
Towards VocBench 3: Pushing Collaborative

Development of Thesauri and Ontologies Further Beyond

Armando Stellato1, Andrea Turbati1, Manuel Fiorelli1, Tiziano Lorenzetti1,

Eugeniu Costetchi2, Christine Laaboudi2, Willem Van Gemert2, Johannes Keizer3

1 ART Group, Dept. of Enterprise Engineering

University of Rome Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

{turbati,fiorelli}@info.uniroma2.it

stellato@uniroma2.it, tiziano.lorenzetti@gmail.com

2 Publications Office of the European Union

Dissemination and Reuse Directorate, Documentary Management and Metadata Unit

2985 Luxembourg, LUXEMBOURG

{christine.laaboudi,willem.van-gemert}@publications.europa.eu

costezki.eugen@gmail.com

3 GODAN secretariat, c/o CABI Head Office

Nosworthy Way, Wallingford, Oxfordshire, OX10 8DE, UK

johannes.keizer@gmail.com

Abstract. More than three years have passed since the release of the second

edition of VocBench, an open source collaborative web platform for the devel-

opment of thesauri complying with Semantic Web standards. In these years, a

vibrant user community has gathered around the system, consisting of public or-

ganizations, companies and independent users looking for open source solutions

for maintaining their thesauri, code lists and authority resources. The focus on

collaboration, the differentiation of user roles and the workflow management for

content validation and publication have been the strengths of the platform, espe-

cially for those organizations requiring a centralized and controlled publication

environment. Now the time has come to widen the scope of the platform: funded

by the ISA2 programme of the European Commission, VocBench 3 will offer a

general-purpose collaborative environment for development of any kind of RDF

dataset, improving the editing capabilities of its predecessor, while still maintain-

ing the peculiar aspects that determined its success. In this paper, we review the

requirements and the new objectives set for version 3, and then introduce the new

characteristics that were implemented for this next iteration of the platform.

Keywords: Collaborative Editing, Ontologies, Thesauri, OWL, SKOS

1 Introduction

In 2008 the group for Agriculture Information Management Standards of the Food and

Agriculture Organization of the United Nations (FAO, http://www.fao.org/) devel-

oped a collaborative platform for collaboratively managing their Agrovoc thesaurus [1].

mailto:%7bstellato,%20turbati,%20fiorelli,%20pazienza%7d@info.uniroma2.it
mailto:stellato@uniroma2.it
mailto:costezki.eugen@gmail.com
http://www.fao.org/

The so-called “Agrovoc Workbench” soon met the interest of other FAO departments

and several other organizations interested in open source solutions for collaborative

thesauri development.

Baptized with a new name: “VocBench” – suggesting a more general environment

for thesauri management – the platform later had been strongly re-engineered in the

context of a collaboration between FAO and the ART group of the University of Rome

Tor Vergata (http://art.uniroma2.it). The result of this collaboration, VocBench 2

[2] had been rethought as a fully-fledged collaborative platform for thesaurus manage-

ment, freely available and open-sourced, offering native RDF support for SKOS [3]

and SKOS-XL [4] knowledge organization systems [5], while retaining from its origi-

nal version the focus on multilingualism, collaboration and a structured content valida-

tion & publication workflow. The possibility for project administrators to define roles

with very specific capabilities and to assign them to different users according to their

proficiencies and authorizations, the publication workflow where dedicated users could

supervise the work of others and accept their modifications, have been the very

strengths of the platform, especially for those organizations requiring a centralized and

controlled publication environment. Consistently with this controlled approach, what

some other users felt as mostly missing from the system was more freedom on data

shaping, longing for unrestricted capabilities for editing data at its very core, as in triple-

oriented RDF editing environments.

There is indeed a trade-off in modeling systems between flexibility and control,

which is non-trivial to overcome. Controlling the actions that users can perform implies

recognizing them as high-level performatives, associated to pre-defined modeling

graph patterns and described by rich metadata that can be used to identify them, to

authorize their invocation by classes of users, to properly store them in validation

stacks, etc… This complex castle is thus usually not meant to be maintained brick-by-

brick: the various aspects described above and the dependencies among them are easier

to be managed by identifying clear “first-class citizens” (entities recognized by the sys-

tem and on which operations can be performed) and a pre-defined set of operations

(possibly, non-overlapping) on them. The final touch is to implement this higher layer

of representation in terms of lower-level aspects of the model/technology (i.e. triples in

RDF).

