
A Preliminary Empirical Exploration of Quality

Measurement for JavaScript Solutions

DAVID KOSTANJEVEC, MAJA PUŠNIK, MARJAN HERIČKO, BOŠTJAN ŠUMAK,
University of Maribor

GORDANA RAKIĆ and ZORAN BUDIMAC, University of Novi Sad

Contrary to the increasing popularity of JavaScript programming language in the field of web application development, the

numerical expression of evidence about the quality of solutions developed in this language is still not reliable. Based on the

preliminary literature review, which is the main subject of this paper, this area has not yet been fully explored. Measurement is

done by application of general and object-oriented metrics, which can reflect only general characteristics of the solution, while

the specifics related to the programming language are not expressible by existing metrics. Due to the popularity of the language

and the increasing number of JavaScript projects, the idea is to determine appropriate metrics and approach to measurement

for their application in practice. Finally, the measurement approach will be implemented in the SSQSA Framework to enable

its application. The preliminary research presented in this paper was conducted during a student course of Empirical research

methods at the University of Maribor and therefore is limited in number of included papers, depth of research, and analysis of

its contents, which restricts us to preliminary conclusion only, but places the foundation and justifies the described forthcoming

research.

Categories and Subject Descriptors: H.0. [Information Systems]: General; D.2.8 [Software Engineering]: Metrics —

Complexity measures; Product metrics; D.2.9. [Software Engineering]: Management — Software quality assurance (SQA)

General Terms: Software quality assurance

Additional Key Words and Phrases: software metrics, quality metrics, JavaScript, software analysis, JavaScript analysis

1 INTRODUCTION

JavaScript is an increasingly popular programming language that is dynamically interpreted and has

a simple syntax. The Angel List Job Posting (USA) Agency recorded 30.6% jobs as JavaScript oriented

in 2016 (Chen 2017). Popularity however brings a lot of changes and innovations in the development

of web applications and services. JavaScript was primarily used only for client-side functionalities and

was running in a browser. However, it is now running on the servers as well (Capan 2013).

Applications and services are written using the JavaScript language and executed on the Node.js

platform, a relatively new technology which is continually evolving. JavaScript is also becoming the

main programming language for developing hybrid mobile applications using frameworks such as

Cordova, Phonegap, Titanium, Facebook's React Native, etc. (ValueCoders 2017).

Today Node.js is one of the most innovative solutions for building servers and web/mobile

applications. The field is growing rapidly with the valuable contributions of other developers and

technological giants (Abhishek 2015). Node.js also provides a platform for publishing third party

packages that are available through the Node Packet Manager (NPM) public repository. At the time of

writing, there are more than 540,000 packages, which can be simply installed, managed, and updated

through package management (B. Pfretzschner in L. B. Othmane 2016) and (E. Wittern, P. Suter

2016). Today, there are many solutions based on Node.JS framework that constantly evolving. The

most well-known Node.js frameworks are Express.js, Hapi.js, Socket.io, Mojito, Mean.js, Sails.js, Koa

and others (Noeticsunil 2017). Following all frameworks as well as their success in terms of quality is

Authors address: David Kostanjevec, Maja Pušnik, Marjan Heričko, Boštjan Šumak, Faculty of Electrical Engineering and

Computer Science, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; email: kostanjevec.david@gmail.com
maja.pusnik@uni-mb.si marjan.hericko@um.si bostjan.sumak@um.si

Gordana Rakić, Zoran Budimac University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics, Trg

Dositeja Obradovica 4, 21000 Novi Sad, Serbia; email: gordana.rakic@dmi.uns.ac.rs, zjb@dmi.uns.ac.rs

Copyright © by the paper’s authors. Copying permitted only for private and academic purposes.

In: Z. Budimac (ed.): Proceedings of the SQAMIA 2017: 6th Workshop of Software Quality, Analysis, Monitoring, Improvement,

and Applications, Belgrade, Serbia, 11-13.09.2017. Also published online by CEUR Workshop Proceedings (CEUR-WS.org,

ISSN 1613-0073)

6

mailto:kostanjevec.david@gmail.com
mailto:maja.pusnik@uni-mb.si
mailto:marjan.hericko@um.si
mailto:bostjan.sumak@um.si
mailto:gordana.rakic@dmi.uns.ac.rs
mailto:zjb@dmi.uns.ac.rs

6:2 G. David Kostanjevec et al

very difficult, as new Node.js frames are constantly appearing (Abhishek 2015), (Noeticsunil 2017).

