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Abstract. Intelligent Autonomous Robots deployed in human environ-
ments must have understanding of the wide range of possible seman-
tic identities associated with the spaces they inhabit – kitchens, living
rooms, bathrooms, offices, garages, etc. We believe robots should learn
this information through their own exploration and situated perception
in order to uncover and exploit structure in their environments – struc-
ture that may not be apparent to human engineers, or that may emerge
over time during a deployment. In this work, we combine semantic web-
mining and situated robot perception to develop a system capable of as-
signing semantic categories to regions of space. This is accomplished by
looking at web-mined relationships between room categories and objects
identified by a Convolutional Neural Network trained on 1000 categories.
Evaluated on real-world data, we show that our system exhibits several
conceptual and technical advantages over similar systems, and uncov-
ers semantic structure in the environment overlooked by ground-truth
annotators.

1 Introduction

Many tasks in Human-Robot Interaction (HRI) scenarios require autonomous
mobile service robots to relate to objects and places (or rooms) in their envi-
ronment at a semantic level. This capability is essential for interpreting task
instructions such as “Get me a mug from the kitchen” and for generating re-
ferring expressions in real-world scenes such as “I found a red and a blue mug
in the kitchen, which one should I get?” However, in dynamic, open-world envi-
ronments such as human environments, it is simply impossible to pre-program
robots with the required knowledge about task-related objects and places in ad-
vance. Hence, they need to be equipped with learning capabilities that allow
them to acquire knowledge of previously unknown objects and places online. In
previous work, we demonstrated how knowledge about perceived objects can be
acquired by mining textual resources [8] and image databases on the Semantic
Web [9]. In this work, we focus on knowledge about places and investigate ways
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of acquiring it using web mining and situated robot perception. In particular,
we aim to learn the semantic categories of places observed by an autonomous
mobile robot in real-world office environments.

When mobile service robots are deployed in human-inhabited locations such
as offices, homes, industrial workplaces and similar locations, we wish them to
be equipped with ways of learning and the ability to extend their own knowledge
on-line using information about the environment they gather through situated
experiences. This too is a difficult task, and is much more than just a matter of
data collection. Some form of semantic information is desirable too. We expect
that structured and semi-structured Web knowledge sources such as DBPedia
and WordNet [2] to answer some of these questions. By linking robot knowledge
to entries in semantic ontologies, we can begin to exploit rich knowledge-bases
to facilitate better robot understanding of the world.

One data source of interest to us is ImageNet, which is a large database
of categorised images organised using the WordNet lexical ontology. The Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) [3] has in recent
years produced machine learning tools trained on ImageNet for object detection
and image classification. Of particular interest to us are deep learning based
approaches using Convolutional Neural Networks, trained on potentially thou-
sands of object categories [4]. This approach raises the question of how well such
predictors perform when queried with the challenging image data endemic to
mobile robot platforms, as opposed to the cleaner, and higher-resolution, data
they are typically trained and evaluated on. This domain adaptation problem is
a major difficulty in using these state-of-the-art vision techniques on robots. Us-
ing vision techniques with (ever-growing) training sets the size of ImageNet, will
allow us to extend a robot’s knowledge base far beyond what it can be manually
equipped with in advance of a deployment.

In this paper we document our work using the technologies mentioned so far
towards enabling a mobile robot to learn the semantic categories associated with
different regions of space in its environment. To do this, we employ large-scale
object recognition systems to generate semantic label hypotheses for objects
detected by robots in real-world environments. These hypotheses are linked to
structured, semantic knowledge bases such as DBPedia and WordNet, allowing us
to link a robot’s situated experiences with higher-level knowledge. We then use
these object hypotheses to perform text-mining of the semantic web to produce
further hypotheses over the semantic category of particular regions of space.

To summarise, this paper makes the following contributions:

– an unsupervised approach for learning semantic categories of indoor spaces
using deep vision and semantic web mining;

– an evaluation of our approach on real-world robot perception data; and

– a proof-of-concept demonstration of how knowledge about semantic cate-
gories can be transferred to novel environments.
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2 Previous Work

Space categorisation for mobile robots is an extensive, well-studied topic, and
one which it would be impossible to provide an in-depth review of in the space
available. For this, we would reccomend the work of [13], which provides a thor-
ough survey of the wider field of robot semantic mapping to-date. The majority
of work in the area of space categorisation utilises semantic cues to identify and
label regions of space such as offices, hallways, kitchens, bathrooms, laboratories,
and the partitions between them. One of the most commonly used semantic cues
is the presence of objects, and as this is also the semantic cue we use, we will
focus on this area of the work.