It is thus with a new incarnation of the system, VocBench 3 (or, simply, VB3), that

we planned to overcome the above limitations, while widening the original scope of the

platform to a general-purpose collaborative environment for development of SKOS the-

sauri, OWL ontologies and RDF datasets in general. VocBench 3 is funded by Action

1.1 of the ISA2 Programme of the European Commission for “Interoperability solutions

for public administrations, businesses and citizens” (https://ec.europa.eu/isa2/).

The action is managed by the Publications Office of the European Union

(https://publications.europa.eu/). VB3 was developed in close collaboration with

the ART group of the University of Rome Tor Vergata, the same group that contributed

to the development of the second version of the platform. At the time of writing,

VocBench 3 has been released to the Publications Office for internal evaluation and

acceptance testing, while general availability is planned by September 2017. The

homepage of VocBench (http://vocbench.uniroma2.it/) already points to the

http://art.uniroma2.it/
https://ec.europa.eu/isa2/
http://vocbench.uniroma2.it/

sources of VB3, and it will provide documentation and downloadable artifacts for VB3,

when it becomes available to the general public.

In this paper, we review the original requirements of the platform and the new ob-

jectives set for version 3, and then introduce the new characteristics that were imple-

mented to meet the goals for this next iteration of the platform. Our aim is thus to high-

light the improvements over VB2, while we refer to [2] both for an analysis of related

works showing the motivation of the VocBench platform and for architectural insights.

2 Requirements

In this section, we list the foundational stones upon which VocBench 3 was developed,

in terms of the requirements to be met. The requirements of VocBench (R1-R7) still

hold, but have been reformulated by accounting for the widened scope of the platform

and its improved editing capabilities. Other requirements have also been added, follow-

ing proposals by its developing team and requests by stakeholders presented in dedi-

cated stakeholder meetings.

R1. Multilingualism. Properly characterizing knowledge resources in different natural

languages is fundamental. This especially holds for thesauri, due to their use in Infor-

mation Retrieval, though the overall importance of elaborated lexicalizations is pro-

gressively gaining momentum, thanks to data publication initiatives such as the Lin-

guistic Linked Open Data (LLOD: http://linguistic-lod.org/) and to models for

Ontology-Lexicon interfaces, such as Lemon [6] and its most recent specification On-

toLex Lemon, realized in the context of the homonymous W3C community group

https://www.w3.org/community/ontolex/.

R2. Controlled Collaboration. One of the key features of the system has to be enabling

collaboration on a large scale: several, distributed users, have to be able to collaborate

remotely on a same project. Opening up to communities is important, though the de-

velopment of authoritative resources demands for the presence of some control to be

exerted over the resource lifecycle: for this reason, users must be granted different ac-

cess levels, and some of them should be granted the possibility to validate other users’

work.

R3. Data Interoperability and Consistency. Interoperability of several resources crit-

ically depends on data integrity and conformance to representation standards. However,

flexible models such as SKOS translate to underspecified possibilities on the one hand,

and formal constraints – beyond the expressiveness of OWL – on the other one. It is

thus important that VocBench enforces a consistent use of these models, by preventing

the editors from generating invalid data, and by providing “fixing facilities” for spuri-

ous data acquired from external sources. Finally, support for alignment to other datasets

is also an interoperability must for the Linked Data World.

R4. Software Interoperability/Extensibility. The system should be able to interact

with (possibly interchangeable) standard technologies in the RDF/Linked Data world.

R5. Data Scalability. The system must deal with (relatively) large amount of data, still

offering a friendly environment. The User Interface must consider this requirement by

http://linguistic-lod.org/)

appropriately subdividing data loading into subsequent requests and implementing ded-

icated solutions for large results.

R6. Under-the-hood data access/modification. While a friendly UI for content man-

agers/domain experts is important, knowledge engineers need to access raw data be-

yond the usual front-ends, as well as to benefit from mass editing/refactoring facilities.