Because of the large number and how fast different frameworks are being developed, and updated, it

would be necessary to have appropriate tools enabling for analysis and comparison of these

frameworks in terms of different quality dimensions. The analysis should include benchmarking

criteria for (1) the framework, (2) what the framework is intended for, and (3) quality of the software

developed on the framework. The quality of the developed projects would be tested by using

JavaScript software metrics that are still not precisely defined.

The overall goal of this research is to establish and to apply an appropriate measurement to

monitor quality of applications written using the JavaScript programming language. Upon the

establishment of an measurement approach, the SSQSA Framework (Gordana Rakić 2015) could be

exploited to measure JavaScript solutions according to it. Existing frameworks so far extract different

metrics for measuring quality of solutions written in different languages, including JavaScript, but

with no processing of extracted numbers that would provide the user with useful information about

the quality of the analyzed solution. In order to employ an analytic technique to generate a certain

information about the quality of a JavaScript solution, we have to define which of extracted metrics

we will take into account and how they measure the quality attributes in JavaScript solutions as well

as provide quantitative data about the quality variables or factors.

Following described goals, we conducted a preliminary research to identify software metrics

potentially appropriate for assessing the quality of JavaScript solutions. The goal of this paper is to

review approaches for measuring complexity and other quality attributes applied to JavaScript

solutions, in order to select applicable metrics. Based on the literature review, we tried to identify

metrics comparable to classic OO metrics that are, according to the existing literature, used to

measure quality attributes of JavaScript solutions. In the following sections, we first describe the

review approach. Next, results of the review are presented and discussed, where we focus on the

selection of the metrics and evaluate their suitability to the specified purpose. Finally, the last two

sections provide limitations of this preliminary research and conclusions with the plans for future

work.

2 REVIEW APPROACH

Within the overall examination, several research questions will stand in the foreground as guidelines

for further research:

1. Which existing software metrics are appropriate for measuring the quality of JavaScript

solutions?

2. What are the shortcomings of the existing JavaScript metrics?

3. What JavaScript metrics already exists and what are their reference values?

4. Is it possible to extend the existing set of JavaScript metrics for comprehensive software

quality measurement of JavaScript based solutions?

5. What tools for static analysis of JavaScript code already exists and which metrics do the

support?

Guided by these research questions, preliminary research was focused on determination of the

current situation in measuring the quality of JavaScript solutions. Specific research questions that

should be answered by this preliminary literature review are:

1. Which software metrics have been used in existing literature for measuring the quality of

JavaScript solutions?

2. Are these metrics appropriate to measure the quality of JavaScript solutions?

Following databases of scientific papers were used for searching of relevant literature: (1) Web of

Science, (2) Science Direct and (3) IEEE Xplore Digital Library. The search was focused on research

published in the past 5 years (from 2012 to 2017) in the field of computer science and informatics. The

 A Preliminary Empirical Exploration of Quality Measurement for JavaScript Solutions • 6:3

used keywords were “JavaScript Metric”, “static analysis”, “JavaScript analyse” and “software

analyse”. Table I presents combination of keyword sequence for each database and number of results

(conducted at the end of May 2017).
Table I. Set of keyword combinations

 A combination of a keyword sequence # of results

IEEE Xplorer ((javascript) OR Javascript) AND ((metric)OR (static analysis*) OR (software

analys*)OR ("Abstract":staticanalys*))

28

ScienceDirect (TITLE-ABSTR-KEY(javascript)) AND (TITLE-ABSTR-KEY(metric) OR TITLE-

ABSTR-KEY(static analys*) OR TITLE-ABSTR-KEY(software analys*))

27

Web of Science TS=(javascript AND metric*) OR SU=(static analys* OR software analys*)

38

13 papers were found and included in this preliminary research, addressing listed general

questions, without a specific selection criterion. However, the preliminary research in this paper is not

a systematic literature review and focuses on discovery of software metrics applied on JavaScript

solutions and exploration of their usability. Other research questions will be addressed in more depth

in future work.

3 REVIEW RESULTS

Authors in (Y. Ko, H. Lee, J. Dolby 2015) present a new approach for analyzing large JavaScript

applications with static analysis. The research describes their tool and focuses on the analysis of

products written in the JavaScript programming language.

The authors in (S. Mirshokraie, A. Mesbah 2013) focused on the JavaScript programming

language and proposed a set of mutations that are specific to web applications. They suggest a

technique that complements the static and dynamic analysis of the program to guide the process of

generating mutations, on sections of the program code, where there is a greater likelihood of errors or

could affect the output of the program. The paper presents the MUTANDIS tool and gives an

assessment of effectiveness (S. Mirshokraie, A. Mesbah 2013).

