (including these assumptions) can now be implemented
in a more or less straightforward manner by constraint logic programming [8].
Constraint logic programming emerged from the field of logic programming. It
is a form of constraint programming, in which logic programming is extended
to include concepts from constraint satisfaction. A constraint logic program is a
logic program that contains constraints that are specific conditions in the body
of clauses. In the case of finite-domain constraints, we have variables that take
their values out of a finite domain of integer numbers. Domains can be described
as enumerations of possible values. For efficient reasoning, special comparison
operators that are prefixed by the symbol # are used as constraint predicates.

As one can see, every assumption from above and every mood of an assertion
can be expressed by one or more conditions of the form P (E) = 0 or P (E) > 0
for some event (set) E. By assumption 1 this eventually means, for a specific
case, we simply have to distinguish which spaces are empty and which are not,
where a case is defined by its corresponding set of non-empty spaces S ∈ M .
If a case satisfies the assumptions 3 and 4, we call it admissible. There are
27 − 3 · 23 +3+ 2 = 109 cases satisfying assumption 3 and 109− (1 + 3 · 4) = 96
admissible cases, i.e. where in addition assumption 4 holds.

In [7] (thesis supervised by first author), the syllogistic reasoning in seven
spaces has been implemented by means of constraint logic programming in the
programming language SWI Prolog [14]. How, then, can a syllogism expressed
by means of constraint logic programming? For this, we only need the following
ingredients:

– That non-empty spaces have a non-zero probability (assumption 1), can
be modeled easily by constraint variables for every space S1, . . . , S7. Each
one may take one of the integer values 0 or 1 with the meaning that the
respective space is empty or non-empty, respectively. In Prolog syntax, this
can be written as follows:

[S1, S2, S3, S4, S5, S6, S7] ins 0..1

– As said above, every mood can be interpreted by one or more conditions
of the form P (E) = 0 or P (E) > 0 for some event (set) E. For example,
the assertion ‘All A are B’ (mood A) is equivalent to P (A ∩ B) = 0. It
holds A ∩ B = S1 ∪ S5 (cf. Figure 1). Thus this allows us – together with
assumption 1 – to implement the condition simply by the constraint S1+S5 =
0, in Prolog syntax:

S1 + S5 #= 0

– Similarly, constraints of the form P (E) > 0 can be implemented: For exam-
ple, ‘Some A are B’ (mood I) leads to the condition P (A∩B) > 0. Because
of A ∩B = S3 ∪ S7 we obtain the constraint S3 + S7 > 0, in Prolog syntax:
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S3 + S7 #> 0

– Assumption 3 can also be expressed easily by means of constraint logic pro-
gramming. To see this, we consider the example that category C is non-
empty, i.e. P (C) > 0. Because of C = S4 ∪ S5 ∪ S6 ∪ S7, we arrive at the
constraint S4 + S5 + S6 + S7 > 0, in Prolog syntax:

S4 + S5 + S6 + S7 #> 0

– Last but not least, assumption 4 is also feasible. For example, A �= B is
equivalent to A\B ∪ B\A �= ∅. Because of A\B = S1∪S5 and B\A = S2∪S6,
we obtain the constraint S1 + S5 + S2 + S6 > 0, in Prolog syntax:

S1 + S2 + S5 + S6 #> 0

Our constraint logic program for syllogistic reasoning provides implemen-
tations of all assumptions in the above-mentioned manner and also of all 30
categorical assertions (not listed here in detail) that are possible with n = 5
moods involving two of the three categories in any order. By means of our
implementation, we can now find all solutions for every syllogism, simply by
means of Prolog built-in set predicates like bagof [14]. Since syllogisms have the
form ϕ1 ∧ ϕ2 → ϕ3 (cf. Section 1), we compute the number of cases that satisfy
(a) ϕ1∧ϕ2 and (b) ϕ1∧ϕ2∧ϕ3 and compute their ratio. Our implementation [7]
allows several settings, namely with or without:

– the additional mood U (assumption 2),
– possibly empty categories (assumption 3), or
– possibly identical sets (assumption 4).