The work of [10] realises a Bayesian approach to room categorisation, and
builds a hierarchical representation of space. This hierarchy is encoded by the au-
thors, who admit that their own views and experiences in regards to the compo-
sition of these concepts could bias the system. In further work, the same authors
[11] provide a more object-focused approach to space classification, however this
again required the development and evaluation of a knowledge base linking ob-
jects to room types. The work of Pronobis and Jensfelt [12] is significant in this
area in that it integrates heterogeneous semantic cues, such as the shape, size
and appearance of rooms, with object observations. However, their system was
only capable of recognising 6 object types and 11 room categories, which again
required the gathering and annotation of much training data, and it is unclear
how well this generalises to new environments and how much re-training would
be required. Similar systems [14] exhibit the same pitfalls. The work of Hanheide
[15] on the Dora platform realises a robot system capable of exploiting knowledge
about the co-occurence of objects and rooms. This is facilitated by linkage to
the Open Mind Indoor Common Sense database, and is used for space categori-
sation and to speed up object search by exploiting semantic relations between
objects and rooms.

We argue that our approach exhibits several technical and conceptual advan-
tages over other pieces of work in this area:

– The categorisation module requires no robot perceptual data collection or
training, and works fully on-line.

– The system is domain agnostic, not fitted to particular types of environ-
ments, room structures or organisations.

– We use existing, mature, tried-and-tested semantic ontologies, and as such
there is no knowledge-engineering required by the system designer to use
this information.

– The use of large-scale object recognition tools mean we are not limited to
a small number of objects, and the use of text-mining means we are not
limited to a small number of room categories.

– The relations between objects and room categories are derived statistically
from text mining, rather than being encoded by the developer or given by
an ontology.
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These key points lead to a novel way of solving the problem of space classi-
fication on mobile robots.

3 Approach Overview

Fig. 1: Overview.

We use a robot platform to observe the environment at various waypoints
specified in its environment. The robot is provided with a SLAM map of its
environment, and a set of waypoints within this map. At each of these places
the robot perceives its surroundings by taking multiple views at different angles
(360°). The different views of the robot are aligned and integrated into a consis-
tent environment model in which object candidates are identified and clustered
into groups according to their proximity. For each object candidate, we predict
its class by using its visual appearance as an input to classifiers trained on a
large-scale object database, namely ImageNet. Based on the set of labelled (or
classified) object candidates which are in the same group, we perform a web-
based text-mining step to classify the region of space constrained by a bounding
polygon of the group of objects.

In the following, we describe the individual components in more detail.

4 Object Category Recognition

Our aim is to identify the semantic labels most strongly associated with a par-
ticular point in a robot’s environment by looking at the kinds of objects that are
visible from that point. As such, it is crucial for a robot to be able to recognise
the objects that inhabit its environment. It is typical in robotics that object
recognition is facilitated by a training step prior to deployment [12,15] (though
unsupervised approaches do exist [1]) whereby selected objects from the robot’s
environment are learned and later re-recognised and used for space categorisa-
tion. The advantage of this is that the robot learns to recognise objects using
models trained using its own sensors and situated conditions, however it also
means that we must anticipate which objects a robot is likely to encounter so as
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to determine which ones to learn and which to ignore. This process can also be
very time-consuming and error-prone.

Previous work [9] has used Convolutional Neural Networks (CNNs) trained
on large image databases such as ImageNet, which provide databases of several
million images, for object recognition on a mobile robot. Results can vary, and
this is because the images used to train ImageNet-sourced CNNs possess very
different characteristics to those images observed by robots – robot data is often
noisy, grainy and typically low-resolution, and is exasperated by the difficulties
robots have in getting close to objects, especially small ones. One cause of this
is what is known as the domain adaptation problem, where the features learning
mechanisms discover from their high-resolution training data do not robustly
and reliably map on to lower-resolution, noise-prone spaces. This is an active,
ongoing area of research in the computer vision community, the solution to which
holds the key to generic, off-the-shelf object recognition for mobile robots.

We evaluated a set of state-of-the-art CNNs trained on ImageNet on a sample
(1000 object images) from one of our robot datasets. We measure our accuracy
using a WUP similarity score [5], which calculates the semantic relatedness of
the ground-truth concept types against the concept predicted by the CNN by
considering their depth of their lowest common super-concept in the WordNet
ontology. A WUP score of 1.0 means two concepts are identical. The concepts
Dog and cat, for instance, have a WUP relatedness score of 0.86. To compare, we
also built a wrapper for the Google Web Vision API, that mapped its output to
the WordNet ontology. We evaluated against Google Web Vision, the GoogleNet
CNN, and the AlexNet and ResNet152 CNNs. Our results were 0.392, 0.594,
0.590 and 0.681 respectively, given as average WUP score over the randomly
sampled 1000 images from our labelled robot dataset. As such, we chose the
ResNet152 model to work with [17].