R7. Adaptive Context and Ease-of-use. In migrating from the first VocBench to its

second version, it was mandatory that different users, ranging from ordinary editors to

system administrators, shared an easy and comfortable user experience. The new VB3

should provide an even smoother experience, with very low installation requirements

and an as-short-as-possible time-to-use. Whether (and proportionally if) the user is an

administrator configuring the system, a project manager configuring a project, a user

requesting registration and connection to a given project, or a new user willing to test

the system as a desktop tool without settings and configuration hassle, the platform

should respond adaptively to their needs.

R8. RDF Languages Support. Differently from both its predecessors, dealing with

thesauri only, VB3 has to offer native support for SKOS thesauri, OWL ontologies, and

RDF datasets in general.

R9. Maintainability (Architecture and Code Scalability). In special mode, the ability

to meet new requirements, cope with changed environments and make future mainte-

nance easier. A weak spot of VB2, in VB3 it is mandatory to be able to add new ser-

vices, functionalities, plugins etc... without the fabric of the system being altered or too

much effort being required in order to align these new elements with all the character-

istics of the system, such as validation, history management, roles and capabilities.

R10. Full Editing Capability (RDF Observability and Reachability). Any complex

RDF construct should always be inspectable and modifiable by users (providing they

have the proper authorization) even in its finer details. While the platform can provide

high-level performatives for conveniently creating/modifying complex descriptions of

resources according to pre-defined modeling design patterns (i.e. by using RDF graph

patterns with variables being instantiated upon usage), the user should never be pre-

vented from inspecting/altering these elements.

R11. Provenance. Actions in VB3 should be handled as first-class citizens themselves,

being identified and qualified by proper metadata, including information about which

user performed an action, when they did it, which parameters have influenced its per-

formance, etc… Metadata answering to the five “Ws” (with the possible exception of

the “why”) should provide all information for tracking the origin of an action.

R12. Versioning Support. Besides history and validation mechanisms, providing

in-detail reports on the single actions performed by users, it should be possible to take

periodic snapshots of the status of a dataset.

R13. Metadata Descriptions. In order for the Semantic Web to fully achieve its vision,

linked open data has to speak about itself [7]. This means not only having data modeled

according to well-known shared vocabularies, but to be able to grasp meaningful infor-

mation about a dataset without having to dig into its content.

R14. Customizable UI. UI based on ontology analysis are limited by the axiomatic

description of the resources they show and of their types, ignoring possible desiderata

of the user. VB3 should allow users to represent the information that they want to spec-

ify at resource creation, per resource type, so that it will be prompted to the user. Con-

nected technical aspects, such as proper transformation of the user input into serializa-

ble RDF content, should also be tackled.

R15. Everything’s RDF. Whereas VB2 used a database to store user&project manage-

ment information, history & validation information; VB3 should follow a more uniform

approach, adopting RDF for virtually any information that needs to be stored.

3 Towards VocBench 3

In this section, we discuss the main characteristics of the software that allowed meeting

the aforementioned requirements.

User Interface (UI). The UI is the first element that vividly marks the difference be-

tween VB3 and its predecessors. The user interface has been rebuilt from scratch, by

using different technologies – notably Angular (https://angular.io/) in place of Google

Web Toolkit (http://www.gwtproject.org/) – and reorganizing the user experience.

The Data view, letting the user explore the project’s dataset, is the one that mostly rep-

resents these changes. The several tabs of VocBench 2 (which inherited and extended

the tab-based model of VocBench 1) that populated the “concept details” panel have

been replaced with a single component, called resource-view (see Figure 1). The re-

source-view offers a complete overview of resources of any type, thus remarking an-

other difference with respect to VB1&VB2: there are no first-class citizen resources,

such as concepts and (SKOS-XL) labels; in fact, all resources now can be viewed and

edited through the resource-view section. The resource-view is a general component

that can be specialized depending on the inspected resource: a few sections are shared

among all resources, such as types, listing the rdf:types for the described resource, lex-

icalizations, listing all the available lexicalizations and properties, listing all general

properties not addressed by the above descriptors, while others are specific to the in-

spected resource. For instance, the resource-view centered on a concept is composed

of the following sections: types, top concepts, schemes, broaders, lexicalizations, notes

and the final generic property section. While the mapping of these sections to properties

of the core modeling vocabularies is trivial (e.g. types to rdf:type, schemes to skos:in-
Scheme and so on) the sections are however presented with a predicate-object style in