Similarly, the paper (S. Rostami, L. Eshkevari, D. Mazinanian 2016) presents the JSDeodorant

tool, a plug-in for Eclipse. The tool allows us to observe classes in JavaScript, it can identify the

divergence between modules and utilities when examining objects in a program code. The main

purpose of the paper is the presentation of the techniques, provided by the JSDeodorant tool, the

comparison of the tool with the more familiar tool JSClassFinder, and the quantitative and

qualitative evaluation of the results to recognize their limitations and possibilities for future

improvements (S. Rostami, L. Eshkevari, D. Mazinanian 2016). The authors in (Mesbah 2013) present

the JSNOSE tool that uses the technique of detecting bad programming patterns. The tool compares

the program code with a set of 13 samples of JavaScript to find "smelly" parts of the code. Parts of bad

code can have a poor effect on the whole project, maintenance or understanding. The JSNOSE tool in

the paper is also tested on eleven web applications (Mesbah 2013). By increasing the use of JavaScript

frameworks for web applications, there is an increasing demand for the quality of the written code

including fast maintenance, reliability and speed.

Based on the preliminary literature review, we concluded that there are already several metrics

defined, mostly connected to object-oriented paradigm and all of them are not completely suitable for

JavaScript program code. However, JavaScript metrics were included in a research conducted by

(Alberto S. Nuñez-Varela, Héctor G. Pérez-Gonzalez, Francisco E. Martínez-Perez 2017), where a total

of 190 different metrics was identified for the object-oriented paradigm. The most common metrics

and total occurrences of specific metric, are presented in the Table II for programming languages

Java, AspectJ, C++, C, C#, Jak, Ada, COBOL, Pharo, PHP, Python, Ruby, as well as for JavaScript.

6:4 G. David Kostanjevec et al

Table II. Commonly applied metrics

Metric Total

occurrences

 Metric Total

occurrences

Weighted Methods per Class (WMC) 89 Lines of Source Code (SLOC) 17

Coupling Between Objects (CBO) 89 Lack of Cohesion in Methods 3

(LCOM3)

16

Lack of Cohesion in Methods (LCOM) 86 Cohesion Among Methods (CAM),

Number of Classes (NCLASS),

Number of Parameters (NPAR)

15

Depth of Inheritance Tree (DIT) 81 Nesting level (NEST), Message Passage

Coupling (MPC)

14

Lines of Code (LOC) 79 Number of Overridden Methods (NMO),

Number of Public Attributes (NOPA)

13

Number of Children (NOC) 77 Lack of Cohesion in Methods 4

(LCOM4)

12

Response for a Class (RFC) 72 Effort (E) 11

Number of Methods (NOM) 57 Instability (I) 11

Cyclomatic Complexity (V(G)) 55 Lack of Cohesion in Methods 5

(LCOM5)

11

Number of Attributes (NOA) 43 Tight Class Cohesion (TCC) 11

Fan-out (FANOUT) 27 Abstractness (A)

Loose Class Cohesion (LCC)

Number of Statements (STAT)

Number of Methods Inherited (NMI)

10

 Fan-in (FANIN),

Number of Public Methods (NOPM)

22

Lines of Comments (LCOMM) 21 Attribute Hiding Factor (AHF),

Class Cohesion (CC),

Data Abstraction Coupling (DAC),

Data Access Metric (DAM),

Method of Aggregation (MOA), Method

Hiding Factor (MHF), Normalized

Distance from Main Sequence (Dn)

Less than 10

Afferent Couplings (Ca),

Efferent Couplings (Ce)

20

Lack of Cohesion in Methods 2 (LCOM2) 18

All listed metrics (Table II) however cannot be applied to JavaScript program code. According to

the research (L. H. Silva, D. Hovadick, M. T. Valente, A. Bergel, N. Anquetil 2016), which presents the

JSClassFinder tool, only few metrics are suitable. The mentioned tool creates a structure model from

the program code and is object-oriented, enabling visualization of the code (UML class diagram) and

presenting information about classes, methods, attributes, deductions, and relationships. Metrics

obtained with the tool and suitable for JavaSript measurement according to (L. H. Silva, D. Hovadick,

M. T. Valente, A. Bergel, N. Anquetil 2016) are the following:

1. Number of classes,

2. Number of method,

3. Number of attributes,

4. Number of subclasses,

5. Depth of inheritance tree.

The selected five metrics are not enough for comprehensive measuring of JavaScript solution

quality or complexity; therefore, extended research will be conducted, focusing on additional research

questions.

