
Koral: A Glass Box Profiling System for Individual
Components of Distributed RDF Stores

Daniel Janke1, Steffen Staab1,2, and Matthias Thimm1

1 Institute for Web Science and Technologies
Universität Koblenz-Landau, Germany

{danijank,staab,thimm}@uni-koblenz.de
http://west.uni-koblenz.de/

2 Web and Internet Science Group
University of Southampton, UK
s.r.staab@soton.ac.uk

http://wais.ecs.soton.ac.uk/

Abstract. In the last years, scalable RDF stores in the cloud have been developed
increasing the complexity of RDF stores running on a single computer. In order to
gain a deeper understanding how, e.g., the data placement or the distributed query
execution strategies affect the performance, we have developed the modular glass
box profiling system Koral. With its help, it is possible to test the behaviour of
already existing or newly created strategies tackling the challenges caused by the
distribution in a realistic distributed RDF store. Thereby, the design goal of Koral
is that only the evaluated component needs to be exchanged and the adaptation
of other components is aimed to be minimal. The wide variety of measurements
allow for an in-depth investigation of the performance. With Koral we analyse
the impact of the three most commonly used data placement strategies and found
out that balancing query workload reduces the query execution time more than
reducing the data transfer.

Keywords: distributed RDF store, glass box, profiling system

1 Introduction

In the last years, several scalable RDF stores in the cloud were developed, in which
graph data is distributed over compute and storage nodes for scaling efforts of query
processing and memory needs. This distribution over several compute and storage nodes
introduces a higher degree of complexity. In contrast to centralized RDF stores, dis-
tributed RDF stores need strategies for data placement over compute and storage nodes,
for distributed query processing and for handling failures of compute or storage nodes.
Several approaches aiming to improve these aspects of distributed RDF stores were de-
veloped in the recent years. This includes new graph cover strategies like [19, 10] and
new distributed query processing approaches like [23, 25].

In order to improve the current state-of-the-art, the strength and weaknesses of the
already existing techniques as well as their impacts on the individual components of
a distributed RDF store need to be identified. Therefore, glass box profiling systems
are required that (i) profile the performance of a component in a distributed RDF store,

(ii) allow for a fair comparison of alternative implementations of a single component
and (iii) provide measurements for in-depth analyses of the performance. Especially,
the second ability is important since comparing the performance of alternative imple-
mentations helps to identify their weaknesses and thus, indicate directions for future
improvements.

Evaluation platforms like Granula [20] allow for analysing the performance of
large-scale graph processing systems. Thereby, they provide insights on the perfor-
mance of the individual components used by the tested systems. Their drawback is
that, e.g. alternative data placement strategies can only be compared by comparing sys-
tems that use different data placement strategies. Since only the differences between
complete systems can be profiled, we call platforms like Granula black box evalua-
tion platforms. These black box evaluation platforms can hardly answer the question
of whether an observed difference in the network traffic is caused by, e.g. the new data
placement strategy, a better query execution or optimization technique. The identifi-
cation of the actual cause requires systems that are identical in all but the examined
component.

Due to the absence of glass box profiling systems in which alternative implementa-
tions of the same component can be profiled within one system, [5, 11] suggest the usage
of distributed batch processing systems like Apache Hadoop [1] and Apache Spark [2]
to evaluate individual components of a distributed RDF store. These systems use dis-
tributed file systems for the data exchanges between individual compute nodes leading
to a slower data exchange than systems using direct peer-to-peer communication [14].
Thus, approaches reducing the network traffic showed a better performance.

To enable fairer in-depth performance analyses of alternative implementations of
individual components, our first contribution is the open source glass box profiling sys-
tem Koral [3]. It is a modularized distributed RDF store in which the inter-dependencies
between its components are reduced to an extent that each component can be exchanged
with alternative implementations. Together with the wide variety of provided metrics,
Koral allows for in-depth performance analyses of approaches tackling the challenges
of distributed RDF stores.

Our second contribution is a case study in which we use Koral to examine the effect
of frequently used data placement strategies on the query performance. We could ob-
serve that a data placement strategy that reduces the data transfer during query process-
ing performed worse than data placement strategies that balanced the query workload
equally among all compute nodes. A more detailed and extensive evaluation of graph
cover strategies and their effect on the query execution when scaling the number of
compute nodes can be found in [12].

In short, the contributions of this paper are:

1. The open source glass box profiling system Koral that (a) profiles the performance
of different variants of the same component and (b) provides metrics for an in-depth
investigation of the observed behaviour (Sec. 3).

2. A profiling of frequently used data placement strategies using Koral indicating that
a more balanced query workload might have a higher impact on the query perfor-
mance than a reduction of the data transfer (Sec. 4).

2 Formalisation of Challenges

Distributed RDF stores have several challenges. In the context of this paper, we will
focus on the challenges of the data placement and the distributed query processing.
Their formalization is given in the following two sections.

2.1 Formalisation of Data Placement

To formalize the Data Placement challenge, we define RDF graphs like in [8]. Assume
a signature σ = (I,B, L), where I , B and L are pairwise disjoint infinite sets of IRIs,
blank nodes and literals, respectively. The union of these sets is abbreviated as IBL.

