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Abstract. We introduce ADOnIS, an information system which co-
herently integrates two important, yet mostly disparate data sources,
namely structured, tabular data, and unstructured data in terms of pub-
lications. The integration is achieved by providing the underlying back-
ground knowledge of the domains involved in terms of adequately tai-
lored ontologies. Once the two basic data sources are semantically linked,
entirely novel opportunities for cross-source information retrieval arise
which we will highlight in this paper.

1 Introduction

Two mutually separated “data cultures” have emerged over the years and still
persist in the field of information systems. On the one hand, the database com-
munity focuses on the structured representation of slices of the reality, typically
in terms of relations and tables. On the other hand, the information retrieval
community deals with, from a computational view, unstructured data, namely
documents as streams of characters (and other media types, such as visual data)
and tries to computationally interpret (and thus restructure) the meaning en-
coded in these textual data carriers. Both worlds rest on solid mathematical
foundations and stable technical implementations on the basis of which huge
amounts of structured and unstructured data can be managed and searched on
an industrial scale. Yet, with the exception of activities aiming at the Semantic
Web (for a survey, cf. [20]) they currently lack crossover.

This lack of integration hampers the usability of data at all levels. Consider,
as a concrete example, an interdisciplinary research community such as the one
established in the collaborative research center (CRC) AquaDiva, our research
environment [16].1 AquaDiva explores the role of water (Aqua) and biodiver-
sity (Diva) for shaping the structure, properties and functions of the earth’s
subsurface. When a graduate student enters the CRC, she might be interested
in the transport of viruses in the geological subsurface. In order to get started
the student searches for an overview of the state of the art and hints what has
been done on this topic in AquaDiva so far. So she searches for relevant publi-
cations in portals like PubMed or Google Scholar and poses search queries

1 http://www.aquadiva.uni-jena.de/



to the BExIS 2 data portal, the central information system hub of the project
to obtain data that have been collected already. Typically, the student will start
with one query and then try to navigate results and find related entries.

Her success will strongly depend on her familiarity with the special mix of
domains, skills of interacting with search engines and data repositories (including
SQL/SPARQL-style query languages), her knowledge of linguistic variants and
the taxonomic structures of the relevant sublanguages. For instance, queries for
“virus transport subsurface”, “virus transport soil”, and “phages transport soil”
typically return only partially overlapping result sets in PubMed or standard
data management systems. This is due to simplistic string matching criteria, the
incapability to account for linguistic variations of the same content (inflection
variants, phrasal paraphrases, or synonyms) and the general lack of conceptual
background knowledge (e.g., the taxonomic or partonomic structure of the do-
mains’ terminologies).

In our work, we aim to account for these deficiencies in a systematic way. The
solution we propose is implemented in ADOnIS, the AquaDiva Ontology-based
Information System that provides integrated and seamless access to structured
data and unstructured publications by making use of a variety of semantic tech-
nologies such as ontologies and natural language processing (NLP) tools. With
this, we hope to reduce the cognitive burden put on searchers while, at the same
time, we intend to increase the coverage and quality of search results. In this
paper, we briefly describe the methodologies underlying ADOnIS and the way
users can interact with the system.

2 Related Work

Data in general and scientific data specifically can be roughly categorized into
structured and unstructured data. Unstructured data has no predefined data
model and is typically text-heavy. Due to its unstructured nature, it is a challeng-
ing task to extract specific and useful information [6, 10]. Retrieval algorithms for
unstructured data often rely on keyword-based indexing and comparison tech-
niques. They typically offer a search box query interface, where the searcher can
input keywords of interest. Due to its simplicity, this kind of user interface, is
very intuitive and easy to use. This comes at a cost. The semantics of the search
query in terms of a set of input terms is not explicitly given and needs to be
revealed by the information system.

On the other hand, structured data is data that is organized according to a
predefined (but not necessarily explicitly known) data model, such as a table in a
relational database (known data model), a document in RDF format ((partially)
known data model) or a spreadsheet (unknown implicit data model). This pre-
defined data model (if known2) enables search based on structured queries (e.g.
SQL or SPARQL queries) with a well-known semantics. Although these kind

2 In cases where the underlying data model is implicit (e.g. in spreadsheets), it needs to
be provided by the data creator or has to be automatically extracted using machine-
learning techniques. The latter can be particularly challenging, since in contrast to



of query interfaces make it easy to effectively identify and discover a piece of
information and access it in concise way, they are rather complex and thus less
suited to users with a non computer science background. Recent approaches have
therefore started to combine and integrate keyword-based search approaches for
unstructured data and concept-based approaches for structured data [3, 6, 2, 18,
19].

