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Abstract Continuous person monitoring systems usually assume single-
person households. Presence of visitors, such as family members and
friends, and multi-person households are therefore not taken into con-
sideration, although they can still influence results. However, in order
to reason about a specific monitored person’s evolution and trends, it is
needed to accurately recognise the different activities that these persons
perform throughout a day. This paper considers multi-person households
and focuses on the problem of assigning activities detected by a continu-
ous monitoring system to the person that has performed these activities.
The proposed solution consists of modelling the domain terminology into
an ontology, as well as that person’s typical habits by means of a Finite
State Machine – represented in its own ontology – using the concepts
from the domain ontology. Sequences of recognized activities are then
compared to the Finite State Machines associated to the different per-
sons in a household, and assigned to the person with the most similar
modelled sequence.

1 Introduction

Our aging society is facing huge challenges on a variety of domains, not least
in the home-care domain. A lot of research is performed into how people can
be continuously monitored remotely, so as to keep track of how they are doing,
whether they stick to their treatment protocol, etc. In order to be able to reason
about the evolution and trends, one first needs to understand a person’s habits,
and, to this end, activity recognition is needed. One of the driving factors for
the research presented in this paper, is the fact that most of the current State-
Of-The-Art (SOTA) is focused on individuals. Oftentimes, the fact that human
beings live and grow old together is neglected. One might argue that technology
is not or less necessary when people are still living together, as they can monitor



one another, but this is certainly not always the case. Some people already are
mentally or physically less able to care for themselves, let alone for a partner or
someone else living in.

A wearable cannot uniquely identify a person, as, per se, it is unaware of who
is wearing it. The system should therefore allow to link a wearable with a person
(e.g. by its unique name or an ID). Environmental sensors – sensors placed in
the living environment of a resident, e.g. Passive Infrared Sensors (PIR) sensors,
ambient temperature sensors, etc. – that complement the wearable can pick up
signals from other (non-)monitored persons. Such sensors can also identify a
person, in case the person wears a tag, when its (unique) signal is captured by a
tag reader, e.g. in a specific room of the household. Current monitoring solutions
do not deal with this multi-person situation. Even in single-person households,
visitors can be present. In order to correctly analyse a person’s daily living habits,
these potential problems need to be properly catered for.

This paper investigates multi-person scenarios and more specifically focuses
on the problem of assigning a recognised activity to one of the persons present
in that environment. Conceptually, the following approach has been taken to
tackle the aforementioned research challenge. Residents in a household have
been asked to keep a diary of their daily activities. This diary is then used
to generate a model that captures the typical activities that follow one another,
with appropriate guards (e.g. the resident only takes a shower when he/she has
gotten out of bed). In this work, a Finite State Machine (FSM) has been chosen
as supporting technology. In principle, this FSM can be generated based on other
data, where such patterns of daily living have been identified from historical data.
The FSM-based approach does not assign single activities to a single resident
directly, but considers whether an activity that is observed fits a (set of) FSMs
that are linked to (a) user(s). Since each user has its own FSM, one strives to
end up with a single FSM linked to that activity, which basically then assigns
that activity to the resident corresponding to that FSM.

Using the fixed scenario below, i.e. the morning scenario at an elderly couple’s
place, the developed algorithms and services can be validated and demonstrated
and is used throughout this paper as a running example. The scenario requires a
number of sensors to be installed at the household to detect the correct activity
(later on referred to as Activity Profile) performed by the persons in that
household. The goal of the activity attribution is to automatically distinguish
which person is doing which activity in a multi-person household setting.

1. One person wakes up at 7:00,

2. and starts preparing breakfast at 7:02.

3. The second person wakes up five minutes later,

4. and takes a shower at 7:07.

5. They have breakfast together at 7:20.

6. One of them starts reading the newspaper at 8:00, and

7. the other one takes a shower at 8:00.



The research presented in this paper was conducted in close collaboration
with partners in the SMARTpro project.3.

In this section the context of the research challenge has been sketched. The
adopted technologies, the actual ontology decomposition and the software archi-
tecture of the presented solution are detailed in Section 3 to 5. The next section,
Section 2 introduces relevant related work. This paper is concluded in Section 6.

2 Related Work

Research presented at the Pervasive Health Conference in Oldenburg, 2014 [6],
lists a number of algorithms and platforms for household activity monitoring.
The authors rightly claim that those systems, however, are either limited to the
tracking of a single-person household or otherwise are complex to install. Two
studies have been presented, namely (i) a feasibility study on the usage of bin-
ary sensor networks and (ii) a test on the effectiveness of the multi-hypothesis
tracking algorithm, based on data from two people residing in a living lab from
the Washington State University. In future work, the focus lies on reliable gener-
ation of correct topology graphs as well as on the improvement of the algorithm
itself, eliminating inaccuracies introduced when multiple people are present.