Definition 1. The set of all possible RDF triples T for signature σ is defined by T =
(I ∪B)× I × IBL. An RDF graph G or simply graph is defined as G ⊆ T .

(s, p, o) ∈ T is also called a triple with subject s, property p and object o. To simplify
later definitions, the functions subj(t), obj(t) and prop(t) return the subject, object or
property of triple t, respectively. Likewise, we use subj(T), obj(T) and prop(T) to
refer to the set of subjects, objects and properties in the triple set T .

In the context of distributed RDF stores, the triples of a graph have to be assigned
to different compute and storage nodes (in the following, we refer to them more briefly
as compute nodes). The finite set of compute nodes is denoted as C.

Definition 2. Let G denote an RDF graph. Then a graph cover is a function cover :
G→ 2C , that assigns each triple of a graph G to at least one compute node.

Definition 3. The function chunk returns the triples assigned to a specific compute
node by a graph cover (graph chunks). It is defined as

chunkcover: C → 2G

chunkcover(c):= {t|c ∈ cover(t)} .

2.2 Formalisation of Distributed Query Execution Strategy

The challenge of the distributed query execution is to find a strategy to execute a query
on several compute nodes each of them storing a different graph chunk. The result of
the distributed query execution should be the same as when executed on an RDF store
running on a single compute node and storing the complete graph. To formalize the
distributed query execution, we define a SPARQL core as done in [24], [21] and [4].
For this definition the infinite set of variables V that is disjoint from IBL is required.
In order to distinguish the syntax of variables from other RDF terms, they are prefixed
with ?. The syntax of SPARQL is defined as follows.

Definition 4. A basic graph pattern (BGP) is a
1. triple pattern, i.e. an element of the set TP = (I ∪ L ∪ V)×(I ∪ V)×(I ∪ L ∪ V)

2. a conjunction B1.B2 of two BGPs B1 and B2.

Definition 5. A SELECT query is defined as SELECTW WHERE {B} withW ⊆ V and
B a BGP.

Before the semantics of a SPARQL query can be defined, some additional definitions
are required. In the followingQ represents the set of all SPARQL queries and the partial
function µ : V 7→ IBL represents a variable binding. The abbreviated notation µ(t) with
t ∈ TP means that the variables in t are substituted according to µ.

Definition 6. Two variable bindings µi and µj are compatible, denoted by µi ∼ µj , if
∀?x ∈ dom(µi) ∩ dom(µj) : µi(?x) = µj(?x).3

Definition 7. The join of two sets of variable bindings Ω1 and Ω2 is defined as
Ω1 on Ω2 = {µ1 ∪ µ2|µ1 ∈ Ω1 ∧ µ2 ∈ Ω2 ∧ µ1 ∼ µ2}.
The variables contained in dom(µ1) ∩ dom(µ2) are called join variables.

[21] and [4] define the semantics of a SPARQL query as follows:

Definition 8. The evaluation of a SPARQL query Q over an RDF Graph G, denoted by
JQKG, is defined recursively as follows, with var(tp) returning all variables occurring
in triple pattern tp:
1. If tp ∈ TP then JtpKG = {µ|dom(µ) = var(tp) ∧ µ (tp) ∈ G}.
2. If B1 and B2 are BGPs, then JB1.B2KG = JB1KG on JB2KG.
3. IfW ⊆ V andB is a BGP, then JSELECTW WHERE {B}KG = project(W, JBKG) ={

µ|W |µ ∈ JBKG
}

.4

Definition 9. The distributed evaluation of a SPARQL queryQ over an arbitrary graph
cover called cover that assigns triples of an arbitrary RDF graph G to compute nodes
C, denoted by JQKcover, is defined as JQKcover :=

⋃
c∈C

JQKccover. Thereby, JQKccover is the

set of all results produced on compute node c during the distributed query evaluation5.

In order to be equivalent to the centralized query evaluation, every distributed execution
mechanism has to be semantically correct.

Theorem 1. The centralized evaluation of query Q over graph G JQKG produces ex-
actly the same results as its distributed evaluation, i.e.

JQKcover = JQKG .

3 Glass Box Profiling System Koral

In order to gain deeper insights in the strength and weaknesses of individual approaches
tackling the challenges of distributed RDF stores, glass box profiling systems are re-
quired. These systems should be:
realistic so that the profiled performance is similar to a realistic distributed RDF store.
modular to test varying approaches tackling the same distributed RDF store challenge.
investigative by performing measurements that allow for an in-depth analysis of the

performance of the examined components.
3 dom(µ) refers to the set of variables of this binding.
4 µ|W means that the domain of µ is restricted to the variables in W .
5 The formal definition of JQKccover can be found in [12].

The glass box profiling system Koral [3] is realistic since it is designed as a distributed
RDF store. Its architecture is presented in Sec. 3.1.