order to qualify the predicate, as they might include user-defined or domain-specific

subproperties of the above ones. It is worth of note that the general applicability of the

resource-view to any resource and the possibility to edit any of their details from it

concur to satisfy requirement R10. A special mention goes to the lexicalizations sec-

tion: it represents an abstraction over different kind of properties, and offers specific

resolution of their shape, always showing the form of the lexicalization. In VB3, the

concept of lexical model has been introduced (and separated from the knowledge model,

e.g. OWL or SKOS) so that, for instance, it is possible to select SKOS-XL (the lexical

http://www.gwtproject.org/

extension to SKOS allowing for reified labels) as a lexical model for both OWL ontol-

ogies and SKOS thesauri. In SKOS-XL, the lexicalizations section would provide ded-

icated forms for creating reified labels (with the possibility to specify their URI or to

having it assigned automatically) and directly show their skosxl:literalform in the object

field. The object field is also clickable and it opens a resource-view focused on the

resource description of the SKOS-XL label. This revised model greatly improves the

coverage of requirement R1 by covering not only diverse natural languages, but the

different formal languages in which linguistic information can be coded.

The overall data view (Figure 1) is similar in principle to the one of the previous

editions, with the resource structures on the left (previously, only the concept tree), and

the description of the selected resource on the right. The resource structures is com-

posed of different tabs, depending on the chosen modeling vocabulary. OWL offers

two tabs with a class tree & instance list and a property tree respectively, while SKOS

adds to them a concept tree, a list of schemes and a collection tree (with the tree showing

the containment relation between different SKOS collections). VB1&2 showed con-

cepts through their labels in all of the selected languages for visualization. In VB3, an

option allows to toggle between the URIs/qnames of the resources, and the string com-

posed by a resource-renderer. Resource renderers provide human-friendly visualiza-

tions of resources. Different renderers can be connected to the system as plugins to its

dedicated rendering extension point. The default renderer behaves in a way similar to

VB1&2, showing labels in all of the selected languages for visualization (again, R1).

An important new aspect of the user interface is offered by Custom Forms, a flexible

data-driven form definition mechanism that we devised for VocBench, allowing users

to perform a declarative specification of the key elements that concur to the creation of

 Figure 1. VocBench UI showing EuroVoc (http://eurovoc.europa.eu)

a complex RDF resource (satisfying req. R14). In particular, custom forms rely on the

combination of the following four key elements:

 a declaration of the data that is expected to be prompted by the user

 a series of transformations that have to be applied to the prompted data in order to

produce valid RDF entities to be stored

 the organization of the produced RDF entities into meaningful graph patterns, in-

stantiating the template of the resource to be created

 the automatic production of a form layout (see Figure 2) based on the above decla-

rations information that is required for "constructing" a new resource

Custom Forms have been described more in details in [8], which analyzed and eval-

uated their expressive power by applying them to the use case of representing entities

for the W3C OntoLex Lemon (http://www.w3.org/2016/05/ontolex/) vocabulary.

Another relevant difference in the UI offer lies in the Project page: system Admin-

istrators (and other users having equivalent authorizations) can inspect projects in all

of their details, and easily switch from one to the other, while other users are offered

the traditional project list allowing access to only the projects they are registered to.

This is particularly convenient for users willing to use VB3 as a desktop tool: in less

than 2 minutes, it is possible to start the system for the first time, configure a simple

user with default minimal information and administrative rights, log in and seamlessly

use the VocBench without the impression of dealing with a cumbersome web jugger-

naut.

Controlled Collaborative Editing through Role-based Access Control (RBAC). A

single installation of VocBench can handle multiple projects, which can also be inter-

linked for mutual data access (e.g. for purpose of alignment). VocBench promotes the

separation of responsibilities through a role-based access control mechanism, checking

user privileges for requested functionalities through the role they assume (req. R2).