Example 2. Let us illustrate this by the following example with abstract cate-
gories:

All A are B.
All B are C.
∴ All C are A.

Here, all assertions are in mood A, the premises have the form of the syl-
logistic figure 1 (cf. Figure 2), and in the conclusion, C is related to A, in this
order. The premises induce that S1, S2, S3, and S5 must be empty (cf. Figure 1).
The remaining three spaces S4, S6, and S7 may be empty or not. Thus 23 = 8
cases satisfy both premises, at least if we allow empty and equivalent categories.
The conclusion enforces that S4 and S6 must be empty, too. This means all
three categorical assertions hold only if all spaces are empty except possibly S7.
Therefore 21 = 2 cases remain. Hence the ratio, i.e. the fraction of valid cases is
only 2/8 = 25% for this example.

The situation changes if we adopt one or more of the assumptions from above:
For instance, if all categories are non-empty, then space S7 must be non-empty.
Hence the syllogism of Example 2 holds in one of four cases, if assumption 3
holds, which again leads to a ratio of 1/4 = 25%. If in addition assumption 4
holds, then spaces S4 and S6 must be non-empty, because otherwise some of the
sets are equivalent. The ratio is then 0/1 = 0%.
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5 Results

Table 1 shows the complete numbers and ratios for all possible syllogisms with
the classical four moods, i.e. without mood U. Each three consecutive columns
show the number of cases that satisfy all three assertions or only the premises
of the respective syllogism and their ratio in percent. Since in the literature and
in many psychological experiments it is normally given that all categories are
non-empty, we adopt assumption 3 here. Nevertheless we allow that some of the
category sets may be identical, i.e. assumption 4 does not necessarily hold. The
syllogisms that are valid in 100% of the cases are the logically valid syllogisms.
The tables for the other settings can be found in the technical report [7].

Since the ratio may vary and is not just 0 or 1, we can build a fine-grained
model for modeling syllogistic reasoning and try to predict human responses. In
psychological experiments, the setting often is that that two premises are given
and then the user has to draw the valid conclusions or find out that there are
no valid conclusions. This procedure is reported e.g. in [5]. Nonetheless, from a
logical point of view, there can be more than one valid conclusion (cf. Section 2).
Thus one could allow multiple answers. We start now with:

Hypothesis 1. People draw a specific conclusion the higher the percentage of its
computed ratio is according to our model.

First evaluation results for this hypothesis are encouraging: A simple corre-
lation analysis between the percentage values computed by the constraint logic
implementation and the empirical findings reported in [5, Table 6] yields, as de-
sired, moderate positive correlation for all possible settings (cf. Table 2). Here
the case that there are no valid conclusions is ignored. Interestingly, the maxi-
mum is attained if none of the assumptions 2, 3, and 4 is adopted – although
the test persons might be instructed that they should hold. For instance, with
assumption 3 the assertions in mood I with A and C in any order are also valid
conclusions for Example 2 but are not without them. Only the latter coincides
with the empirical finding that most people conclude (only) the assertion ‘All A
are C’ (mood A). Taking also the case of no valid conclusions into account, we
modify Hypothesis 1 as follows:

Hypothesis 2. People draw a specific conclusion only if the percentage of its
computed ratio is 100% and no valid conclusions otherwise.