We achieved modularity by separating the core functionalities into individual com-
ponents whose functionality used by other components are declared by interfaces. Fur-
thermore, we reduced the inter-dependencies between components to an extent that
each component can be exchanged with alternative implementations. With its current
state of modularity, components tackling the following challenges of distributed RDF
stores can be profiled: the data placement strategy, the centralized indexing of all graph
chunks, the distributed query execution strategy including query optimization, the han-
dling of compute node failures as well as the efficient data transfer between compute
nodes. Due to space limitations we will only present the exchangeability of the graph
cover strategy (Sec. 3.2) and of the distributed query execution mechanism (Sec. 3.3).

In order to be investigative, Koral provides a wide variety of measures as described
in Sec. 3.4. Beside time-based measures, Koral also provides several time-independent
measures to investigate the performance without influences caused by the experimental
setting. The limitations of Koral are discussed in Sec. 3.5.

3.1 Architecture Overview

Koral consists of one master node and several slaves as shown in Fig. 1. In general,
the master creates the graph cover, assigns chunks to slaves and coordinates the query
execution. The slaves are responsible for the query processing. The network managers
maintain peer-to-peer network connections and manage the network communication.
At loading, the huge size of the input graph needs to be reduced as early as possible.
Therefore, the contained textual resources are replaced by numerical ids. The creation of
the ids as well as storing the mapping between the textual and the numerical representa-
tion is done by the dictionary encoder. Since some graph cover strategies might require,
e.g. subjects, as plain text, the dictionary encoder encodes only those parts of the triples
that are not required in their textual representation (see Sec. 3.2). The encoded graph is
then used by the graph cover creator to create the requested graph chunks. If unencoded

Master

Dictionary

Slave1

Encoder
Graph Cover

Creator
Query Execution

Coordinator
Network
Manager

Dictionary Statistics

Query
Executor

Network
Manager

Local Triple Indices

Query
Executor

Network
Manager

Local Triple Indices

Slaven

Fig. 1: Architecture of Koral.

triple elements exist, they are encoded after the graph cover creation in order to reduce
the size of the graph chunks.

In order to perform, e.g. cost estimations required for query optimization or a load
balancing during query execution, statistical information about the content of each
graph chunk may be required. Therefore, the frequency of the different resources in
the different chunks is counted and stored in a statistics database.

Some distributed query execution strategies might require some preprocessing steps
of the input data like appending additional information to the encoded resource ids.
Therefore, the master iterates all graph chunks a last time before they are sent to the
slaves. The slaves create local index structures (SPO, OSP, and POS indices as described
in [27]). While the multi-pass strategy has the disadvantage that it iterates the data
files several times, it has the advantage that it prevents to run out of memory and is
thus highly scalable for very large files. In order to reduce the cost of disk I/O, all
components except the statistics database access the data files linearly.

At run-time, a query execution coordinator is instantiated for each received query.
After the initial parsing step including the encoding of constants, the query execution
trees for the slaves are created and sent to the corresponding slave.

Each slave executes the query execution tree assigned to him. The match operations
use the local triple indices to find matches for the corresponding triple pattern. The re-
sulting variable bindings are transferred to the succeeding operation on the same or any
other slave. In order to make better use of the network bandwidth, several intermediate
results are bundled together and sent to the receiving slave within one package. The
final query results are sent to the query coordinator. The coordinator decodes the ids
using the dictionary and sends the decoded variable bindings to the sender of the query.

3.2 Exchangeability of Graph Cover Strategies

To allow for testing new graph cover strategies, all methods used by Koral are declared
in the interface of the GraphCoverCreator component (Fig. 2a). During the ini-
tial dictionary encoding phase all elements of the RDF tuple that are not required in
their textual representation for the graph cover creation are encoded. With the method
getRequiredInputEncoding() each graph cover strategy can define, whether it
requires the subject, property or object in its textual representation. These elements will
be automatically encoded after the graph cover is created.

The actual graph cover creation is performed by createGraphCover(). It re-
ceives the initially encoded input RDF file, a working directory where the graph chunks
should be created and the number of graph chunks to be created as input. For the sake
of brevity, these input parameters are omitted in Fig. 2a. The created graph chunks are
finally returned by this method and processed in the succeeding graph loading steps.

In order to avoid restrictions on the graph cover strategies that can be used in Ko-
ral, a distributed query execution strategy is required that works with arbitrary graph
covers including triples assigned to more than one compute node. This graph cover-
independent query execution strategy is the default implementation in Koral. This strat-
egy is explained in the following section.

«interface»

+ getRequiredInputEncoding(): EncodingFileFormat
+ createGraphCover(): File[]

GraphCoverCreator

(a) The interface of the graph cover creator component.

«interface»

+ setUp(): void
+ execute(): void
+ isInFinalState(): void
+ close(): void
+ enqueueMessage(): void

WorkerTask

(b) The interface for query operations.

Fig. 2: The interfaces for graph cover strategies and query operations.

The existing implementations of Koral comprises three graph cover strategies:

1. The hash cover [9] assigns triples to chunks according to the hash value computed
on their subjects modulo the number of compute nodes. Thus, all triples with the
same subject are located in the same graph chunk.