Upon registration, users indicate their personal information, their proficiencies. The

proficiencies are obviously the user’s declaration, so they do not grant any permission

Figure 2. Custom Form for a relational noun in the W3C OntoLex Lemon model

per se, but can help administrators and project managers (users with the role of admin-

istering a single project) in selecting users to assign to their project, or trivially by sim-

plifying the assignment of capabilities to them by reusing their declared proficiencies

as a template. In VB3, we have completely re-designed the mechanism for roles/capa-

bilities. While VB2 had hard-wired roles with predefined and limited editing possibili-

ties, which do not easily scale-up to possible extensions of the system (req. R9), in VB3

we have defined a simple language for specifying capabilities in terms of area, subjects

and scopes E.g. the expression:

auth(rdf(datatypeProperty, taxonomy), ‘R’)

corresponds to the authorization for being able to read taxonomical information about

datatype properties. The ‘R’ stands for READ, as in the CRUD paradigm, rdf is the area

of the requested capability while datatypeProperty and taxonomy define the subject

and scope respectively of the capability.

The language is implemented as a series of facts for the Prolog [9] logic programming

language. Entailments are guaranteed thanks to rules written in Prolog (which may be

extended by users), e.g. the expression: rdf entails any rdf(_) or rdf(_,_) expression, that

is any monadic or diadic expression with the rdf predicate (i.e. implying that the simple

expression rdf authorizes any operation in the area of RDF). The computation of en-

tailments is based on the tuProlog [10] engine.

New roles can be easily created, and existing ones can be modified, through a dedicated

rbac editing wizard (Figure 3). The default policy recognizes typical roles and their

acknowledged responsibilities:

 Administrator: the sole inter-project role (i.e. the role exists a-priori from projects).

The Administrator has by definition access to all functionalities and configuration

options of the system.

Figure 3. Editing a capability for a new role in VocBench

 Project Managers: project-local administrators. Inside a project, they can do every-

thing: from data and configuration management to assigning users to the project and

granting roles to them. Their boundaries are: other projects and system-level settings

and configuration.

 Specific project-local roles: Ontology editors (authorized to perform changes at the

axiomatic level), Thesauri Editors (authorized to work on thesauri without perform-

ing OWL editing actions), Terminologists/Lexicographers (authorized to edit lexi-

calizations, can be limited to edit only certain languages according to their proficien-

cies), Validators (can perform validation action, see “Formal Workflow Manage-

ment” section)

Advanced History and Change Tracking mechanism. Both a strength and a weak-

ness in VB2, the Change Tracking mechanism that powered History & Validation was

appreciated by most users. However, being based on a pre-defined set of recognized

operations, it severely limited system maintainability (req. R9) and the possibility to

perform (req. R6) under-the-hood changes (e.g. through changes brought directly

through SPARQL) while keeping a history which is consistent with the status of the

dataset. VB3 abandoned the separated relational DB that held user and history data and

implemented, completely in RDF (req. R15), a track-change mechanism working at

triple-level and complementing this fine-grained representation with rich metadata

(R11) about the invoked action and the context of the invocation. Triples re-

moved/added by each action are reified, grouped around a common resource represent-

ing the action that produced the change and stored in a separated (but connected to the

project) RDF repository (the support repository) together with the actions’ metadata.

The change-tracking mechanism has been implemented as a new sail for the RDF4J

framework (http://rdf4j.org/). The sail is embedded with the system, but can also

be deployed as a pluggable component inside other sail-compliant triple stores (req.R4).

The design of the history and change tracking mechanism in VB3 was guided by a

landscape analysis [11], in which we discussed the nature and the representation of

change, reviewed some version control systems for RDF, and delved into the challenges

posed by validation.

More Powerful yet Streamlined Workflow Management. VB2 had a 5-steps publi-

cation workflow, clocked by the property “status” (with values: proposed, validated,
published, deprecated and proposed_deprecated) and, redundantly, with information

stored in the DB about the status of operations to be validated. Also in VB2, the con-

cepts of resource and action were mixed up in the validation procedure, with the status

of a resource being affected by the validation (e.g. moving from “proposed” to “vali-

dated”), while single affected triples had no trace of their validation status if not in the

DB tables. This follows from the fact that it is not possible to attach a status to a triple

in RDF, if not by reifying the triple. Finally, there is no standard W3C equivalent for

the custom “status” property in VocBench, thus reducing this status information about

the workflow to something to be removed from the dataset when it gets published.