If we repeat our comparison under Hypothesis 2, then we gain a coincidence
of almost 90% over all 64 · 9 = 576 possible syllogisms including the case that
two premises have no valid conclusions (see also Table 2). This is rather good.
Here, a conclusion is adopted if the implemented model yields a percentage
of 100% or the majority of people in the psychological experiments draw this
conclusion, respectively. We thus map the real percentage values of the model
and the psychological studies to just two values: yes or no. The coincidence with
respect to no valid conclusions alone is about 70% (see again Table 2). This is
significantly above chance. Clearly, this point needs further investigation and is
still work in progress.
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Table 1. Table for all possible syllogisms disregarding mood U and adopting assump-
tion 3 but not assumption 4. The moods and figures of the premises are indicated
in the leftmost column. Here, for example, AA1 means that the first and the second
premise have mood A and the form of figure 1. The possible conclusions are given in
the further columns. The moods and, by small letters, the order of the categories is
given here. For example, Aca stands for the categorical assertion ‘All C are A’. Each
three consecutive columns show the number of cases that satisfy all three assertions or
only the premises of the respective syllogism and their ratio in percent.

Syllogism Premises    Aac      Aca      Iac      Ica      Oac      Oca      Eac      Eca 

AA1 Aab,Abc 4 4 100% 1 4 25% 4 4 100% 4 4 100% 0 4 0% 3 4 75% 0 4 0% 0 4 0%

AA2 Aba,Acb 1 4 25% 4 4 100% 4 4 100% 4 4 100% 3 4 75% 0 4 0% 0 4 0% 0 4 0%

AA3 Aab,Acb 4 10 40% 4 10 40% 8 10 80% 8 10 80% 6 10 60% 6 10 60% 2 10 20% 2 10 20%

AA4 Aba,Abc 4 8 50% 4 8 50% 8 8 100% 8 8 100% 4 8 50% 4 8 50% 0 8 0% 0 8 0%

AI1 Aab,Ibc 8 20 40% 4 20 20% 16 20 80% 16 20 80% 12 20 60% 16 20 80% 4 20 20% 4 20 20%

AI2 Aba,Icb 4 16 25% 8 16 50% 16 16 100% 16 16 100% 12 16 75% 8 16 50% 0 16 0% 0 16 0%

AI3 Aab,Icb 8 20 40% 4 20 20% 16 20 80% 16 20 80% 12 20 60% 16 20 80% 4 20 20% 4 20 20%

AI4 Aba,Ibc 4 16 25% 8 16 50% 16 16 100% 16 16 100% 12 16 75% 8 16 50% 0 16 0% 0 16 0%

AO1 Aab,Obc 4 18 22.22% 3 18 16.67% 12 18 66.67% 12 18 66.67% 14 18 77.78% 15 18 83.33% 6 18 33.33% 6 18 33.33%

AO2 Aba,Ocb 3 18 16.67% 6 18 33.33% 16 18 88.89% 16 18 88.89% 15 18 83.33% 12 18 66.67% 2 18 11.11% 2 18 11.11%

AO3 Aab,Ocb 4 12 33.33% 0 12 0% 8 12 66.67% 8 12 66.67% 8 12 66.67% 12 12 100% 4 12 33.33% 4 12 33.33%

AO4 Aba,Obc 0 14 0% 6 14 42.86% 12 14 85.71% 12 14 85.71% 14 14 100% 8 14 57.14% 2 14 14.29% 2 14 14.29%

AE1 Aab,Ebc 0 2 0% 0 2 0% 0 2 0% 0 2 0% 2 2 100% 2 2 100% 2 2 100% 2 2 100%

AE2 Aba,Ecb 0 6 0% 2 6 33.33% 4 6 66.67% 4 6 66.67% 6 6 100% 4 6 66.67% 2 6 33.33% 2 6 33.33%

AE3 Aab,Ecb 0 2 0% 0 2 0% 0 2 0% 0 2 0% 2 2 100% 2 2 100% 2 2 100% 2 2 100%

AE4 Aba,Ebc 0 6 0% 2 6 33.33% 4 6 66.67% 4 6 66.67% 6 6 100% 4 6 66.67% 2 6 33.33% 2 6 33.33%

IA1 Iab,Abc 8 16 50% 4 16 25% 16 16 100% 16 16 100% 8 16 50% 12 16 75% 0 16 0% 0 16 0%

