
11

A Practical Tutorial For FermaT and WSL
Transformations
DONI PRACNER and ZORAN BUDIMAC, University of Novi Sad

The transformation system FermaT and the language WSL can be very powerfull tools and are successfully used event in some

industrial applications. In this paper we try to illustrate a process of making a new transformation and some intermediate steps

and ways to test the new functionalities in a simple way.

Categories and Subject Descriptors: D.2.7 [Software Engineering] Distribution, Maintenance, and Enhancement

General Terms: Theory, Experimentation

Additional Key Words and Phrases: software evolution, FermaT, WSL, transformations

1. INTRODUCTION

Software evolution is mainly about how program code changes in its environment. A very important
part of these changes is the re-engineering of software that can be done very efficiently and more
importantly reliably by using tools that offer formally provable transformations.

FermaT is the current implementation of the language WSL (short for Wide Spectrum Language)
and the surrounding code transformation libraries. It is available under the GPL v3 software licence
and works on most computer platforms, including Linux, Windows and Mac OS. Early versions of
this tool were developed as “The Maintainer’s assistant”[Ward 1989] and it has been developed and
reimplemented since then. It has been used in several industrial projects of converting legacy assembly
code to human understandable and maintainable C and COBOL[Ward 1999][Ward 2004][Ward et al.
2004][Ward 2013]. It also has support for program slicing[Ward and Zedan 2017] and can be used
to derive program code from abstract specifications[Ward and Zedan 2014]. A companion graphical
application FermaT Maintenance Environment (FME)[Ladkau 2007] is also available and can be very
useful especially for initial experiment with the transformation system. This tutorial will give just a
brief overview of WSL and some of the needed ideas and will not go into depths with the syntax of the
language that is available in the official manual[Ward et al. 2008].

This paper is organised as follows: Section 2 shows some aspects of FermaT and how to use it and
expand it, mainly through the expression and condition simplifiers (Section 2.1. A working example
is introduced in Section 2.2, which is then developed into a full transformation that can be added to
the system in Section 2.3. Finally Section 3 gives a brief conclusion to the paper. Along the way Some

This work is partially supported by Ministry of Education and Science of the Republic of Serbia, through project no. OI174023:
"Intelligent techniques and their integration into wide-spectrum decision support";
Author’s address: Doni Pracner, Zoran Budimac, Department of Mathematics and Informatics, Faculty of Sciences, University
of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia; email: doni.pracner@dmi.uns.ac.rs, zjb@dmi.uns.ac.rs

Copyright c©by the paper’s authors. Copying permitted only for private and academic purposes.
In: Z. Budimac (ed.): Proceedings of the SQAMIA 2017: 6th Workshop of Software Quality, Analysis, Monitoring, Improvement,
and Applications, Belgrade, Serbia, 11-13.9.2017, Also published online by CEUR Workshop Proceedings (http://ceur-ws.org,
ISSN 1613-0073)

http://ceur-ws.org

11:2 • D. Pracner and Z. Budimac

ways of checking the results of transformations will also be presented, as well as ways to find more
information on the structure of the programs, both of which are very important for beginners.

2. WORKING WITH META-WSL

WSL has the ability to work with programs written in WSL. This part of the language is called
MetaWSL. A piece of code under inspection is represented by an abstract syntax tree (AST), or more
precisely in the current implementation by a list that can have lists as its elements. Meta-WSL pro-
cedures know how to handle these lists and what to expect in them when they represent a valid pro-
gram. Items in the lists have associated general and specific types. For instance a while loop will be
of type T_While and will contain in its list a T_Condition and T_Statements. An assignment is of
type T_Assignment and holds one or more items of type T_Assign (it is separated because it is used
in other places as well, and there can be multiple simultaneous assignments) which in turn holds an
T_Lvalue and a T_Expression. Tables with these relations can be found in the reference manual for
WSL[Ward et al. 2008], or can be found by directly extracting the information from the source code
with a command like shown in Figure 1.