Another interesting approach can be found in this thesis proposal [11]. Al-
though the research focuses on a single-person household, the topics are inter-
esting in the context of actual activity determination (later on referred to as
Activity Profile) as a pre-processing step before the problem of a multi-person
household can be investigated. A historic overview on automatic health mon-
itoring, people tracking and activity recognition is presented as well as an ex-
tensive list of completed work, including research on the use of binary sensors,
the algorithms for Simultaneous Tracked And Recognition (STAR) through the
adoption of Bayesian networks, classical data association methods and particle
filter implementations. Furthermore, improvements on the current SOTA are
presented as well as the results of experiments on real and simulated data.

The algorithm and framework presented and evaluated in [9] enables resident
counting using simple (non vision-based) sensors. This initial work assumes a
number of preconditions which limit its current usage, such as the pre-definition
of the number of residents.

The evaluation of the algorithms presented in [8] is based on simulated data
and limits its scope on the tracking of moving objects in a binary sensor network.
This means that the aspect of activity recognition is not taken into account. Still,
the research results tackle the issue of multiple moving objects (or in our case
residents) in non-disjoint areas.

Although [10] in itself does not present technical SOTA in terms of platforms,
software or algorithms, it does provide an argumentation of why the roll-out of
sensors in the homes, together with the appropriate autonomous evaluation al-
gorithms and tool-support, is beneficial for the overall well-being and living con-
ditions of the residents. Specific official medical and clinical-trial-validated tests

3 http://smart-pro.eu/



are performed by medical professionals on elderly people to score their mobility
and capability in daily living, etc. However, those tests are only performed every
now and then by the doctor, in a professional care setting, and thus only take
into account long-term evolution. This could be one of the major arguments for
enabling more frequent assessments in domestic environments and as such more
fine-grained monitoring of the patients evolution and this in the comfort of their
own home.

The authors in [4] highlight two important barriers for wide-scale installation
of sensor networks in a residential setting, namely the cost of installation and
perhaps even more important, making sense of all that captured data. Results are
presented from a data collection exercise, using three sensors at 17 households
and adopting a black-box style algorithm to describe typical user behaviour,
starting from 55 days of unannotated data.

3 Defining the Household / Activity Vocabulary

The heart of our proposed system is based on semantic technologies. An ontology
is used to fix the vocabulary used throughout this system. This vocabulary is
modelled into a taxonomy, in which relationships (i.e. properties) and constraints
(i.e. axioms) link the terms of this taxonomy together. The generic ontology
structure is graphically illustrated in Figure 1. To keep the ontology properly
maintainable, adaptable and configurable, it has been split up in a number of
re-usable ontology modules. All those ontology modules model a specific part of
the domain. Should the scenario evolve in such a way that certain aspects are
not needed anymore, then the import approach can be modified in such a way
that the redundant modules are omitted.

The following subsections detail the purpose and the contents of the actual
domain ontology modules.

3.1 SMARTpro BASE Taxonomy

All common concepts representing the minimal ontological commitment are in-
cluded in the SMARTpro Base ontology module, which is illustrated in Figure 2.

3.2 SMARTpro DOMAIN Taxonomy

Each taxonomy module in this subsection extends the base ontology module,
and thus also imports the http://users.atlantis.ugent.be/svrstich/SMARTpro/

SMARTpro_Base.owl ontology. One module for every room in the household or for
every Activity Profile to be processed, has been created.

Finally, these are all brought together, at least those modules needed for the
current demonstration scenario, in the overall SMARTpro ontology. A repres-
entative sample can be seen in Figure 2.
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Figure 1. Ontology decomposition into separate re-usable independent modules, linked
together by the import approach.

 

Figure 2. Overall asserted class hierarchy for the current SMARTpro scenario.



4 Modelling Behaviour using Finite State Machines

According to the Free Online Dictionary of Computing4, a FSM or also known
as a Finite State Automaton (FSA) is an abstract machine consisting of a set of
states (including the initial, intermediate and final states), a set of input events,
a set of output events, and a state transition function.

4.1 FSM for the Activity Attribution Use-Case

We expect residents to behave in a more or less repetitive and structured man-
ner. Note that this may not always be the case, and our approach will not be
performing as desired, when the residents are rather unstructured in their daily
active living. The states of the FSM are aligned with the SegregatedActivity
concept from the domain ontology model, according to the scenario defined in
Section 1.

As a base ontology model to represent the FSM, the results from the IST
ELENA project [3] have been adopted, more specifically, the OWL ontology
for state machines in the context of navigation and interaction modelling for
web-based and hypermedia systems by Peter Dolog [2].
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Figure 3. FSM for the multi-person household scenario.