2. The hierarchical hash cover [18] is inspired by the observations that IRIs have a
path hierarchy and IRIs with a common hierarchy prefix are often queried together.
Therefore, this cover creates a hash cover only on IRI prefixes.

3. The minimal edge-cut cover is a vertex-centred partitioning which tries to solve the
k-way graph partitioning problem as described in [16]. It aims at minimizing the
number of edges between vertices of different partitions under the condition that
each partition contains approximately the same number of vertices.

3.3 Exchangeability of Distributed Query Execution Strategies

Distributed query execution strategies may vary in (i) additional information added to
the graph chunks, (ii) the way query execution trees are created for the individual slaves,
and (iii) the actual implementation of the query operations executed on the slaves.

In order to encode additional information into the graph chunks, the loading proce-
dure of the graph includes a step for final adjustments of the created graph chunks. In or-
der to implement such final adjustments, the method performFinalAdjustments()
in class GraphLoaderTask needs to be implemented. It receives the graph chunks
as input and returns the adjusted graph chunks.

After the graph is loaded, the master accepts queries. For each query, a new query
execution coordinator is started. This coordinator parses the query and creates the query
execution trees that are sent to the slaves. The query execution trees sent to the in-
dividual slaves can be adjusted by implementing executePreStartStep() in
QueryExecutionCoordinator. Since statistical information about the occurrences
of resources in the individual graph chunks might be required, the method provides ac-
cess to the statistics database.

New query operations can be created by implementing the WorkerTask interface
(Fig. 2b). Each slave has a query executor component that runs for each available CPU
core one worker thread. The query executor registers query operations at the worker
threads based on their current workload. After the registration the method setUp() is

called. Thereby, the operation gets access to the network manager, to send messages to
other operations, and to the local triple indices. After initialization, the worker thread
circularly calls execute() of all query operations assigned to him. During these
method calls each operation performs its work and processes received messages. In-
coming messages are announced via enqueueMessage(). When an operation is
finished, the worker thread unregisters it and calls close().
The existing implementation of Koral extends the state-of-the-art asynchronous ex-
ecution mechanism realised in TriAD [7]. This extension makes it independent of the
used graph cover strategy. Its formal definition and the proofs of soundness and com-
pleteness are given in [12].

In order to reduce the number of transferred intermediate results, each resource is
uniquely assigned to a slave that is responsible for joining it during the query process-
ing. This assignment of a resource is based on the frequency with which it occurs in
the different graph chunks. Therefore, when the statistical data have been completely
collected and the loading process iterates over all graph chunks a last time, the slaves
responsible for joining the individual resources are determined. The resource id is then
prefixed by the id of the responsible slave and written to disk again.

When the master receives a query, it creates a query execution coordinator. This co-
ordinator parses the query and creates the query execution tree. This tree is submitted to
all slaves. During the query execution on the slaves, each operation transfers its result-
ing variable bindings to the succeeding join operation on the slave responsible for the
join of the resource. Whenever the join operation receives a variable binding, it is joined
with the cached variable bindings. The join results are directly sent to the succeeding
operation. When all child operations of a query operation o in the query execution tree
are finished and no further input needs to be processed, it sends a finish notification to
all o operations on the other slaves. If o has received the finish notifications from all
other o operations, it declares itself as finished. This synchronization step is required to
guarantee that all results are found. The root operation in the query execution tree sends
its results to the query coordinator. The coordinator forwards them to the sender of the
query after they have been decoded.

3.4 Evaluation Measures

In order to gain deeper insights about the effect of a graph cover strategy or a distributed
query execution strategy, Koral provides a wide variety of measurements. Beside differ-
ent run time measurements, Koral measures also many time-independent measurements
like the storage imbalance, the workload and the network usage. With the help of these
measurements, meaningful metrics can be defined that allow for comparing different
strategies.
Loading Time. Loading a dataset typically involves at least seven steps, some of which
may be interleaved and/or parallelized:

1. Initial dictionary encoding of nodes and labels unused during graph cover creation
for faster access and memory savings.

2. Computation of the graph cover.
3. Final dictionary encoding of nodes and labels used during graph cover creation.

4. Collection of statistical information.
5. Perform query strategy-dependent adjustments of graph chunks.
6. Transfer of data chunks to compute nodes.
7. Indexing of data chunks at local compute nodes.

Given a dataset and a graph cover strategy, the overall load time comprises these 7 steps,
but also the run times of the individual steps are of interest. For instance, the graph cover
computation time can be used to compare different graph cover strategies, whereas the
time required for the query strategy-dependent adjustments of the graph chunks might
be one important factor for the comparison of distributed query execution strategies.
Storage imbalance. Scaling the cloud for handling growing memory needs may be
jeopardized by graph cover strategies avoiding data transfer. They might generate a
skewed distribution delegating expensive tasks on few compute nodes. Therefore, Koral
counts the number of triples stored in each graph chunk. These measurements are used
to evaluate the quality of the storage distribution resulting from a graph cover strategy.
Querying Time. For the overall query performance, different performance characteris-
tics of an RDF store may be desirable. While the time to deliver the complete result is
crucial, e.g., for statistical reports, in a fact-finding mission one may be more interested
in only few top-k results being returned quickly. Hence, we provide different kinds of
performance characteristics. Characteristics depend on measuring the time interval be-
tween issuing the query q at time tq0 and the time when the i-th result is returned at
tqi with Kq representing the overall number of query results for query q. We drop the
superscript q when it is clear from context as in the following definition. With the tqi val-
ues, the frequency in which the individual query results are returned can be analysed.
With the help of Kq the query time to completion can be computed.