IA2 Iba,Acb 4 20 20% 8 20 40% 16 20 80% 16 20 80% 16 20 80% 12 20 60% 4 20 20% 4 20 20%

IA3 Iab,Acb 4 20 20% 8 20 40% 16 20 80% 16 20 80% 16 20 80% 12 20 60% 4 20 20% 4 20 20%

IA4 Iba,Abc 8 16 50% 4 16 25% 16 16 100% 16 16 100% 8 16 50% 12 16 75% 0 16 0% 0 16 0%

II1 Iab,Ibc 16 80 20% 16 80 20% 72 80 90% 72 80 90% 64 80 80% 64 80 80% 8 80 10% 8 80 10%

II2 Iba,Icb 16 80 20% 16 80 20% 72 80 90% 72 80 90% 64 80 80% 64 80 80% 8 80 10% 8 80 10%

II3 Iab,Icb 16 80 20% 16 80 20% 72 80 90% 72 80 90% 64 80 80% 64 80 80% 8 80 10% 8 80 10%

II4 Iba,Ibc 16 80 20% 16 80 20% 72 80 90% 72 80 90% 64 80 80% 64 80 80% 8 80 10% 8 80 10%

IO1 Iab,Obc 8 76 10.53% 16 76 21.05% 64 76 84.21% 64 76 84.21% 68 76 89.47% 60 76 78.95% 12 76 15.79% 12 76 15.79%

IO2 Iba,Ocb 12 72 16.67% 12 72 16.67% 64 72 88.89% 64 72 88.89% 60 72 83.33% 60 72 83.33% 8 72 11.11% 8 72 11.11%

IO3 Iab,Ocb 12 72 16.67% 12 72 16.67% 64 72 88.89% 64 72 88.89% 60 72 83.33% 60 72 83.33% 8 72 11.11% 8 72 11.11%

IO4 Iba,Obc 8 76 10.53% 16 76 21.05% 64 76 84.21% 64 76 84.21% 68 76 89.47% 60 76 78.95% 12 76 15.79% 12 76 15.79%

IE1 Iab,Ebc 0 12 0% 4 12 33.33% 8 12 66.67% 8 12 66.67% 12 12 100% 8 12 66.67% 4 12 33.33% 4 12 33.33%

IE2 Iba,Ecb 0 12 0% 4 12 33.33% 8 12 66.67% 8 12 66.67% 12 12 100% 8 12 66.67% 4 12 33.33% 4 12 33.33%

IE3 Iab,Ecb 0 12 0% 4 12 33.33% 8 12 66.67% 8 12 66.67% 12 12 100% 8 12 66.67% 4 12 33.33% 4 12 33.33%

IE4 Iba,Ebc 0 12 0% 4 12 33.33% 8 12 66.67% 8 12 66.67% 12 12 100% 8 12 66.67% 4 12 33.33% 4 12 33.33%

OA1 Oab,Abc 6 18 33.33% 3 18 16.67% 16 18 88.89% 16 18 88.89% 12 18 66.67% 15 18 83.33% 2 18 11.11% 2 18 11.11%

OA2 Oba,Acb 3 18 16.67% 4 18 22.22% 12 18 66.67% 12 18 66.67% 15 18 83.33% 14 18 77.78% 6 18 33.33% 6 18 33.33%

OA3 Oab,Acb 0 12 0% 4 12 33.33% 8 12 66.67% 8 12 66.67% 12 12 100% 8 12 66.67% 4 12 33.33% 4 12 33.33%

OA4 Oba,Abc 6 14 42.86% 0 14 0% 12 14 85.71% 12 14 85.71% 8 14 57.14% 14 14 100% 2 14 14.29% 2 14 14.29%

OI1 Oab,Ibc 12 72 16.67% 12 72 16.67% 64 72 88.89% 64 72 88.89% 60 72 83.33% 60 72 83.33% 8 72 11.11% 8 72 11.11%