> grep "\[T_Assign\]" $Fermat/src/adt/WSL-init.wsl

Syntax_Name[T_Assign] := "Assign";
Syntax_Comps[T_Assign] := <T_Lvalue, T_Expression>;

Fig. 1. Grepping component types in WSL

To assist many operations, especially transformations, there is also a concept of the current program
that is being worked on (accessible via the @Program procedure), the current position in it (represented
by a list of indexes in the lists starting from the top one, obtained by @Posn) and the current item (@I)
in it. There are many built in procedures to move around in the program and to change it. The current
program can be specified with @New_Program and to understand better what are the components of
particular statements, the @Print_WSL procedure can be used, as shown in Figure 2. To print the code
of an item there is the pretty print @PP_Item procedure, that accepts three parameters: the item, the
width of the maximum line, and the file to print out the code to. If the filename is an empty string
it will be printed out to the standard output. When working with the whole program, a convenient
shorthand is the @Checkpoint procedure which accepts only one parameter, the file name, and always
prints the whole program in 80 characters width.

2.1 Item simplification

One of common things done in transforming programs is to detect specific patterns and simplify them.
WSL has matching constructs for this type of work. To demonstrate a simple example we’ll try to make
a matcher for calling absolute values on negated values and replace them with just the value (of course
this is already present in FermaT). To quickly test our matcher, we can create a small program that
will define an entry to test on, use the checkpoint command to display the code before and after the
changes, and use the FOREACH construct to apply our matcher to all expressions. This is demonstrated
in Figure 3. Alternatively we could use commands to move the current position (such as @Down, @Right,
etc) in the program to an appropriate expression and apply it just there.

Displaying the changed program, or saving it in a file gives a good indication whether the changes
were successful, but additional checks can and should be applied especially when prototyping. This
can be done with @Syntax_OK?, as shown in the end of Figure 3. This can catch some subtle errors.

A Practical Tutorial For FermaT and WSL Transformations • 11:3

Program:

@New_Program(FILL Statements
a := 5;
b := 10;
PRINT(a + b)
ENDFILL);

@Print_WSL(@Program, "")

Output:

Statements
Assignment
: Assign
: Var_Lvalue a
: Number 5
Assignment
: Assign
: Var_Lvalue b
: Number 10
Print
: Expressions
: Plus
: Variable a
: Variable b

Fig. 2. Creating a new program and viewing its structure

@New_Program(FILL Statements
a:=5; b:=-5; PRINT(ABS(-a));PRINT(ABS(-b))
ENDFILL);

@Checkpoint("");

PRINT("transforming");

FOREACH Expression DO
IFMATCH Expression ABS(- ~?x)
THEN @Paste_Over(FILL Expression ABS(~?x) ENDFILL) ENDMATCH;

OD;

@Checkpoint("");
IF @Syntax_OK?(@Program) THEN

PRINT("Syntax OK")
ELSE

ERROR("Bad syntax") FI

Fig. 3. Absolute value expression matching

For instance if in our paste over command we used “Expressions” instead of “Expression”, the output
would look appropriate and the saved file would actually be valid, but the syntax tree would have a
problem, and further transformations would likely fail. Calling @Syntax_OK on this version of the code
would result in a report shown in Figure 4.

FermaT has a built in maths simplifier and several procedures that rely on it. Procedures such as
Simplify, Simplify_Cond and Simplify_Expn return a new simplified item, while others like @Or, @And
will first combine conditions and try to simplify them together. More information about the simplifier
and adding patterns to it can be found in the manual and the documentation that comes with FermaT,
more precisely the document doc/adding-patterns.txt.

11:4 • D. Pracner and Z. Budimac

Expressions
Expressions

Abs
Variable a

Bad type at (3 1 1)
Gen type is: Expressions(10) Should be: Expression(2)

Fig. 4. Example of a bad syntax report

2.2 Example: Converting Numeric Codes to Strings

As a working example we will work on a relatively simple and understandable problem. One of the
tools that generates WSL code works on bytecode that has numeric codes for characters and handles
that by creating @List_To_String calls with the appropriate numbers[Pracner and Budimac 2017]. To
make the code more understandable to humans and more compact in general, we will try to transform
those into strings.