Definition 10. Overall query performance is evaluated by the query time to completion
exT ime := tK − t0.

To compare the performance of different implementations of the same query operator
or to find bottlenecks in a query execution strategy, a more detailed measurement of the
individual query operation run times may be required. Therefore, Koral measures for
each operation on each slave how long this operation idles and how long it works.
Network Usage. Time-based measurements such as exT ime depend on the exact con-
figuration of the system such as network bandwidth and latency. In a distributed system,
the transfer of data via the network is a time-consuming operation.

In order to measure the volume of data transferred between compute nodes, we
measure for each query operation the number of variable bindings transferred to each
slave as well as the number of bound variables.

Beside the volume of transferred data also the number of sent packages are part
of the network usage, since in a network with high latency this number might have a
strong effect on the query run time. The network manager of Koral collects a bunch of
variable bindings before it sends them as a single package to another slave. Thereby it
counts the number of packages transferred to each other slave.

Definition 11. For a given cover and a given query execution tree q, we define the
number of transferred packages P :=

∑
c∈C Pc, where Pc is the number of packages

sent from c to any other compute node c′ 6= c.

The data transfer is sometimes also used as the preferred measurement for overall query
efforts in the cloud, as in standard cloud architecture the processor-to-remote-memory
gap by far excels the processor-to-local-memory gap. In newer hardware architectures
that natively support remote direct memory access large differences between these gaps
cannot be taken for granted anymore. Thus, we prefer to measure the network usage
and the workload imbalance.
Query Workload. An interesting question to answer would be, how many join com-
parisons might be executed by different compute nodes in parallel. This number is very
difficult to obtain as it would require the definition and implementation of complex con-
cepts in a distributed system such as ‘simultaneous’ or ‘nearly simultaneous’. We pursue
a simple, but effective strategy here, by simply measuring the number of comparisons
performed by each join operation on each slave and computing the Gini coefficient on
the resulting distribution of join comparisons over different compute nodes.

Definition 12. For a cover and a query execution tree q, workload imbalance W is the
Gini coefficient:

W :=
2∗

|C|∑
i=1

i∗wSeq(i)

(|C|−1)∗w(C) −
|C|+1
|C|−1 , 0 ≤W ≤ 1

where the workload of a compute node w(c) is defined by the number of join compar-
isons of all query operations on c, wSeq(i) denotes the ith workload in the ascending
workload sequence of all compute nodes, and w(C) =

∑
c∈C

w(c) is the total computa-

tional effort on all slaves.

3.5 Limitations

During the design of Koral we tried to design the components independent of other com-
ponents. Since a complete separation of concerns for all invented or not-yet-invented
methods is not possible, some of the components provided by Koral might punish some
methods with a poorer performance. Nevertheless, in this case the modularity of Koral
allows for exchanging the punishing component by an improved implementation and
using this one for a fairer evaluation.

Furthermore, the current design of Koral does not foresee the evaluation of transac-
tions. In order to support transactions, the architecture might be extended by additional
components and already existing components need to be adapted.

4 Case Study Evaluation

In a graph cover benchmark the graph cover strategy would be the only independent
input variable based on which to pursue evaluation and to obtain values for dependent
variables. Performance observations of graph cover strategies, however, are tightly in-
terwoven with several factors. By using Koral for our benchmark6, we can compare the
performance of the different graph cover strategies without varying any other part of
the distributed RDF store. Therefore, most factors influencing the performance com-
parison negatively could be avoided. Other influencing factors might be the dataset and

6 A more detailed description of this benchmark and its results can be found in [13].

the queries used for the benchmark. To reduce the impact of these factors, we use a
real-world dataset and a diverse set of queries as described in Sec. 4.1. The results of
our evaluation are shown in Sec. 4.2.

4.1 Experimental Setup

The set of configurations in our benchmark results from the multiplicative combination
of (i) the set of different graph cover strategies and (ii) the set of different query-dataset
combinations.

Compared Graph Cover Strategies. During the evaluation, a hash cover, a hierarchi-
cal hash cover and a minimal edge-cut cover are compared. We use the implementations
provided by Koral.

Dataset and Queries. In order to avoid effects that occur due to the generation process
of a synthetic dataset, we use a subset of the real-world billion triple challenge dataset
from 2014 (BTC2014) [15]. This dataset has been generated by crawling data from
several data sources of the linked open data cloud. The used subset contains the first
one billion syntactically correct triples.