In Figure 3, the actual FSM is presented. It has to be read from left to right.
According to the defined scenario, for two residents: 1. The resident wakes up
(Waking Up). 2. The resident takes either a shower (Taking Shower) or prepares
breakfast (Preparing Breakfast). 3. After that, any of the two residents have
breakfast (Having Breakfast) together. 4. One of the residents starts reading
the newspaper (Reading Newspaper). 4a. However, before being allowed to do

4 http://foldoc.org/



that, there is a conditional guard (Reading Newspaper Guard) on the transition
between having breakfast and reading the newspaper. 4b. In this situation this
guard models that the resident should first have taken a shower (Compulsory
Prior State Visit). 5. The other resident, which does not satisfy the condition
defined in the guard, takes a shower (Taking Shower). 6. Now the second resident
can also start reading the newspaper (Reading Newspaper).

In an M:N setting, i.e. more than one FSM belonging to more than one resid-
ent, multiple instances of such FSMs, each modelling slightly different situations,
might be present. The goal of the detailed system is that, by analysing the incom-
ing Activity Profiles from the low-level activity profile recognition algorithms –
the actual detection of the activities is beyond the scope of this research, i.e. it is
assumed that certain activities can be detected by an external system, but whom
actually performed those is to be determined – it can find either one or more
correct FSMs, still satisfying the sequence of already detected Activity Profiles.
Moreover, as every FSM is linked in the system belonging to / representing the
behaviour of a resident, we can conclude which resident has been responsible for
the detection of those Activity Profiles. The system has been engineered in such
a way that a true M:N situation can be supported. That is, every resident can
have multiple instances of finite state machines. On the other hand, any given
FSM can be linked to one or more residents.

4.2 Detecting the Appropriate FSM for the Resident, Using a
Similarity Measure

The incoming sequence of detected Activity Profiles might not always correspond
100% with the pre-determined knowledge model. Perhaps, though, a similarity
of 90% can be sufficient to make a well educated guess as to whom was actu-
ally executing those activities. To be able to calculate this similarity a certain
similarity measure is needed.

The problem of measuring “similarity” of objects arises in many applica-
tions, and many domain-specific measures have been developed, e.g., matching
text across documents or computing overlap among item-sets. Jeh and Widom [5]
propose an approach, applicable in any domain with object-to-object relation-
ships, which measures similarity of the structural context in which objects occur,
based on their relationships with other objects. Given the graph-like triple nature
of an FSM and indeed ontologies, this approach could be very effective. It calcu-
lates a measure that says “two objects are similar if they are related to similar
objects.” This general similarity measure, called SimRank, is based on a simple
and intuitive graph-theoretic model.

4.3 Finite State Machine Generator

In the previous subsections, the approach with using FSMs for the modelling and
attribution of sequences of Activity Profiles to members of the household, has
been detailed. Of course, before this methodology and corresponding algorithms
can be used in a real-life setting, the actual FSMs corresponding to the typical



behaviour of the residents need to be instantiated. The approach adopted for this
research has been to ask the residents to keep track of their typical behaviour
during a number of days. The resulting logfiles were then fed into the system to
generate the corresponding FSMs from. A small sample of such a logfile is given
in the listing below.

29/06 7 : 0 0 : Kate wakes up
29/06 7 : 0 2 : Kate prepares b r e a k f a s t
29/06 7 : 0 5 : William wakes up
29/06 7 : 0 7 : William takes a shower
29/06 7 : 2 0 : Kate and William have b r e a k f a s t toge the r
29/06 8 : 0 0 : William reads the newspaper
29/06 8 : 0 0 : Kate takes a shower

5 Architecture

Figure 4 portrays the components and data flow involved in tracking multi-
person households, expanding on previous research into our generic MASSIF [1]
platform.

5.1 Data Producers (Module I)

Denoted with the title “DYAMAND”, reference is made towards the integration
with the DYAMAND platform [7]. DYAMAND serves as the low-level sensor
integration platform, used as a generic data provisioning component.

5.2 Conversion of Process Data into Activity Profiles (Module II)

The raw low-level data produced by the sensors can potentially generate high-
frequency data samples.The aim of the services in “External Sources” module
is to gather this data, execute proprietary algorithms on it in order to generate
what has been referred to as “Activity Profiles” earlier on.

5.3 Preparing the Data (Module III)

Detected Activity Profiles are communicated to the MASSIF platform by means
of the interface provided by the “Gateway” component.

Multiple sub-ontology modules have been created to support transparent
personalisation and easy adaptation. The second component in Module III can
be used to convert non-semantic data into semantic information, as well as to
verify the correct formation of the incoming JSON fragment.