Benefiting from the new Change Tracking system, we have made things clearer, and

easier: there is no “status” property anymore, as the workflow is implicitly expressed

http://rdf4j.org/

by the validation mechanism coded into graphs. The added/removed triples are stored

in the support repository as described in the previous section, while non-reified “pre-

views” of them are available in separate graphs (staging-add-graph and staging-delete-

graph) in the main repository, and the system, being aware of this graph/repository

organization, presents them appropriately to the user. In this way, the main graph being

written implicitly represents stable information, which does not need to be tagged as

“validated”. The distinction between “validated” and “published” has been removed as

most users considered this sort of dual validation as useless. Probably, the original in-

tention, dating back to the first VocBench, was to distinguish which resources had been

published in an open version of the dataset from those that – though being validated –

had never seen the light out of VocBench. However, this distinction has never been put

in place in any known user workflow. Finally, the status of deprecation has been repre-

sented through the official owl:deprecated property. The status of “proposed depre-

cated” is also intuitively represented by the need to validate the action for setting the

owl:deprecated property to “true”.

Improved and More Complete Support for SKOS. VB2 had already an advanced

support for multiple SKOS schemes. We have improved the management by allowing

users to select more schemes for browsing the concept tree and by adopting a combi-

nation of conventions and editing capabilities for quickly associating the proper

schemes to newly created concepts and collections. Support for SKOS collections and

ordered collections has been introduced in the system with dedicated UI views and ed-

iting facilities.

Figure 4. Editing axioms for a class in OWL, extending the FOAF ontology

OWL Support. VocBench already allowed for importing ontology vocabularies for

modeling thesauri. Now VocBench also supports ontology development (requirement

R8), with editing of OWL axioms (using the Manchester syntax for both editing and

visualization, see Figure 4) and an almost full coverage of OWL2 expressions.

SPARQL Querying and Update. A new SPARQL UI, based on YASGUI [12] has

been included in VB3, featuring the same feeding-from-live data mechanism present in

VB2. An important improvement over VB2: now changes performed through SPARQL

updates can be tracked and, consequently, put under validation if the project enables it.

Alignment. VB3 provides the same inter-project alignment support of VB2, allowing

users to browse other projects and supporting semi-automatic label-based searches over

them in order to provide candidate resources for alignments. In addition to this on-the-

fly generation of mappings, VB3 introduces an alignment-validation tool: it is possible

to load alignments following the model of the INRIA Alignment API [13], inspect the

aligned resources and validate the alignment. Validated alignments can then be pro-

jected over standard RDFS/OWL or SKOS properties, depending on the validated re-

lation and the involved entities. E.g. two classes mapped through an inria:EquivRelation

will be mapped through the property owl:equivalentClass while two SKOS concepts

will be aligned with a skos:exactMatch.

Declarative Service Implementation. An innovation that can be immediately appre-

ciated by developers is the declarative way in which services are implemented: the

business logic of the services is represented through a dedicated set of java-annotations

that have been specifically developed for the VB framework. Declarations specifying

if a service requires read/write access to the data, the capabilities the user must have in

order to use them, the pre-requisites on the input parameters, etc. can all be represented

in terms of this annotation vocabulary. Therefore, service development becomes an

easier task, less prone to errors and the produced code is more readable, as the developer

needs only to focus on what the service does.

Versioned datasets and metadata. In VB3, users can create snapshots of a repository

and tag them with a version identifier (and other metadata, such as the time of creation

of the snapshot). Users can travel across the different points in time identified by these

versions, and thus analyze the evolution of browsed resources. The time-travel can be

performed both globally, by switching version so that everything in the UI refers to the

Figure 5. time-traveling across different versions of a resource

selected version, and locally, by inspecting different versions of a resource in the re-

source-view (Figure 5) or different versions of a tree (of classes, concepts, etc...)

Metadata Export. The “metrics” section of VB2 has been replaced with a page for

editing and exporting metadata modeled after several existing metadata vocabularies:

the Data Catalog Vocabulary (DCAT) [14], the Asset Description Metadata Schema

(ADMS) [15], The Vocabulary of Interlinked Datasets (VoID) [16] and the Linguistic

Metadata vocabulary (LIME) [17] (a lexical extension to VoID). While DCAT and

ADMS mostly deal with static metadata, VoID and LIME offer statistical information

about the dataset and its lexical information. The information of VoID and LIME is

being computed through a profiler bundled with the LIME API [18]. This metadata

build&export functionality is implemented as an extension point of the platform, so that

new vocabularies can be dynamically added to the platform. For instance, an applica-

tion profile for DCAT thought for European public sector data portals (DCAT-AP:

https://joinup.ec.europa.eu/node/145996) has later been added to the list of ex-

porters, as of the ISA2 context specifically supporting public administration. Concep-

tual and lexical metadata will become important in a planned future version of the sys-

tem, as this information will be exploited to support the setup of automatic alignment

processes, in the spirit of [19,20,21].