Since the core functionality of SPARQL is provided by matching basic graph pat-
terns, we follow the strategy of most other benchmarks, performing evaluations with
varied basic graph pattern structures. In particular, we use SPLODGE [6] to generate
queries with the following characteristics for the one billion triple subset:

Number of triple patterns: 2 and 8 triple patterns.
Selectivity: 0.001% and 0.01% involving between 1 million and 10 million triples.
Join patterns: path-shaped (subject-object join) and star-shaped (subject-subject join).
Number of data sources: 1 and 3 source data sets.

Execution Strategy. We downloaded the BTC2014 dataset, removed all syntactically
incorrect triples and created the one billion triple dataset. The resulting dataset is used
by SPLODGE [6], configured as described above, to generate the query set for the
benchmark. For each graph cover strategy Koral is cleared, the dataset is loaded and
the list of configured queries is executed 10 times. Thus, the effect of operating system-
dependent caches storing the results of the previously executed query is reduced, be-
cause no query is immediately reexecuted after it has finished. The effect of outliers
caused by, e.g. garbage collection is prevented by ignoring the best and the worst exe-
cution time computing the arithmetic mean of the remaining values as exT ime.

Computer and Software Environment. Koral is executed on 11 VMs. The master has
4 cores and 64 GB RAM and the 10 slaves have 1 core and 2 GB RAM each. Since the
Koral master VM needs to store the complete dataset, it has a 1 TB hard disk. The slaves
have 300 GB hard disks. The physical computers on which the VMs run are connected
via a 1 Gigabit Ethernet network.

The operating system of each VM is a 64 bit Ubuntu 14.04.4 with the Linux kernel
3.13.0-96. The Oracle JDK 1.8.0_101 is used to execute Koral in version 0.0.1. In order
to create the minimal edge-cut cover, METIS 5.1.0.dfsg-2 is used.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

01

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

01

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

01

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−100

−10

0

10

100
E

xe
cu

tio
n

Ti
m

e
(l

og
sc

al
e,

ch
an

ge
to

H
A

SH
in

%
)

HIERARCHICAL MIN_EDGE_CUT

Fig. 3: exT ime of all queries relative to the hash cover.

4.2 Results

As the possible configurations of independent variables (configuration settings) and
dependent variables (evaluation measures) is staggering, we focus on analysis results
by depicting (i) overall query performance, (ii) network usage and (iii) query workload.
In order to improve the comprehensibility of the diagrams we name the queries based on
their characteristics. For instance, the query so #tp=8 #ds=3 sel=0.01 describes a
query containing 8 subject-object joined triple patterns matching triples from 3 data
sources and the sum of the selectivities of all triple patterns is 0.01.
Overall Query Performance. We measure the overall query performance in terms of
the execution times exT ime. Fig. 3 shows the exT ime of all queries. Due to the huge
differences in the execution times of the varying queries, the execution times are shown
relative to the exT ime required for the hash cover. The figure shows, that the minimal
edge-cut cover causes the longest query execution times in most cases. When comparing
the hash cover with the hierarchical hash cover, none of them is faster in general.
Network Usage. All examined graph cover strategies assign triples with the same sub-
ject to the same chunk. Therefore, all triples required to produce one result of a star-
shaped query are located in the same graph chunk. Since our query execution strategy
performs the required joins on the slave storing the original triples, no data transfer
could be observed. For query so #tp=2 #ds=1 sel=0.001 every graph cover strat-
egy produces almost the same number of transferred packages. For all other path-shaped
queries the minimal edge-cut cover reduces the data transfer by 20%-42% (see Fig. 4a).
The number of transferred packages of the hash and the hierarchical hash cover is al-
most the same for all but two queries.
Query Workload. We investigate the query workload by comparing the workload im-
balance W of all queries. Fig. 4b shows that the minimal edge-cut cover has the highest

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

01

so
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−45
−40
−35
−30
−25
−20
−15
−10
−5
0

#
Tr

an
sf

er
re

d
Pa

ck
ag

es
(c

ha
ng

e
to

H
A

SH
in

%
)

HIERARCHICAL
MIN_EDGE_CUT

(a) The number of transferred pack-
ages P relative to the hash cover.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

01

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

01

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

01

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
or

kl
oa

d
Im

ba
la

nc
e

HASH
HIERARCHICAL

MIN_EDGE_CUT

(b) The workload imbalance W .

Fig. 4: The number of transferred packages and the workload imbalance.

workload imbalance of all graph covers. This is caused by two small graph chunks that
have a much lower workload than the other graph chunks. Whereas, one huge graph
chunk with 160M triples does not produce a higher workload than the other chunks.

W of queries so #tp=8 #ds=1 sel=0.001 and ss #tp=8 #ds=3 sel=0.01

are for all graph covers low, since these queries use some triple patterns for which only
a few matching triples exist in the dataset. Thus, only the slaves which store these triples
produce join comparisons. Especially in the case of the hierarchical hash cover, joins
were only computed on three slaves whereas the minimal edge-cut cover spreads these
instances across 6 Koral slaves.

