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Abstract
Sequence clustering methods have been widely
used to facilitate sequence database search. These
methods convert a sequence database into clusters
of similar sequences. Users then search against
the resulting non-redundant database, which is typ-
ically comprised of one representative sequence
per cluster, and expand search results by explor-
ing records from matching clusters. Compared to
direct search of original databases, the search re-
sults are expected to be more diverse are also more
complete. While several studies have assessed di-
versity, completeness has not gained the same at-
tention. We analysed the BLAST results on non-
redundant versions of the UniProtKB/Swiss-Prot
database generated by clustering method CD-HIT.
Our findings are that (1) a more rigorous assess-
ment on completeness is necessary, as an expanded
set can have so many answers that Recall is uninfor-
mative; and (2) the Precision of expanded sets on
top-ranked representatives drops by 7%. We pro-
pose a simple solution that returns a user-specified
proportion of top similar records, modelled by a
ranking function that aggregates sequence and an-
notation similarities. It removes millions of re-
turned sequences, increases Precision by 3%, and
does not need additional processing time.

1 Introduction
Biological sequence databases accumulate a wide variety of
observations of biological sequences and provide access to
a massive number of sequence records submitted from indi-
vidual labs [Baxevanis and Bateman, 2015]. Their primary
application use is in sequence database search, in which:
database users prepare query sequences such as uncharac-
terised proteins; perform sequence similarity search of a
query sequence against deposited database records, often via
BLAST [Altschul et al., 1990]; and judge the output, that is,
a ranked list of retrieved sequence records.

A key challenge for database search is redundancy, as
database records contain very similar or even identical se-
quences [Bursteinas et al., 2016]. Redundancy has two im-
mediate impacts on database search: the top ranked retrieved

sequences can be highly similar, and may not be indepen-
dently informative (such as shown in Figure 1(a)); and it
makes it difficult to find potentially interesting sequences that
are distantly similar. A possible solution is to remove redun-
dant records. However, the notion of redundancy is context-
dependent; removed records may be redundant in some con-
texts but important in others [Chen et al., 2017].

Machine learning techniques are often used to solve bio-
logical problems. In this case clustering methods have been
widely applied [Fu et al., 2012]. These cluster a sequence
database at a user-defined sequence identity threshold, cre-
ating a non-redundant database. Users search against the
non-redundant database and expand search results by explor-
ing records from the same clusters. Thus it is expected that
the search results will be more diverse, as retrieved repre-
sentatives may be distantly similar. The results also will be
more complete; the expanded search results should be similar
enough to direct search of original databases that potentially
interesting records will still be found. Existing studies mea-
sured search effectiveness primarily from the perspective of
diversity [Fu et al., 2012; Chen et al., 2016a], but, largely,
have not examined completeness. An exception is a study that
measured completeness but did not address user behaviour or
satisfaction [Suzek et al., 2015].

We study search completeness in more depth by
analysing BLAST results on non-redundant versions of the
UniProtKB/Swiss-Prot. We find that a more rigorous assess-
ment on completeness is necessary; for example, an expanded
set brings 40 million more query-target pairs, making Recall
uninformative. Moreover, Precision of expanded sets on top-
ranked representatives drops by 7%. We propose a simple
solution that returns a user-specified proportion of top sim-
ilar records, modelled by a ranking function that aggregates
sequence and annotation similarities. It removes millions of
returned query-target pairs, increases Precision by 3%, and
does not need additional processing time.

2 Sequence clustering methods
Clustering is an unsupervised machine learning technique
that groups records based on a similarity function. It has
wide applications in bioinformatics such as creation of non-
redundant databases [Mirdita et al., 2016] and classifying se-
quence records into Operational Taxonomic Units [Chen et
al., 2013]. Here we explain how CD-HIT, a widely-used clus-



Figure 1: Search of query sequences against original database vs. non-redundant database using search results of UniProtKB/Swiss-Prot
record A7FE15 on UniProtKB and UniRef50 (a clustered database) as an example. (a) The top retrieved results of original database may be
highly similar or not independently informative; (b) The top retrieved results of the non-redundant version are more diverse; (c) The expanded
set makes the search results more complete.

tering method, generates non-redundant databases. From an
input sequence database and a user-defined sequence iden-
tity threshold, it constructs a non-redundant database in three
steps [Fu et al., 2012]: (1) Sequences are sorted by decreasing
length. The longest sequence is by default the representative
of the first cluster. (2) The remaining sequences are processed
in order. Each is compared with the cluster representative.
If the sequence identity for some cluster is no less than the
user-defined threshold, it is assigned to that cluster; if there is
no satisfactory representative, it becomes a new cluster rep-
resentative. (3) Two outputs are generated, representatives
and the complete clusters. These comprise the non-redundant
database. As sequence databases are often large, greedy pro-
cedures and heuristics are used to speed up clustering. For
example, a sequence will be assigned to a cluster immedi-
ately as long its sequence identity between the representative
satisfies the threshold.

Sequence search on non-redundant databases consists of
two steps. Users first search query sequences against the non-
redundant database only, as shown in Figure 1(b). The re-
trieved records are effectively a ranked list of representatives
in the non-redundant database. This step aims for diversity.
Users then expand search results by looking at the complete
clusters, that is, retrieved representatives and the associated
member records, as shown in Figure 1(c). This step focuses
on completeness.