The first version (Figure 5) assumes that everything in a @List_To_String is a number literal and
will not do anything if this is not the case. If all the items in the list are numbers, we can apply
the MAP function to the list, and convert the items to their values (@V), convert those to a string with
@List_To_String and finally make a valid string item with @Make. This is then pasted over the initial
expression. As can be seen from the output shown in Figure 5 this means that if a numeric variable is
in the list, the code will not transform it at all. In this example a constant propagation transformation
executed before this code would actually solve the problem, but in a general case, the variable “a” could
be a user input, or a procedure parameter, and might not be replaceable.

@New_Program(FILL Statements a := 92;
PRINT(@List_To_String(<65>));
PRINT(@List_To_String(<65, 66>));
PRINT(-a);
PRINT(@List_To_String(<a>));
PRINT(@List_To_String(<a, 67>))

ENDFILL);
@Checkpoint("");
PRINT("transforming ----------");
FOREACH Expression DO VAR < x := < >, str := "" >:
IFMATCH Expression @List_To_String(<~*x>)
THEN IS_OK := 1;
FOR elt IN x DO
IF @ST(elt) <> T_Number THEN IS_OK := 0 FI OD;

IF IS_OK = 1
THEN str := @Make(T_String,

@List_To_String(MAP("@V", x)), < >);
@Paste_Over(str) FI

ELSE SKIP ENDMATCH ENDVAR OD;
PRINT("result ----------");
@Checkpoint("")

Output:

....
result ----------
a := 92;
PRINT("A");
PRINT("AB");
PRINT(-a);
PRINT(@List_To_String(<a>)

);
PRINT(@List_To_String(<a,

67>))

Fig. 5. Program that converts lists with only numbers to strings

A Practical Tutorial For FermaT and WSL Transformations • 11:5

To have a more fine grained handling of individual items, we need to go through them one by one
and store the changed versions in a list (called “res” in the code given in Figure 6). If a numeric code
is found it should be converted to a character and added to the list. If the previous item in the list was
a string, it should be added to it, otherwise it is added as a new item in the list. In this version we
will also include anything that is not a number as a separate entry in the resulting list. The final step,
when the list is completed is to paste it over the original expression, but it is important to consider
that multiple entries should be concatenated, while a single entry is directly pasted over.

FOREACH Expression DO
VAR < x := < >, res := < > >:
IFMATCH Expression @List_To_String(< ~*x >)
THEN
FOR elt IN x DO
IF @ST(elt) = T_Number
THEN

IF NOT EMPTY?(res) AND @ST(HEAD(res)) = T_String THEN
t := HEAD(res);
t := @Make(T_String, @V(t) ++ @List_To_String(< @V(elt) >), < >);
res := TAIL(res);
res := < t > ++ res

ELSE
s := @Make(T_String, @List_To_String(< @V(elt) >), < >);
res := < s > ++ res

FI
ELSE

res := < FILL Expression @List_To_String(< ~?elt >) ENDFILL > ++ res
FI

OD;

IF LENGTH(res)>1 THEN
@Paste_Over(@Make(T_Concat, < >, REVERSE(res)))

ELSE
@Paste_Over(HEAD(res))

FI;
SKIP

ENDMATCH ENDVAR OD;

Fig. 6. Second version of the string converter

It is important to note that while this insistence on converting numbers to characters increases the
readability of the code, it can also result in a more complex program with more expressions, which is
often not desirable, and is definitely not something to be included in the general simplifier. The actual
code that is included in FermaT’s simplifier is shown in Figure 7 and is much more similar to the first
version of the code, just much more compact. It also takes care to not convert number 34, which is
the code for double quotes and can not be included in a regular string as such, since it is the string
delimiter. Further effort could be made handle this case as well, but it is not very common and it would
significantly increase the code complexity.

There are also a few other improvements that will be discussed in the next section when the code
from Figure 6 will be converted into a full transformation.