4.3 Discussion

In our evaluation we have examined the impact of two hash-based graph covers, which
assign triples to graph chunks based on the hash of the complete IRI or only an IRI
prefix, and the minimal edge-cut cover, which assigns triples to chunks based on struc-
tural information of the graph. The latter strategy takes more effort to be prepared but
due to the reduced number of cut edges, one might expect that queries can be processed
locally with less data transfer.

Commonly, papers like [18, 22, 28] make the assumption that a graph cover strategy
with minimal data transfer implies low query execution time. However, our results sug-
gest that while minimal edge-cut reduces data transfer by 20% to 42% in comparison
to hash-based strategies (see Fig. 4a), due to a more imbalanced workload (see Fig. 4b),
the query execution time of minimal edge-cut is effectively slower (see Fig. 3).

Our investigation suggests that in our setting the minimal edge-cut cover does not
perform better over all (see Fig. 3). Nevertheless, the minimal edge-cut cover might still
be a good choice in setting in which locality is important, e. g. in heterogeneous net-
works with unreliable compute nodes. Since both hash-based covers perform similarly,
the simpler hash cover implementation might be preferred, if other functionality such
as prefix matching does not benefit from the hierarchical hash cover.

5 Related Work

Without profiling platforms, distributed RDF stores are usually profiled and compared
as black boxes as done in [23, 26, 29, 30]. Black box evaluations do not allow to improve
the current state-of-the-art since they cannot identify bottlenecks within a system. To
identify bottlenecks, glass box profiling is required in which the performance of indi-
vidual components is profiled.

Black box valuation platforms like Granula [20] help to perform in-depth analy-
ses of large-scale graph processing systems and their components. These evaluation
platforms are useful to identify components that are the bottlenecks of these systems.
The usually strong dependencies between the individual components of distributed RDF
store limit the search space for more performant components to similar approaches with
relatively small modifications. The evaluation of fundamentally different approaches
would be feasible by evaluating different systems usually varying in several aspects.

In order to profile fundamentally different approaches tackling the same challenge
of distributed RDF store, [5, 11, 17, 31] propose the usage of distributed batch process-
ing platforms like Apache Hadoop [1] or Apache Spark [2]. The drawback of using
these systems is that they punish data transfer by the potentially huge overhead of pos-
sibly several Hadoop jobs and the usage of distributed file systems for the data transfer
between compute nodes (see [14]).

To the best of our knowledge, Koral is the only glass box profiling system that (i)
profiles the performance of a component in a distributed RDF store, (ii) allows for a fair
comparison of alternative implementations of a single component due to its modular-
ization and (iii) provides measurements for in-depth analyses of the performance.

6 Conclusion

We have presented our versatile open source glass box profiling system Koral. It is a
modularized distributed RDF store in which the inter-dependencies between its compo-
nents are reduced to an extent so that each component can be exchanged with alternative
implementations. Thus, it allows for profiling novel approaches tackling the challenges
introduced by the distribution and compare them with already existing strategies. We
demonstrated the advantages of such a profiling platform with a case study evaluation
of different graph cover strategies revealing that contrary to common assumption the
minimal edge-cut cover may have a worse overall query execution performance than
hash-based data placement strategies. With the huge variety of measurements provided
by Koral, we found out that balancing the query workload across all compute nodes may
be more important for a fast query execution than the amount of network traffic. The
common believe was raised by evaluations like [5, 11] in which the authors reduced the

implementation effort by simulating distributed RDF stores with batch processing sys-
tems that delay network traffic in contrast to direct peer-to-peer communication. With
our novel open source glass box profiling system Koral, freely available on the Web
[3], further investigation of distributed RDF data management challenges with only lit-
tle implementation efforts are possible.

The alternative implementations of Koral’s components used in future investiga-
tions can be provided to the public. This growing set of implementations will support
the community by simplifying the comparison with state-of-the-art approaches or by
identifying novel combinations of components producing better overall performances.

References

1. Apache hadoop. https://hadoop.apache.org/, accessed: 2017-07-12
2. Apache spark. https://spark.apache.org/, accessed: 2017-07-12
3. Koral. https://github.com/Institute-Web-Science-and-Technologies/

koral, accessed: 2017-07-12
4. Arenas, M., Pérez, J.: Federation and Navigation in SPARQL 1.1. In: Eiter, T., Krennwall-

ner, T. (eds.) Reasoning Web. Semantic Technologies for Advanced Query Answering, Lec-
ture Notes in Computer Science, vol. 7487, pp. 78–111. Springer Berlin Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-33158-9_3

5. Curé, O., Naacke, H., Baazizi, M.A., Amann, B.: On the evaluation of RDF distribution
algorithms implemented over apache spark. In: Proc. of the 11th Int. Workshop on Scalable
Semantic Web Knowledge Base Systems (at ISWC-2015). pp. 16–31 (2015)

6. Görlitz, O., Thimm, M., Staab, S.: Splodge: Systematic generation of sparql benchmark
queries for linked open data. The Semantic Web–ISWC 2012 pp. 116–132 (2012)

7. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: A Distributed Shared-nothing
RDF Engine Based on Asynchronous Message Passing. In: SIGMOD. pp. 289–300 (2014)

8. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of Semantic Web Databases. In:
PODS. pp. 95–106. ACM (2004)

9. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the Web. In: Proc.
of LA-WEB ’05. pp. 71—-. IEEE (2005)

10. Hose, K., Schenkel, R.: WARP: Workload-aware replication and partitioning for RDF. In:
Data Engineering Workshops (ICDEW). pp. 1–6 (Apr 2013)

11. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF Graphs. PVLDB
4(11), 1123–1134 (2011)

12. Janke, D., Staab, S., Thimm, M.: Impact analysis of data placement strate-
gies on query efforts in distributed rdf stores. Tech. rep., Institute for WeST
(2016), http://west.uni-koblenz.de/sites/default/files/research/
publications/janke2016iao_technicalreport.pdf

13. Janke, D., Staab, S., Thimm, M.: On data placement strategies in distributed rdf stores. In:
Proceedings of The International Workshop on Semantic Big Data. pp. 1:1–1:6. SBD ’17,
ACM, New York, NY, USA (2017), http://doi.acm.org/10.1145/3066911.
3066915

14. Jiang, D., Ooi, B.C., Shi, L., Wu, S.: The performance of mapreduce: An in-depth study.
PVLDB 3(1), 472–483 (2010), http://www.comp.nus.edu.sg/~vldb2010/
proceedings/files/papers/E03.pdf

15. Käfer, T., Harth, A.: Billion Triples Challenge data set. Downloaded from
http://km.aifb.kit.edu/projects/btc-2014/ (2014)

16. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

17. Lee, K., Liu, L.: Efficient Data Partitioning Model for Heterogeneous Graphs in the Cloud.
In: Proc. of the Int. Conf. on High Performance Computing, Networking, Storage and Anal-
ysis. pp. 46:1—-46:12. ACM (2013)

18. Lee, K., Liu, L.: Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning.
PVLDB 6(14), 1894–1905 (Sep 2013)

19. Lee, K., Liu, L., Tang, Y., Zhang, Q., Zhou, Y.: Efficient and Customizable Data Partitioning
Framework for Distributed Big RDF Data Processing in the Cloud. In: IEEE CLOUD ’13.
pp. 327–334 (2013)

20. Ngai, W.L., Hegeman, T., Heldens, S., Iosup, A.: Granula: Toward Fine-grained Perfor-
mance Analysis of Large-scale Graph Processing Platforms. In: Proceedings of the Fifth
International Workshop on Graph Data-management Experiences & Systems. pp. 8:1—-8:6.
GRADES’17, ACM, New York, NY, USA (2017), http://doi.acm.org/10.1145/
3078447.3078455

21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM Trans.
Database Syst. 34(3), 16:1—-16:45 (Sep 2009), http://doi.acm.org/10.1145/
1567274.1567278

22. Potter, A., Motik, B., Horrocks, I.: Querying Distributed RDF Graphs: The Effects of Parti-
tioning. In: Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2014).
pp. 29–44 (2014)

23. Potter, A., Motik, B., Nenov, Y., Horrocks, I.: Distributed RDF Query Answering with
Dynamic Data Exchange, pp. 480–497. Springer International Publishing, Cham (2016),
http://dx.doi.org/10.1007/978-3-319-46523-4{_}29

24. Prud’hommeaux, E., Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3c recom-
mendation, W3C (2013), http://www.w3.org/TR/sparql11-query/

25. Saleem, M., Ngonga Ngomo, A.C.: HiBISCuS: Hypergraph-Based Source Selection for
SPARQL Endpoint Federation, pp. 176–191. Springer International Publishing, Cham
(2014), http://dx.doi.org/10.1007/978-3-319-07443-6{_}13

26. Saleem, M., Ngonga Ngomo, A.C., Xavier Parreira, J., Deus, H.F., Hauswirth, M.:
DAW: Duplicate-AWare Federated Query Processing over the Web of Data, pp. 574–
590. Springer Berlin Heidelberg, Berlin, Heidelberg (2013), http://dx.doi.org/10.
1007/978-3-642-41335-3{_}36

27. Wood, D., Gearon, P., Adams, T.: Kowari: A platform for semantic web storage and analysis.
In: In XTech 2005 Conference. pp. 05–0402 (2005)

28. Wu, B., Zhou, Y., Yuan, P., Jin, H., Liu, L.: SemStore: A Semantic-Preserving Distributed
RDF Triple Store. In: CIKM-2014 (2014)

29. Wylot, M., Cudré-Mauroux, P.: Diplocloud: Efficient and scalable management of rdf data
in the cloud. IEEE Transactions on Knowledge and Data Engineering 28(3), 659–674 (2016)

30. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A Distributed Graph Engine for Web Scale
RDF Data. PVLDB 6(4), 265–276 (Feb 2013)

31. Zhang, X., Chen, L., Tong, Y., Wang, M.: EAGRE: Towards scalable I/O efficient SPARQL
query evaluation on the cloud. In: ICDE-2013. pp. 565–576 (Apr 2013)