OI2 Oba,Icb 16 76 21.05% 8 76 10.53% 64 76 84.21% 64 76 84.21% 60 76 78.95% 68 76 89.47% 12 76 15.79% 12 76 15.79%

OI3 Oab,Icb 12 72 16.67% 12 72 16.67% 64 72 88.89% 64 72 88.89% 60 72 83.33% 60 72 83.33% 8 72 11.11% 8 72 11.11%

OI4 Oba,Ibc 16 76 21.05% 8 76 10.53% 64 76 84.21% 64 76 84.21% 60 76 78.95% 68 76 89.47% 12 76 15.79% 12 76 15.79%

OO1 Oab,Obc 8 69 11.59% 15 69 21.74% 60 69 86.96% 60 69 86.96% 61 69 88.41% 54 69 78.26% 9 69 13.04% 9 69 13.04%

OO2 Oba,Ocb 15 69 21.74% 8 69 11.59% 60 69 86.96% 60 69 86.96% 54 69 78.26% 61 69 88.41% 9 69 13.04% 9 69 13.04%

OO3 Oab,Ocb 14 75 18.67% 14 75 18.67% 68 75 90.67% 68 75 90.67% 61 75 81.33% 61 75 81.33% 7 75 9.33% 7 75 9.33%

OO4 Oba,Obc 12 73 16.44% 12 73 16.44% 60 73 82.19% 60 73 82.19% 61 73 83.56% 61 73 83.56% 13 73 17.81% 13 73 17.81%

OE1 Oab,Ebc 2 15 13.33% 6 15 40% 12 15 80% 12 15 80% 13 15 86.67% 9 15 60% 3 15 20% 3 15 20%

OE2 Oba,Ecb 2 11 18.18% 4 11 36.36% 8 11 72.73% 8 11 72.73% 9 11 81.82% 7 11 63.64% 3 11 27.27% 3 11 27.27%

OE3 Oab,Ecb 2 15 13.33% 6 15 40% 12 15 80% 12 15 80% 13 15 86.67% 9 15 60% 3 15 20% 3 15 20%

OE4 Oba,Ebc 2 11 18.18% 4 11 36.36% 8 11 72.73% 8 11 72.73% 9 11 81.82% 7 11 63.64% 3 11 27.27% 3 11 27.27%

EA1 Eab,Abc 2 6 33.33% 0 6 0% 4 6 66.67% 4 6 66.67% 4 6 66.67% 6 6 100% 2 6 33.33% 2 6 33.33%

EA2 Eba,Acb 0 2 0% 0 2 0% 0 2 0% 0 2 0% 2 2 100% 2 2 100% 2 2 100% 2 2 100%

EA3 Eab,Acb 0 2 0% 0 2 0% 0 2 0% 0 2 0% 2 2 100% 2 2 100% 2 2 100% 2 2 100%

EA4 Eba,Abc 2 6 33.33% 0 6 0% 4 6 66.67% 4 6 66.67% 4 6 66.67% 6 6 100% 2 6 33.33% 2 6 33.33%

EI1 Eab,Ibc 4 12 33.33% 0 12 0% 8 12 66.67% 8 12 66.67% 8 12 66.67% 12 12 100% 4 12 33.33% 4 12 33.33%

EI2 Eba,Icb 4 12 33.33% 0 12 0% 8 12 66.67% 8 12 66.67% 8 12 66.67% 12 12 100% 4 12 33.33% 4 12 33.33%

EI3 Eab,Icb 4 12 33.33% 0 12 0% 8 12 66.67% 8 12 66.67% 8 12 66.67% 12 12 100% 4 12 33.33% 4 12 33.33%

EI4 Eba,Ibc 4 12 33.33% 0 12 0% 8 12 66.67% 8 12 66.67% 8 12 66.67% 12 12 100% 4 12 33.33% 4 12 33.33%