4.1 Scene Segmentation

In order to identify objects we must first have an idea about where they are
in the environment. To generate object location hypotheses we make use of our
own implementation of the RGB-D depth segmentation algorithm of [16]. This
is a patch-based approach, which clusters locally co-planar surfaces in RGB-D
point clouds. These initial surfaces are geometrically modeled into planes and
non-uniform rational B-splines using a best fit approach. The adjacency relation
between those models yield a graph and by applying a graph-cut algorithm refine
the segmentation. Given an observation of a scene from the robot, this algorithm
returns a set of segmented candidate objects from the scene. From there, we
perform basic filtering for instance to filter out objects that are too small or too
dark, and are likely to be erroneously segmented environmental noise. We can
then extract the 2D bounding-box around the objects to be passed directly to
the object recognition system.
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5 Text Mining

There has been recent work towards developing a Semantic Web-Mining com-
ponent for mobile robot systems [8,9] which we make use of. This component
provides access to object- and scene-relevant knowledge extracted from Web
sources, and is accessed using JSON-based HTTP requests. The structure of a
request to the system describes the objects that were observed in a scene, and
has been used to identify unknown objects given their context. In this case the
service computes the semantic relatedness between each object included in the
co-occurrence structure and every object in a large set of candidate objects (the
universe) from which possible concepts are drawn from. This semantic relat-
edness is computed by leveraging the vectorial representation of the DBpedia
concepts provided by the NASARI resource [6]. The NASARI resource repre-
sents BabelNet concepts as a vector in a high-dimensional geometric space. In
this case using Wikipedia as source corpus. The system computes the aggregate
of the relatedness of a candidate unknown object to each of the scene objects
contained in the query, returning a ranked list of object label candidates based
on relatedness. We re-work this same approach to instead return ranked related-
ness distributions over room categories given a set of observed objects. We used
the following room categories: Kitchen, Office, Eating Area, Garage, Bathroom.
The system then provides a distribution over these categories for input sets of
objects.

6 Experiments and Results

We employ two datasets of observations taken by our robot during two long-
term ( 3 months) deployments in two separate office environments a year apart.
The first dataset was labelled by a human to produce 3800 views of various
objects, with the data collection methodology following the approach of Ambruş
et. al [7]. The robot is provided with a map, and a set of waypoints in the map
that it visits several times per day, performing full 360° RGB-D scans of the
environment at those points. The second dataset is as-yet unlabelled.

Fig. 2: Experimental Setup at G. Left: A robot makes 360° scans at several
predefined waypoints in its environment. Right: robot plans views to investigate
parts of the mapped environment.
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We perform two main experiments – first, we demonstrate the results of our
approach on the first, human-labelled dataset gathered from site 1 (dataset G).
Since this is hand-labelled it gives us access to a representation of the objects
encountered by the robot under ideal conditions – assuming no segmentation
errors, and perfect object recognition. First, we sample the objects observed at
each waypoint over the period of the deployment by selecting the top-n occurring
objects, here using n == 30. From here we perform Euclidean Clustering to
group objects together, producing clusters of those objects that appear within
0.5m of one-another.

Each of these clusters is then incrementally sent to our text-mining module.
In return, we receive a distribution over room categories at those points in space.
After all clusters have been processed we perform a round of merging, coalesc-
ing any clusters that possess centroids within a 1.5m of one-another, and which
share the same top-ranked category. From here, we can use these new clusters to
calculate bounding polygons to produce larger, categorised spatial regions. For
a more intuitive representation, we found it helpful to include an inflation pa-
rameter for this – because we would like to categorise the area around an object
or set of objects, which we expect is better served by a geometrical bounding
area around objects rather than treating them as points. We apply a bounding
area of 1.5m around objects.

In our second experiment, we perform the exact procedure as described above
on data gathered from site 2 (dataset T ), however the input to the system takes
the form of dynamically segmented objects using the segmentation procedure de-
scribed previously, and using object hypotheses from the ImageNet-based CNN
approach. Since this dataset is significantly larger, we sampled from it an equal
number of observations per waypoint (4), providing us with roughly 2800 indi-
vidual RGB-D clouds of scenes of the environment. Segmenting these resulted
in 85, 000 segments, however we applied a standard filtering by ignoring any
segments that were more than 2m away from the robot base, which filtered the
set of segments down to roughly 24, 000.