11:6 • D. Pracner and Z. Budimac

IFMATCH Expression @List_To_String(<~*x>)
THEN VAR < OK := 1 >:

FOR elt IN x DO
IF @ST(elt) <> T_Number OR @V(elt) = 34 THEN OK := 0 FI OD;

IF OK = 1
THEN @Paste_Over(@Make(T_String,

@List_To_String(MAP("@V", x)),
< >)) FI ENDVAR ENDMATCH OD;

Fig. 7. String simplification included in FermaT

2.3 Writing A Transformation

Transformations in WSL can be anything that changes the current program while keeping the se-
mantics of the original, with a few potential exceptional cases. For instance there are transformations
that will reverse an IF/ELSE statement (for instance to make the condition evaluation simpler), or
unroll the first loop of a FOR statement. Additionally there are applicability tests that will check if
the semantics would be affected by the specific transformation. For instance there is a transformation
that deleted the current item, but only if it is redundant. Therefore the test for this transformation is
checking if the current item is redundant.

The main exception to the preservation of full semantics are the slicing transformations, as these by
definition preserve only a part of the original behaviour of the program that is relevant to the slicing
criterion. These will not be covered in this paper.

The transformations that are built into FermaT are kept in the src/trans folder and new ones can
be added there and the whole system recompiled. Alternatively it can be added “on the fly” in the
working directory using a patch.tr file. More details about this can be found in the manual and the
documentation that comes with FermaT.

Transformations themselves are represented by two WSL files. The first one holds the code of the
transformation. There are two main entry points that need to be defined in this file. The first one is a
test procedure that has no parameters and checks whether the transformation can be applied to the
current item in the program. It should raise errors with @Fail if the transformation is inapplicable, or
call @Pass otherwise. The other procedure is the actual transformation that receives a single parameter
with any potential additional data, for example a rename transformation will receive the old and the
new names. Other than these there can be any number of helper procedures defined, and to comply
with the definition of a WSL program the file also needs to contain a body for the main program which
can be a single SKIP instruction.

The second file should be named the same as the first one with a “_d” suffix and it holds the descrip-
tion of the transformation and some meta information as well as the names of the actual procedures
to test and to apply the transformation from the first file. Figure 8 shows how this file should look for
a new transformation that is based on the code shown in the previous section.

Figure 9 shows how the main file with the new transformation should look like. This transformation
has no additional procedures. The test procedure just calls @Pass always, since there are no specific
pre conditions needed for the transformation to be applied and the semantics are not changed anyway
– at worst it will not find anything to change and leave the original program as it is. A more zealous
version of the test procedure could check if there are any @List_To_String items, and even analyse
their content to see if the transformations will change anything. On the other hand a general approach
to programs that call transformations is to first call the test and then to call the main transformation,
which would result in duplicate checks and loss of efficiency.

A Practical Tutorial For FermaT and WSL Transformations • 11:7

IF EMPTY?(TR_SimplifyChar) THEN TR_SimplifyChar := @New_TR_Number() FI;

TRs_Proc_Name[TR_SimplifyChar] := "SimplifyChar" ;
TRs_Test[TR_SimplifyChar]:=!XF funct(@SimplifyChar_Test);
TRs_Code[TR_SimplifyChar]:=!XF funct(@SimplifyChar_Code);
TRs_Name[TR_SimplifyChar] := "Simplify Char";
TRs_Keywords[TR_SimplifyChar] := < "Simplify" > ;
TRs_Help[TR_SimplifyChar] := "Simplify Char will find expressions like ’

@List_To_String(<97>)’ and replace them with chars.";
TRs_Prompt[TR_SimplifyChar] := "";
TRs_Data_Gen_Type[TR_SimplifyChar] := ""

Fig. 8. Transformation description file

MW_PROC @SimplifyChar_Test() ==
@Pass END;

MW_PROC @SimplifyChar_Code(Data) ==
FOREACH Expression DO
IFMATCH Expression @List_To_String(<~*x>)

THEN VAR < res := < >, IS_OK := 1 >:
FOR elt IN x DO
IF @ST(elt) = T_Number
THEN IF NOT (EMPTY?(res)) AND @ST(HEAD(res)) = T_String

THEN res := <@Make(T_String, @V(HEAD(res))
++ @List_To_String(<@V(elt)>),
< >)> ++ TAIL(res)

ELSE res := <@Make(T_String,
@List_To_String(<@V(elt)>), < >)> ++ res FI

ELSIF @ST(elt) = T_Variable
THEN res := <FILL Expression @List_To_String(<~?elt>) ENDFILL>

++ res
ELSE IS_OK := 0 FI OD;

IF IS_OK = 1
THEN IF EMPTY?(res)