K-search is one of the earliest works on hybrid search that supports the re-
trieval of documents and knowledge [2]. The K-search approach aims at searching
the Semantic Web as a collection of documents (unstructured data) and meta-
data (structured data). To achieve this goal, a hybrid strategy is proposed, where
keyword-based and metadata-based search strategies are combined. K-Search uses
two separate indexes for the hybrid search and combines the results afterwards
via result intersection [10]. An ontology-based retrieval system is proposed in [6].
It adapts the classical vector space representation to be suitable for large-scale
information sources. An ontology-based scheme is used to semi-automatically
produce document annotations that are used for a semantic search. To cope with
incomplete information in the knowledge base, the semantic search is combined
with a conventional keyword-based search. Gärtner et al. [10] suggest a semantic
search system (HS3) that aims at semantically bridging the gap between struc-
tured and unstructured data. HS3 is an automated system that augments an
arbitrary knowledge base with additional information extracted from the Web.
These information can then be used to build a document corpus and a combined
index. This index is leveraged for a hybrid semantic search strategy that com-
bines keyword-based and concept-based search. TextTile is a data visualization
tool for datasets and query examination that requires a flexible analysis of struc-
tured data and unstructured text [9]. The tool includes a set of operations that
can be interchangeably applied to structured as well as to unstructured textual
data parts to generate useful data summaries. The tool does not make use of
ontologies and semantic reasoning during the search process.

An semantic search architecture specifically designed for biodiversity data
is suggested in [1]. The proposed system aims at improving the quality of the
search results by exploiting ontologies and the contextual meaning of data. A
mapping component links biodiversity data and concepts of a domain-specific on-
tology, OntoBio. A web interface supports end users to access data via SPARQL
endpoints. In order to achieve this, the tool transforms domain ontologies, taxo-
nomic information as well as biodiversity data into a common format. This has
two disadvantages: datasets are duplicated and it becomes harder to reason on
such big data. The ELSEWEB framework [22] aims at facilitating the integra-
tion of environmental data and providing semantic bridges between these data
and species distribution models.

text-based documents, e.g. data tables, often reveal only scarce information that
might give a hint to its meaning.



3 Overview of ADOnIS

We have implemented ADOnIS as an extension to the BExIS 2 data man-
agement platform [7]3. In the following, we describe its two basic subsystems,
namely the one dealing with already structured, tabular data (Sect. 3.1), and
the one dealing with unstructured textual input on the basis of the semantic
document search engine SeMedico (Sect. 3.2). The two components are sup-
plemented by a graphical user interface that allows users to enter search terms
based on which ADOnIS retrieves relevant data stored in BExIS 2 as well as
publications (Sect. 4). A comprehensive view of the whole architecture of ADO-
nIS is provided in Fig. 1 which will be explained in the subsections to follow.

3.1 Handling Structured Data

Scientific data stored in BExIS 2 typically refer to field observations and mea-
surements and are organized in tables. Each table and its corresponding meta
information is referred to as a dataset. In addition to the data table containing
the data values, each dataset comprises the table schema (name, datatype and
unit of measurement for each data column) and metadata such as information
about the data provider. Both, the actual data values and the table schema, are
stored in a relational database.

To make the semantics of datasets explicit, we annotate each data table with
conceptual knowledge encoded in ADOn , a domain-specific ontology expressed
in Owl 2.4 The ontology is tailored to the needs of the description of obser-
vational data from the life sciences domain. It only includes relevant classes
and properties of these as TBox statements. Assertions about data values and
data annotations, i.e. ABox statements, are not materialized in the ontology.
Instead, we use the ontology-based data access system Ontop [5]. Based on a
given ontology and a set of mappings that relate class and property symbols in
the ontology to SQL views over the data in the database, Ontop provides a
virtual RDF graph that can be queried using Sparql. This avoids duplication
of instance data (that already reside in the relational database) and allows for
sound and complete query answering in LOGSPACE under the OWL 2 QL en-
tailment regime.5 In order to retrieve datasets relevant to a certain search query,
we generate a set of proper Sparql queries from the user-provided keywords,
thus removing the burden from the searcher to formulate queries using a formal
query language.