To evaluate our results, we provided each of the clusters of objects to five
human annotators, and asked them to identify the room categories they believed
to be most closely related to the set of objects. This was done without visual
information on the appearance of the objects or the environment in which they
were found, in the first experiment at site 1 we achieved an agreement between
the annotators and the system of 74%. In the second experiment at site 2, we
achieved an agreement of 80% between annotators and our system. In a second
round of evaluation, a different set of seven annotators were provided images
observed by the robot at each waypoint, and asked to identify the likely room
categories displayed in the images from the same set of candidate rooms provided
to the robot. We apply these ground-truth labels to the areas of space around
each waypoint. This allows us to compare these ground-truth category labels
with the labels suggested by our system. The results are shown in Figure 3. On
the map, dark blue polygons represent regions learned by our system, red squares
indicate the waypoints where the robot took observations, and light coloured
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(a) Site 1, G dataset (b) Site 2, T dataset

Fig. 3: Space categorisation results from both sites, showing learned and cate-
gorised regions and ground-truth annotations. A zoomed view is recommended.

circles indicate the ground-truth label of the space around each waypoint –
human annotators agreed on labels for these areas, so there is no variance.

7 Discussion

In our results from site 1, the system categorised three region types – kitchen, of-
fice and eating area. Our ground-truth labellers, given the same list of candidate
rooms as the robot, only labelled kitchen and office areas. All of the office and
kitchen areas learned by the system fall into the corresponding areas labelled by
the human annotators, and represent a sub-section of that space. These were la-
belled by detecting objects such as filing cabinets, computer equipment, printers,
telephones and whiteboards, which all ultimately most strongly correlated with
the office room category. But where do the eating areas come from? These areas
were labelled by detecting objects such as water bottles, coffee cups and mugs on
the desks and cabinets of workers in the deployment environment. These objects
were typically surrounded by office equipment. While comparing these region
labels to our ground-truth data would suggest the answer is wrong, we believe
that this captures a more finely-grained semantic structure in the environment
that does in fact make sense. While the regions themselves may not, to a human,
meet the requirements for a dining area, the objects encompassed within them
are far more closely linked in the data with eating areas and kitchens than they
are with computer equipment and stationary, and so the system annotates these
regions differently.

At site 2 we see that the robot did not learn these characteristic eating area
regions. While inspection of the data shows that many desks do exhibit the same
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structure of having mugs, cups and bottles on them in certain areas, the object
recognition system used in the second set of experiments failed to correctly
identify them. These objects are typically small, and difficult for a mobile robot
to get close to. The results for the second dataset are also more noisy – there are
misclassified regions. These were caused primarily by object recognition errors,
themselves compounded by segmentation errors and sensor noise. To filter these
out, we included a filter on system that ignored any classification result that came
back with a confidence below 0.1 – ignoring those objects completely filtered out
around 18, 000 segments.

Our system is ultimately limited by its reliance on objects to generate hy-
potheses for space classification. This means that our approach is unable to
categorise areas of space such as corridoors or hallways. However it is intended
to work as a component of object-search systems, so perhaps this is not neces-
sary at this stage. To illustrate this, we built a query interface for the system
which takes an arbitrary object label and suggests an area of space where the
object can be found, ranking results using the semantic relations of the object
with the categories learned at each region. This allows a robot to generate priors
over possible locations of objects it has never seen before, and we view as the
first step towards unknown object search.

There are many different possible representations for the data our system gen-
erates. We opted for a clustering and bounding-polygon based approach in order
to most clearly visualise our results, but other approaches could be used such
as flood-fill algorithms, heat-maps or potential fields. Choice of representation
should be informed by the task that is intended to make use of the information.

8 Conclusion

In this work we presented a robot system capable of categorising regions of space
in real-world, noisy human-inhabited environments. The system used concepts
in a lexical ontology to represent object labels, and harnessed this representation
to mine relations between observed objects and room categories from corpora
of text. Transferring these relations back to the real-world, we used them to
annotate the robot’s world with polygons indicating specific semantic categories.
We found that the system was largely able to discover and categorise regions
similar in area to human annotators, but was also able to discover some structure
overlooked by those annotators.

Acknowledgments

The research leading to these results has received funding from EU FP7 grant
agreement No. 600623, STRANDS, and CHIST-ERA Project ALOOF.

References

1. T. Faeulhammer, et. al.: “Autonomous learning of object models on a mobile
robot,” IEEE RAL, vol. PP, no. 99, pp. 1–1, 2016.



40 Young et al.

2. A. Kilgarriff and C. Fellbaum, “Wordnet: An electronic lexical database,” 2000.
3. O. Russakovsky, et. al. “ImageNet Large Scale Visual Recognition Challenge,”

International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

4. A. Krizhevsky, et. al. “Imagenet classification with deep convolutional neu-
ral networks,” in Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Cur-
ran Associates, Inc., 2012, pp. 1097–1105.

5. Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in ACL, ser.
ACL ’94. Stroudsburg, PA, USA: Association for Computational Linguistics,
1994, pp. 133–138.

6. J. Camacho-Collados, et. al. “Nasari: a novel approach to a semantically-
aware representation of items.” in HLT-NAACL, R. Mihalcea, J. Y. Chai, and
A. Sarkar, Eds. The Association for Computational Linguistics, 2015, pp.
567–577.
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