ICV. A section dedicated to Integrated Constraint Validation (ICV) allows the user to

inspect possible anomalies. These include violations of formal constraints (e.g. thesauri

constraints on existence and uniqueness of preferred labels, disjointness between tax-

onomy and relatedness etc…) or problematic (though not necessarily illegal) patterns

(e.g. a skos:Concept having a broader concept and being the top concept of a same

scheme). Interactive fixes are provided (req. R3) for each discovered integrity break.

Desktop Tool and Collaborative Web Platform. As of requirement R7, the system

offers a very lightweight installation (i.e. unzip and click-to-run) which, followed by

default configuration options for both system and project creation, make VB3 a good

choice for users looking for a simple and easy-to-use desktop tool. Other more complex

settings are still possible, satisfying different needs for distributed installation (separa-

tion of data servers, UI servers), better performance, etc...

4 Conclusion And Future Work

In the last 3 years, VocBench has addressed the needs of large organizations, companies

and independent users needing an open source collaborative environment for editing

thesauri, supporting a formalized editorial workflow. A vibrant user community

(http://vocbench.uniroma2.it/support/community.jsf) has grown in these years

around VocBench initially inside various departments of FAO, and later spread across

other organizations with analogous needs. Continuous user feedback allowed us to spot

bugs and to improve the usability of VocBench.

It is thanks to this community feedback, to the support of the ISA2 program and to

our desire to reach new quality levels that we started this endeavor, by rethinking most

of VocBench from scratch, still benefiting from the experiences we had with VB2.

https://joinup.ec.europa.eu/node/145996

The most important achievement of the new platform lies at its core: a fully-fledged

RDF core framework, developed by extending the Semantic Turkey [22] framework

(which already powered the original VocBench 2) with functionalities for user man-

agement, role-based access control, change tracking and collaboration and by providing

it with a new user interface. We hope that this evolution of the system will lay a solid

foundation for the realization of a new range of services spacing from knowledge ac-

quisition, evolution and management in the European and worldwide scenario.

Acknowledgments. This work has been funded by the European Commission ISA²

programme; the development of VocBench 3 (VB3) is managed by the Publications

Office of the EU under the contract 10632 (Infeurope S.A.).

References

1. Caracciolo, C., Stellato, A., Morshed, A., Johannsen, G., Rajbhandari, S., Jaques, Y.,

Keizer, J.: The AGROVOC Linked Dataset. Semantic Web Journal 4(3), 341–348 (2013)

2. Stellato, A., Rajbhandari, S., Turbati, A., Fiorelli, M., Caracciolo, C., Lorenzetti, T., Keizer,

J., Pazienza, M.T.: VocBench: a Web Application for Collaborative Development of

Multilingual Thesauri. In : The Semantic Web. Latest Advances and New Domains (Lecture

Notes in Computer Science) 9088. Springer International Publishing (2015), pp.38-53

3. World Wide Web Consortium (W3C): SKOS Simple Knowledge Organization System

Reference. In: World Wide Web Consortium (W3C). (Accessed August 18, 2009) Available

at: http://www.w3.org/TR/skos-reference/

4. World Wide Web Consortium (W3C): SKOS Simple Knowledge Organization System

eXtension for Labels (SKOS-XL). In: World Wide Web Consortium (W3C). (Accessed

August 18, 2009) Available at: http://www.w3.org/TR/skos-reference/skos-xl.html

5. Hodge, G.: Systems of Knowledge Organization for Digital Libraries: Beyond Traditional

Authority Files. Council on Library and Information Resources, Washington, DC (April

2000)

6. McCrae, J., Spohr, D., Cimiano, P.: Linking Lexical Resources and Ontologies on the

Semantic Web with Lemon. In : The Semantic Web: Research and Applications (Lecture

Notes in Computer Science) 6643. Springer Berlin Heidelberg (2011), pp.245-259

7. Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P.: Linked Data Is Merely More Data.