5.4 Data Broker (Module IV)

Module IV represents a data brokerage system. Its purpose is to streamline
incoming data distribution. After all, the services responsible for the actual pro-
cessing of the incoming data.



Figure 4. Overview of components required to demonstrate multi-person household
activity attribution.



5.5 Intelligent Data Distribution (Module V)

The native message brokering system, as provided by the platform in Module
IV, lacks support for intelligent data processing, e.g. by means of description-
logics reasoning. The service subscribes for specific information, but cannot do
this using first order logic. Therefore, the Semantic Communication Bus (SCB)
enhances the data brokerage system by subscribing to all passing messages.

5.6 Activity Profile Clustering through FSM Analysis (Module VI)

In what has been presented so far, data engineering and communication mech-
anisms have been detailed.

The following paragraphs present in more detail how the algorithms are en-
abled in the MASSIF platform.

MCI Service In MASSIF a service that converts data into information, and
processes this information to create knowledge is named a Meta-Context Inform-
ation (MCI) Service.

Activity Profile Attribution Service This is the service responsible for at-
tributing the detected Activity Profiles to a resident in the monitored household,
and this based on what is specified in the knowledge model, i.e. in the FSMs.
On a high level, the process of performing this attribution uses a combination
of code-based programming and SPARQL queries (between brackets where ap-
plicable) and can be summarised as follows:

1. The FSM instance that contains a state representing the activity profile is
queried. (=FIND FSM FOR ACTIVITY PROFILE)
2. For the given state from the FSM at hand, several specific cases need to be
analysed and treated differently:

2.a. Check whether the given state represents an initial state in the FSM.
(=ASK STATE INITIAL)

2.a.1. Execute the logic for an initial state in the FSM, i.e. check all clusters
currently being found for all actors, until an empty cluster is found. After all,
an initial state has to start from an empty cluster.

2.a.2. If it is an initial state, add it to an empty cluster or create a new
cluster.

2.b. Check whether the given state represents a simple state in the FSM.
(=ASK STATE SIMPLE)

2.b.1. Execute the logic for a simple state in the FSM, i.e. check all clusters
currently being found for all actors, until an appropriate cluster is found, i.e.
a cluster where the last activity profile matches the previous FSM state of the
current activity profile being analysed. (=QUERY PREVIOUS STATE)

2.b.2. Iterate through all potential previous states according to the FSM
ontology, until in the inner loop a cluster has been found where it can be added
to.



2.b.3. Iterate through all clusters already present for one or more actors,
and see whether the current activity profile being analysed can be added to that
cluster.

2.b.4. Check whether a guard is attached to the transition between the two
states, and if so, if the guard has been satisfied. (=QUERY TRANSITION -
GUARD STATE)

2.c. Check whether the given state represents a final state in the FSM. (=ASK -
STATE FINAL)

2.c.1. Execute the logic for a Final State in the FSM, i.e. check all clusters
currently being found for all actors, until an appropriate cluster is found, i.e.
a cluster where the last activity profile matches the previous FSM state of the
activity profile being analysed.

2.c.2. Finalise the current FSM.

Performance evaluation The performance in terms of Round Trip Time
(RTT) has been evaluated. On a laptop, running Windows 10, with an Intel(R)
Core(TM) i7-6600U CPU, running at 2.81 GHz and having 15.7 GB of RAM
available, the following averaged results were achieved: (i) Platform startup: 29
024ms, (ii) Activity Profile Attribution service startup: 9ms, (iii) Gateway star-
tup + adapter registration: 60 507ms, (iv) Activity Profile Attribution algorithm
cycle: 426ms, (v) Shutdown: 64ms. Apart from (iv), these timings represent a
one-time execution. The algorithmic cycle can be subdivided into JSON frag-
ment processing and the actual FSM matching aspect. On average 90% of the
time is spent on the actual algorithm itself, with the remaining on the JSON
processing.

6 Conclusions and Future Work

Attributing detected activities in a multi-person household is a difficult task.
In this paper, a semantic approach to follow-up on daily activities in a multi-
household setting has been presented. Both the software platform as well as the
ontology model itself have been introduced. The algorithmic heart of the software
is realised by means of ontology-based Finite State Machines. This system can
help in allowing people to stay home in their habitual residences as long as
possible.

The core concepts and technologies that have been used for this research
are plenty, but appropriate for the tasks at hand. Ontologies have been used as
central knowledge component. The SMARTpro project has allowed us to install
sensors in residences, allowing us to collect data, together with a journal kept
by the residents themselves. This data has been ingested through DYAMAND
and processed by algorithms in the semantic MASSIF platform.

One aspect that needs more effort is the generation of the log files. It has
been observed that keeping track of one’s daily behaviour, in order to be able
to generate a corresponding FSM, can be a very labour intensive task. More
intelligent / automated approaches are definitely needed.
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