ADOn Ontology & Semantic Annotation. As core ontology, we use a mod-
ified version of the Extensible Observation Ontology (Oboe) [17] (version 1.2)
that provides classes and properties for the description of field observations and
measurements. Sets of related observations are organized in oboe:Observation

3 http://bexis2.uni-jena.de/
4 https://www.w3.org/TR/owl-syntax
5 https://www.w3.org/TR/owl-profiles/\#OWL_2_QL



Fig. 1. System Architecture for ADOnIS

Collections, which resemble the concept of a dataset in BExIS 2. Each data
row in a BExIS 2 data table is modeled as one or more oboe:Observations. An
observation refers to an oboe:Entity, e.g. a Tree, and a set of oboe:Measurements
related to that entity. A measurement refers to an oboe:Characteristic, uses
an oboe:Standard and results in a value. For instance, for a certain Tree entity,
its Circumference (characteristic) might have been measured in meters (stan-
dard) and the measured value is 0.8. Oboe allows to indicate contextual re-
lationships between observations, e.g. a tree might have been observed within
a certain forest and this forest is located in a certain area. Modeling observa-
tions in this way enables logical inferences about entities and the relationships
between them, as well as about measured characteristics of entities. In the life
sciences domain, both observed entities and their characteristics are particularly
important when trying to explain phenomena and thus play a key role when
searching for datasets.

To cover domain-specific characteristics and entities, we reuse concepts from
domain ontologies such as Obi (biomedical investigations),6 Envo (environ-
mental features),7 Ncit (biomedical concepts)8 and ChEBI (chemical enti-
ties).9 These were selected using the Joyce tool for ontology selection and
integrated into our ontology applying strict methodological criteria to guaran-
tee non-redundancy, minimality, and optimal coverage [8]. These requirements
were met by asserting subclass-relationships between concepts from a third-party
ontology and either oboe:Characteristic or oboe:Entity. Since Ncit and
ChEBI are huge in terms of the number of concepts they define, we used mod-
ularization techniques [8] to reuse only needed parts of these ontologies. We also

6 http://obi-ontology.org
7 http://environmentontology.org
8 https://evs.nci.nih.gov/
9 https://www.ebi.ac.uk/chebi



defined additional properties of oboe:ObservationCollections, which directly
relate datasets to observed entities, characteristics and standards (in contrast
to Oboe, where these properties are related to individual observations). This
enables efficient querying of these properties (instead of a potentially large set of
observations (data rows) a much smaller number of datasets and their properties
has to be inspected during search).

Each BExIS 2 data value/data column was (manually10) annotated with an
ontology class corresponding to the entity it refers to, an ontology class modeling
the characteristic that was measured and a class referring to the measurement
standard that was used. Moreover, for each dataset, we indicated contextual
relationships between the observed entities. The semantic annotations are stored
in a relational database.

Ontop Mappings In order to enable Sparql queries over the conceptual view
given by the ontology, we defined mappings that relate BExIS 2 datasets, the
entities and characteristics they refer to, the measured values and the dataset
annotations residing in the relational database to class and property symbols in
the ontology. These mappings are fixed for a given ontology and database. The
subsequent mapping for example, creates a (virtual) instance for each charac-
teristic measured in some annotated BExIS 2 dataset. It indicates the type of
this instance (some subclass of oboe:Characteristic) as given by the semantic
annotation stored in the database table annotation (cf. mapping below), and
relates it to dataset instances that refer to this characteristic (not depicted).

mappingId CHARACTERISTIC-TYPE

target :crct_{crct_id} a <{crct}> .

source SELECT DISTINCT crct, chrct_id FROM annotation

Query Generation Using this approach, we can pose Sparql queries about
observational data stored in BExIS 2 on the schema level as well as on the
level of individual data values. At the moment, we do not use the full poten-
tial of this solution, but rather restrict ourselves to the retrieval of BExIS 2
datasets based on keyword queries. For that purpose, we translate the search
terms into a set of Sparql queries. For each keyword that can be mapped to
the label (via string comparison) of an ontology class C that is a subclass of
oboe:Characteristic, we create the following SPARQL query (prefixes omit-
ted) that returns all datasets that measure C.

SELECT DISTINCT ?dset

WHERE {

10 We are currently working on a data upload wizard which analyzes new datasets
to (semi-)automatically identify semantically annotated data attributes (the type of
measurement referred to in a dataset column, its datatype and unit of measurement)
that are already known to and maintained by ADOnIS . Such a mechanism will
enable semantic annotation with little user interaction.



?dset ad:refersToCharacteristic ?char.