In : Linked Data Meets Artificial. AAAI Press, Menlo Park (2010), pp.82–86

8. Fiorelli, M., Lorenzetti, T., Pazienza, M.T., Stellato, A.: Assessing VocBench Custom

Forms in Supporting Editing of Lemon Datasets. In : Language, Data, and Knowledge

(Lecture Notes in Artificial Intelligence) 10318. Springer, Cham (2017), pp.237-252

9. Bratko, I.: Prolog Programming for Artificial Intelligence. Addison Wesley (2001)

10. Denti, E., Omicini, A., Ricci, A.: tuProlog: A Light-Weight Prolog for Internet Applications

and Infrastructures. In : Practical Aspects of Declarative Languages (Lecture Notes in

Computer Science) 1990. Springer, Berlin, Heidelberg (2001), pp.184-198

11. Fiorelli, M., Pazienza, M.T., Stellato, A., Turbati, A.: Version Control and Change

Validation for RDF Datasets. In : Metadata and Semantics Research. 11th Research

Conference, MTSR 2017, Tallinn, Estonia, November 28 - December 1, 2017, Proceedings.

Springer (2017) (in press).

http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/skos-xl.html

12. Laurens, R., Rinkea, H.: The YASGUI family of SPARQL clients. Semantic Web 8(3), 373-

383 (2017)

13. David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The Alignment API 4.0.

Semantic Web Journal 2(1), 3-10 (2011)

14. World Wide Web Consortium (W3C): Data Catalog Vocabulary (DCAT). In: World Wide

Web Consortium (W3C). (Accessed January 16, 2014) Available at:

http://www.w3.org/TR/vocab-dcat/

15. Dekkers, M.: Asset Description Metadata Schema (ADMS). In: World Wide Web

Consortium (W3C). (Accessed August 1, 2013) Available at:

http://www.w3.org/TR/vocab-adms/

16. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets with

the VoID Vocabulary (W3C Interest Group Note). In: World Wide Web Consortium

(W3C). (Accessed March 3, 2011) Available at: http://www.w3.org/TR/void/

17. Fiorelli, M., Stellato, A., Mccrae, J.P., Cimiano, P., Pazienza, M.T.: LIME: the Metadata

Module for OntoLex. In : The Semantic Web. Latest Advances and New Domains (Lecture

Notes in Computer Science) 9088. Springer International Publishing (2015), pp.321-336

18. Fiorelli, M., Pazienza, M.T., Stellato, A.: An API for OntoLex LIME datasets. In : OntoLex-

2017 1st Workshop on the OntoLex Model (co-located with LDK-2017), Galway (2017)

19. Pazienza, M.T., Sguera, S., Stellato, A.: Let's talk about our “being”: A linguistic-based

ontology framework for coordinating agents. Applied Ontology, special issue on Formal

Ontologies for Communicating Agents 2(3-4), 305-332 (December 2007)

20. Pazienza, M.T., Stellato, A.: An Environment for Semi-automatic Annotation of

Ontological Knowledge with Linguistic Content. In : The Semantic Web: Research and

Applications (Lecture Notes in Computer Science) 4011. Springer (2006), pp.442-456

21. Fiorelli, M., Pazienza, M.T., Stellato, A.: A Meta-data Driven Platform for Semi-automatic

Configuration of Ontology Mediators. In Calzolari, N., Choukri, K., Declerck, T., Loftsson,

H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S., eds. : Proceedings of the

Ninth International Conference on Language Resources and Evaluation (LREC'14),

Reykjavik, Iceland (May 2014)

22. Pazienza, M.T., Scarpato, N., Stellato, A., Turbati, A.: Semantic Turkey: A Browser-

Integrated Environment for Knowledge Acquisition and Management. Semantic Web

Journal 3(3), 279-292 (2012)

http://www.w3.org/TR/vocab-dcat/
http://www.w3.org/TR/vocab-adms/
http://www.w3.org/TR/void/

	1 Introduction
	2 Requirements
	3 Towards VocBench 3
	Improved and More Complete Support for SKOS. VB2 had already an advanced support for multiple SKOS schemes. We have improved the management by allowing users to select more schemes for browsing the concept tree and by adopting a combination of convent...

	4 Conclusion And Future Work
	References