EO1 Eab,Obc 4 11 36.36% 2 11 18.18% 8 11 72.73% 8 11 72.73% 7 11 63.64% 9 11 81.82% 3 11 27.27% 3 11 27.27%

EO2 Eba,Ocb 6 15 40% 2 15 13.33% 12 15 80% 12 15 80% 9 15 60% 13 15 86.67% 3 15 20% 3 15 20%

EO3 Eab,Ocb 6 15 40% 2 15 13.33% 12 15 80% 12 15 80% 9 15 60% 13 15 86.67% 3 15 20% 3 15 20%

EO4 Eba,Obc 4 11 36.36% 2 11 18.18% 8 11 72.73% 8 11 72.73% 7 11 63.64% 9 11 81.82% 3 11 27.27% 3 11 27.27%

EE1 Eab,Ebc 2 5 40% 2 5 40% 4 5 80% 4 5 80% 3 5 60% 3 5 60% 1 5 20% 1 5 20%

EE2 Eba,Ecb 2 5 40% 2 5 40% 4 5 80% 4 5 80% 3 5 60% 3 5 60% 1 5 20% 1 5 20%

EE3 Eab,Ecb 2 5 40% 2 5 40% 4 5 80% 4 5 80% 3 5 60% 3 5 60% 1 5 20% 1 5 20%

EE4 Eba,Ebc 2 5 40% 2 5 40% 4 5 80% 4 5 80% 3 5 60% 3 5 60% 1 5 20% 1 5 20%
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Table 2. Comparison between the implemented model in different settings with respect
to the assumptions from Section 4 and the empirical findings reported in [5, Table 6].
The table shows the respective (Pearson) correlation between the percentages and their
coincidence. For the latter, a conclusion is adopted if the implemented model yields a
percentage of 100% or the majority of people in the psychological experiments draw
this conclusion, respectively. The last column shows the coincidence with respect to no
valid conclusions alone.

assumptions no valid
2 3 4 correlation coincidence conclusions

no no no 0.482 89.6% 65.6%
no no yes 0.377 89.2% 65.6%
no yes no 0.370 87.3% 73.4%
no yes yes 0.314 87.0% 73.4%
yes no no 0.450 88.9% 65.6%
yes no yes 0.367 88.5% 65.6%
yes yes no 0.371 87.5% 71.9%
yes yes yes 0.317 86.8% 71.9%

As already been noted (in Section 2), from a logical point of view, mood I is
a symmetric operator. The same holds for mood E, i.e. ‘All A are not C’ and ‘All
C are not A’ are logically equivalent. It follows that the approach for syllogistic
reasoning in seven spaces presented here cannot distinguish the two categorical
assertions for the moods I and E. Nonetheless, in the psychological experiments
[5, Table 6], human reasoners definitely prefer the order A–C for the conclusion
in 76,6% (mood I) and 70.3% (mood E) of the possible 64 cases (corresponding
to the rows in Table 1). Furthermore, in all 16 cases where the premises have
the form of figure 1, 100% of the human reasoners prefer this order or, at least,
do not prefer the reverse order.

6 Conclusions

In this paper, we have introduced a set-based approach to syllogistic reasoning
that allows a fine-grained analysis of syllogistic reasoning. It is cognitively simple,
because it makes use of only seven spaces. In addition, there is a straightforward
implementation by means of constraint logic programming, that is presented
here for the first time. Last but not least, several assumptions humans implicitly
may have can be tested, e.g. that all categories are non-empty.

Further work will concentrate on a more thorough analysis of syllogistic rea-
soning and comparison with the empirical findings. Possibly no single, monolithic
theory can explain the whole picture. In consequence, the individual behavior of
a test person may be derived from sample conclusions taken by that person. In
addition, techniques from machine learning like case-based reasoning, clustering,
decision tree learning, or neural networks may be employed.
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