?char a <URI of C> }

For each keyword that can be mapped to the label of an ontology class E that
is a subclass of oboe:Entity, this is done in a similar way, which also accounts for
contextual relationships between entities. We create a Sparql query that asks
for all datasets referring to entities of type E or to some entity that appears in
the context of an entity of type E.

SELECT DISTINCT ?dset

WHERE {

?dset ad:refersToEntity ?ent.

{ ?ent a <URI of D> } UNION

{ ?ent ad:hasEntityContext ?entC.

?entC a <URI of D> } }

If the label of a characteristic was entered directly before the label of an
entity in the search box, we interpret this as a search for the given characteris-
tic measured for the given entity. In case a keyword neither matches the label
of an oboe:Characteristic nor the label of an oboe:Entity, we search for
datasets containing data values matching the keyword. Finally, we return the
union of the resulting datasets. The required information about the type of each
provided keyword is delivered by an autocomplete function that provides sugges-
tions while the user is typing words in the BExIS 2 search box. The suggestions
are generated based on an index of entity and characteristic class labels defined
in the underlying ontology. The keywords provided by the user as well as the
keyword-related information are passed to the structured search module, which
has been implemented as web service with a REST-API.

3.2 Handling Unstructured Data

Unstructured data are handled by the SeMedico system which receives feeds
from two sources, viz. more than 26 million life science abstracts from Med-
line/PubMed1112 and more than 1.5 million life science full texts from PubMed
Central from the open access subset. They are stored in a PostgreSQL
database.13

Ontologies & Semantic Annotation. Terminological and ontological re-
sources for the indexing of all documents come from various sources. Most no-
table among them is the NCBI Gene database.14 SeMedico’s gene recognition
and normalization engine maps gene mentions in the documents to unique NCBI

11 https://www.ncbi.nlm.nih.gov/pubmed
12 https://www.nlm.nih.gov/databases/download/pubmed_medline.html
13 https://www.postgresql.org/
14 https://www.ncbi.nlm.nih.gov/gene



Gene database entries to handle gene name synonymy and ambiguity. Addition-
ally, SeMedico integrates the Gene Ontology (Go)15 and the Gene Reg-
ulation Ontology (Gro)16 for the semantic description of different types of
gene events.

All resources are stored in a Neo4j17 graph database for direct access to their
hierarchical structure. All terminologies, ontologies and databases are converted
into a common JSON format. This format is then imported into Neo4j using a
custom Neo4j server plugin.

Natural Language Processing. Before Medline and PubMed Central
documents are added to SeMedico’s index, they undergo an extensive linguistic
analysis. The goal is to identify textual units referring to gene/protein mentions,
ontology concepts, gene interaction events and factuality markers for them as
expressed in the documents. To be able to recognize such higher-level semantic
concepts, it is necessary to do basic linguistic analysis first like sentence and
token segmentation, part-of-speech tagging and chunking.

Semantic analysis includes species tagging by the Linnaeus tagger [11], gene
mention tagging and normalization using GeNo [23], gene/protein event recog-
nition with BioSem [4] and identification of event confidence ratings following
the factuality rating as described by [13]. For BioSem, we use a model trained
on the BioNLP Shared Task 2011 [15] training data that includes abstracts
as well as full texts. MeSH, Go and Gro concepts are tagged by a dictionary
component.

All documents undergo linguistic processing employing the Uima18 compo-
nent repository JCoRe [14]. The morpho-syntactic analysis includes the reso-
lution of acronyms [21]. This step is crucial for the interactive disambiguation
feature of SeMedico. We recognize textual mentions of ontology classes via pre-
ferred names and their synonyms. When searching, also subclasses of query con-
cepts are automatically included in the search, leveraging the ontology’s subclass
hierarchy. Additionally, we employ dedicated named entity recognition tools for
the detection of gene / protein mentions via GeNo [23] and species via the Lin-
neaus species tagger [11]. We also look for textually expressed relations between
genes / proteins in publications. We employ BioSem [4] to extract mentions of
gene / protein interactions from sentences such as

”Here we show that recombinant Pnc1 stimulates Sir2 HDAC activity.”

were semantic connections between genes, proteins or, in this case, enzymes are
described. Such relations have a high information value for researchers who look
for interaction data on specific entities of interest. Modern relation extraction
engines such as BioSem are far superior to simpler approaches which identify
co-occurrences of entity within formal text units (e.g., sentences).