4 LIMITATIONS AND THREATS TO VALIDITY

This research has limitations that have to be identified and discussed. Since the research was

conducted by students within the course Empirical research methods it is not complete and other

papers of existing research must be taken into consideration. Furthermore, this is only a preliminary

 A Preliminary Empirical Exploration of Quality Measurement for JavaScript Solutions • 6:5

research from the empirical perspective. After comprehensive empirical research, confirmed

conclusions have to be challenged in practical application to examine real usability of selected metrics

and discover their weaknesses. Final conclusions should lead to answers to the research questions.

5 CONCLUSION AND FUTURE WORK

Several metrics have been identified and are already commonly used for software quality

measurement; however most of them are reportedly not suitable for JavaScript source code

measurements. A set of metrics dedicated to measuring the quality of JavaScript solutions must be

defined and evaluated. The preliminary research in this paper is an initial effort to examine the field

of JavaScript metrics, providing basic insight into the research field.

The future work will include a systematic literature review of the field, practical examination of

selected metrics and tools and definition of metrics suitable for JavaScript program code

measurement in terms of quality and complexity according to defined research questions. Extended

formation of appropriate measurements for JavaScript source code will be implemented by integrating

them with the SSQSA Framework.

6 ACKNOWLEDGMENTS

This joint work is enabled by bilateral project “Multidimensional quality control for e-business

applications” between Serbia and Slovenia (2016-2017). Furthermore, the two authors from

University of Novi Sad were partially supported by the Ministry of Education, Science, and

Technological development, Republic of Serbia, through project no. OI 174023. The authors

acknowledge the financial support from the Slovenian Research Agency (research core funding No.

(J5-8230).

7 REFERENCES

Abhishek. 2015. “10 Best Node.js Frameworks For Developers.” https://www.devsaran.com/blog/10-best-nodejs-frameworks-

developers.

Alberto S. Nuñez-Varela, Héctor G. Pérez-Gonzalez, Francisco E. Martínez-Perez, Carlos Soubervielle-Montalvo. 2017. “Source

Code Metrics: A Systematic Mapping Study.” The Journal of Systems and Software 128: 164–97.

B. Pfretzschner in L. B. Othmane. 2016. “Dependency-Based Attacks on Node.js.” IEEE Cybersecurity Development: 66.

Capan, Tomislav. 2013. “Why The Hell Would I Use Node.js? A Case-by-Case Tutorial.” Toptal.

https://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js.

Chen, Yi-Jirr. 2017. “What Programming Language Should a Beginner Learn in 2017?” Codmentor community.

https://www.codementor.io/codementorteam/beginner-programming-language-job-salary-community-7s26wmbm6.

E. Wittern, P. Suter, in S. Rajagopalan. 2016. “A Look at the Dynamics of the JavaScript Package Ecosystem.” In IEEE/ACM

13th Working Conference on Mining Software Repositories, 351–61.

Gordana Rakić. 2015. SSQSA: Set of Software Quality Static Analysers, Extendable and Adaptable Frameworkfor Input

Language Independent Static Analysis “SSQSA Ontology Metrics Front-End1.” University of Novi Sad.

L. H. Silva, D. Hovadick, M. T. Valente, A. Bergel, N. Anquetil, in A. Etien. 2016. “JSClassFinder: A Tool to Detect Class-like

Structures in JavaScript”.

Mesbah, A. M. Fard A. 2013. “JSNOSE: Detecting JavaScript Code Smells.” In IEEE 13th International Working Conference on

Source Code Analysis and Manipulation (SCAM), 116–25.

Noeticsunil. 2017. “Node.js Frameworks: The 10 Best for Web and Apps Development.” http://noeticforce.com/best-nodejs-

frameworks-for-web-and-app-development.

S. Mirshokraie, A. Mesbah, in K. Pattabiraman. 2013. “Efficient JavaScript Mutation Testing.” In Verification and Validation

2013 IEEE Sixth International Conference on Software Testing, 74–83.

S. Rostami, L. Eshkevari, D. Mazinanian, N. Tsantalis. 2016. “Detecting Function Constructors in JavaScript.” In IEEE

International Conference on Software Maintenance and Evolution (ICSME), 488–492.

ValueCoders. 2017. “9 Top JavaScript Frameworks For Mobile App Development.” Valuecoders -Expert Remote Teams for your

Web & Mobile Needs. https://www.valuecoders.com/blog/technology-and-apps/top-javascript-frameworks-for-mobile-app-

development/.

Y. Ko, H. Lee, J. Dolby, in S. Ryu. 2015. “Practically Tunable Static Analysis Framework for Large-Scale JavaScript

Applications.” 30th IEEE/ACM International Conference on Automated Software Engineering (ASE): 541–51.