THEN @Paste_Over(@Make(T_String, "", < >))
ELSIF LENGTH(res) > 1
THEN @Paste_Over(@Make(T_Concat, < >, REVERSE(res)))
ELSE @Paste_Over(HEAD(res)) FI FI ENDVAR

ELSE SKIP ENDMATCH OD END;

SKIP

Fig. 9. Transformation main file

11:8 • D. Pracner and Z. Budimac

The main procedure is very similar to the earlier developed version shown in Figure 6 with some
commands being less verbose and less temporary variables used, which in turn can make it harder to
read. There are several functional improvements beside that. In a proper program @List_To_String
should receive a list of numbers and numeric variables, anything other in the list results in undefined
behaviour, therefore it is probably best if our transformation leaves any problematic call as it was. This
means that the new version only handles numbers and variables, and if the current item is anything
else it sets the error flag which will result in no changes being applied. The other thing that is changed
is that the new version correctly handles an empty list being passed to the procedure and replaces it
with an empty string (the previous version would crash if this was the case).

3. CONCLUSIONS

FermaT and the WSL language offer a powerful transformation library that has been developed for
many years, and has been used in industrial applications of re-engineering legacy software[Ward
2004][Ward 2013].

This paper shows some practical steps in working with FermaT and WSL, especially in early pro-
totyping of new ideas. Some aspects of the maths simplifier and full transformations are presented
with a concrete understandable example being developed in the process. Attention was also given to
ways to check if the written programs output valid WSL code and how to find more information on the
structure of programs, which tends to be a big problem for beginners.

REFERENCES

Matthias Ladkau. 2007. FermaT Maintenance Environment Tutorial. Technical Report. Software Technology Research Labora-
tory, De Montfort University, Leicester.

Doni Pracner and Zoran Budimac. 2017. Enabling code transformations with FermaT on simplified bytecode. Journal of Soft-
ware: Evolution and Process 29, 5 (2017), e1857–n/a. DOI:http://dx.doi.org/10.1002/smr.1857

Martin Ward. 1989. Proving Program Refinements and Transformations. Ph.D. Dissertation. Oxford University.
Martin Ward. 1999. Assembler to C Migration using the FermaT Transformation System. In IEEE International Conference on

Software Maintenance (ICSM’99). IEEE Computer Society Press, 67–76.
Martin Ward. 2004. Pigs from Sausages? Reengineering from Assembler to C via FermaT Transforma-

tions. Science of Computer Programming, Special Issue on Program Transformation 52/1-3 (2004), 213–255.
DOI:http://dx.doi.org/dx.doi.org/10.1016/j.scico.2004.03.007

Martin Ward. 2013. Assembler restructuring in FermaT. In SCAM. IEEE, 147–156.
DOI:http://dx.doi.org/10.1109/SCAM.2013.6648196

Martin Ward, Tim Hardcastle, and Stefan Natelberg. 2008. WSL Programmer’s Reference Manual.
Martin Ward and Hussein Zedan. 2014. Provably correct derivation of algorithms using FermaT. Formal Aspects of Computing

26, 5 (2014), 993–1031. DOI:http://dx.doi.org/10.1007/s00165-013-0287-2
Martin Ward and Hussein Zedan. 2017. The formal semantics of program slicing for nonterminating computations. Journal of

Software: Evolution and Process 29, 1 (2017), e1803–n/a. DOI:http://dx.doi.org/10.1002/smr.1803 e1803 smr.1803.
Martin Ward, Hussein Zedan, and Tim Hardcastle. 2004. Legacy Assembler Reengineering and Migration. In ICSM2004, The

20th IEEE International Conference on Software Maintenance. IEEE Computer Society.

http://dx.doi.org/10.1002/smr.1857
http://dx.doi.org/dx.doi.org/10.1016/j.scico.2004.03.007
http://dx.doi.org/10.1109/SCAM.2013.6648196
http://dx.doi.org/10.1007/s00165-013-0287-2
http://dx.doi.org/10.1002/smr.1803

	Introduction
	Working With Meta-WSL
	Item simplification
	Example: Converting Numeric Codes to Strings
	Writing A Transformation

	Conclusions