15 http://www.geneontology.org/
16 https://bioportal.bioontology.org/ontologies/GRO
17 https://neo4j.com/
18 https://uima.apache.org/



However, mere interaction extraction does not take into account the confi-
dence level the authors of a publication assign to these observational data. Con-
sider the following sentence: ”These results may suggest that mTOR-mediated
autophagy inhibition may result in mesangial cell proliferation in IgAN.” While
the sentence expresses some interaction between mTOR and igAN, the authors
carefully use speculative words like may and suggest. Such information should be
integrated into a scientific data portal to serve as an indicator how trustworthy
an information item really is. We store all these annotations together with the
original, raw documents in the document database.

In a last step, the analysis results required for semantic search are sent to an
ElasticSearch cluster for indexing. We use a custom ElasticSearch plugin
to have ElasticSearch accept a term format that allows to exactly specify
index terms within the ElasticSearch index.

We model the publication search module as a web service disclosing a REST-
like API. The API accepts parameters for a query string, a sorting criterion
and the range of result documents that should be returned. The server then
returns a JSON encoded response, including document text and bibliographic
information.

4 Implementation & Preliminary Results

In this section, we introduce the GUI provided to the end user to facilitate
the search process as well as preliminary evaluation results to demonstrate the
effectiveness of the proposed method. To this end, we set up a running instance of
the BExIS 2 system with the ADOnIS module that stores 55 real world datasets
from the AquaDiva project19. The datasets comprise 880 data columns and
539, 774 data rows in total. This results in 2, 420, 012 single data values. For the
unstructured data search results Semedico stores more than 26M MEDLINE
citations and approximately 1.5M PubMed Central full texts from the open
access subset in its index.

ADOnIS comes with a graphical user interface for the semantic search
(Fig. 2). It is divided into three parts: the search box (top), where the user can
enter keyword queries (one or more keywords), a section displaying publications
(unstructured data) relevant to the query (left) and the list of retrieved BExIS
2 datasets (structured data) (right). An exemplary search using the keywords
groundwater, concentration of and nitrate is shown in Fig. 2. The search
delivers datasets that refer to the entity groundwater or entities that have been
observed in the context of groundwater and datasets where the concentration
of (characteristic) nitrate (entity) was measured. On the left-hand side, relevant
publications are listed.

To demonstrate the effectiveness of the search functionality of ADOnIS we
compared its results to those of the original keyword-based search provided by

19 Currently, a subset of 15 datasets including 146 data attributes has been semantically
annotated.



Fig. 2. Search Interface

BExIS 2 , which is powered by Apache Lucene20 indexing both datasets and
its accompanying metadata. As a preliminary evaluation, we’ve run the sys-
tem with keyword queries relevant within the AquaDiva project. We varied
the query complexity by using one or more keywords. Exemplary results are re-
ported in Table 1. In its current version, ADOnIS returns the union of both, the
results returned by the semantic search and the results retrieved by the BExIS
2 standard search. This is to avoid an empty result set in cases where the se-
mantic search does not retrieve any (exactly fitting) datasets. As a consequence,
ADOnIS can just return additional datasets that have not been found by the
original BExIS 2 search.

For a single keyword, ADOnIS and BExIS 2 typically return the same
results, since those keywords are often explicitly mentioned either in the datasets
itself or in the metadata. However, if we consider more complex queries, ADOnIS
delivers relevant results that BExIS 2 does not discover. As a next step, we
will extend this preliminary evaluation. In particular, we plan to invite formal
feedback from the AquaDiva researchers. This will cover both, an assessment
of the relevance of the delivered search results21 as well as an evaluation of the
user interface. In addition, we will evaluate how well the search scales with an
increasing number of datasets.

5 Conclusion

We introduced ADOnIS, an information system which coherently integrates
two important, yet mostly disparate data sources, namely structured data from
databases (or spreadsheets), on the one hand, and unstructured data in terms

20 https://lucene.apache.org/
21 Note that, even if datasets are annotated correctly, the search might deliver results

that the user did not expect, since ADOnIS interprets the user’s keywords in a
certain way (cf. Sect. 3.1) that does not necessarily comply with the searcher’s query
intend. Such a mismatch would be discovered by a user study with the AquaDiva
researchers.



Table 1. Search results

Keywords # of ADOnIS results # of BExIS 2 results

RNA 16 16

soil moisture 6 2

chemical upper aquifer 2 0

groundwater concentration of nitrate 6 0

of publications, on the other hand. The integration is achieved by providing the
underlying background knowledge of the domains involved in terms of adequately
tailored ontologies. Once the two basic data sources are semantically linked,
entirely novel opportunities for cross-source information retrieval arise.
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