3 Measurement of search effectiveness
To quantify whether clustering methods indeed achieve both
diverse and complete search results, search effectiveness on
the non-redundant databases has been measured. Many stud-
ies focus on diversity; for example, the remaining redundancy
between representatives in CD-HIT has been considered [Fu
et al., 2012] and a recent study found that this remaining re-
dundancy is higher as the identity threshold is reduced [Chen
et al., 2016a]. Completeness has been overlooked, despite its
value to users as indicated by several studies:

• Suzek et al. constructed UniRef databases using CD-
HIT at different thresholds [Suzek et al., 2015]. They

measured diversity of representatives in a case study of
determining remote protein family relationship and mea-
sured the completeness of the expanded set in a case
study of searching sequences against UniProtKB.
• Mirdita et al. constructed Uniclust databases using a

similar clustering procedure to that of CD-HIT [Mirdita
et al., 2016]. They assessed cluster consistency by mea-
suring Gene Ontology (GO) annotation similarity and
protein-name similarity to ensure that users obtain con-
sistent views when expanding search results.
• Cole et al. created a protein sequence structure pre-

diction website that searches user submitted sequences
against UniRef and selects the top retrieved representa-
tives based on e-values [Cole et al., 2008].
• Remita et al. searched against UniRef for miRNAs reg-

ulating glutathione S-transferases and expanded the re-
sults from the associated Uniref clusters to obtain align-
ment information, Gene Ontology (GO) annotations,
and expression details to ensure they did not miss any
other related data [Remita et al., 2016].

The first two examples directly show that database staff
care about diversity and completeness when creating non-
redundant databases; the last two further illustrate that
database users in practice may use only representatives for
diversity or expand search results for completeness. There
are many further instances [Capriotti et al., 2012; Sato et
al., 2011; Liew et al., 2016]. These examples demonstrate
that both diversity and completeness are critical and the as-
sociated assessments are necessary. When UniRef staff mea-
sured search completeness, they used all-against-all BLAST
search results on UniProtKB as a gold standard [Suzek et al.,
2015]. Then they evaluated the overall Precision and Recall
of the expanded set (Formulas 1 and 5): Precision quanti-
fies whether expanded records are identified as relevant in the
gold standard and Recall quantifies whether the results in the
gold standard can be found in the expanded set. UniRef is one
of the best known clustered protein databases. The measure-
ment shows that assessing search completeness is of value.



Figure 2: (a) Expansion brings more hits than original search. (b) After expansion, ≈90% of queries have more hits than search on the
original database. (c) Those ≈90% of queries have a median of 34 more hits than original search. (d) Recall is high but at the cost of
returning more hits than original search. Jaccard similarity is lower than Recall, showing the results of the expanded set are not similar to
those of the original database.

However, its measurement on completeness does have lim-
itations. A major limitation is that database user behaviour or
user satisfaction are not examined. Given a query, the adopted
overall Precision measures all the records in the expanded
set. However, users may only examine retrieved representa-
tives without expanding the search results [Sato et al., 2011].
Also, they may only examine the top-ranked representatives
and expand the associated search results [Remita et al., 2016].
Measuring only overall Precision on an expanded set fails to
reflect this behaviour. The proposed metrics should reflect
user satisfaction [Moffat et al., 2013].

The adopted measure of Recall also has failings. It has
been a long-term concern that Recall may not be effec-
tive for information retrieval measurement [Zobel, 1998;
Webber, 2010; Walters, 2016]. In this case the Recall might
be higher if the expanded set has more records than the gold
standard. But this means users will have to browse more re-
sults. Also users may only examine and expand the top re-
trieved representatives so the associated expanded set will be
always a small subset of the complete search results. Recall
is not applicable in those cases. We proposed a more compre-
hensive approach below.

4 Data and Methods
Dataset, tools, and experiments
We used full-size UniProtKB/Swiss-Prot Release 2016-15
as our experimental dataset. It consists of 551,193 protein
sequence records. CD-HIT (4.6.5) was used to construct
the associated non-redundant UniProtKB/Swiss-Prot; NCBI
BLAST (2.3.0+) was used to perform all-against-all searches.

CD-HIT by default removes sequences of length no greater
than 10 since such short sequences are generally not informa-
tive. We removed those records correspondingly in full-size
UniProtKB/Swiss-Prot. The updated dataset has 550,047 se-
quences. We used them as queries and performed BLAST
searches on the updated UniProtKB/Swiss-Prot and its non-
redundant version at 50% threshold generated by CD-HIT.
The non-redundant database at 50% consists of 120,043 se-
quences. 547,476 out of 550,047 query sequences have at
least one retrieved sequence in both databases. The BLAST
results are commonly called query-target pairs or hits. We
removed two types of query-target pairs: where the target is
the query itself; and the same sequence retrieved more than
once for a query. BLAST performs local alignment; it is rea-
sonable that multiple regions of a sequence are similar as the
query sequence. However repeated query-target pairs in this
case bias statistical analysis.

The commands for running CD-HIT1 and BLAST2 strictly
follow user guidance. NCBI BLAST staff (personal com-
munication via email) advised on the maximum number of
output sequences, to ensure sensible results. Note also that
this study focuses on general uses of the tools, while, for in-
stance, UniRef and Uniclust may use different parameters to
construct non-redundant databases for specific purposes.

1./cd-hit -i input path -o output path -c 0.5 -n 2, where -i and -o
stand for input and output path. -c stands for identity threshold, -n
specifies word size recommended in the user guide.

2./blastp -task blastp -query query path -db database path -
max target seqs 100000, where blastp specifies protein sequence,
-query and -db specifies query and database path. -max target seqs
is the maximum number of returned sequences for a query.



Figure 3: Proportion of queries having higher Precision in representatives than in the expanded set. We removed queries that have same
number of hits in both (it means retrieved representatives do not have any member records). The first row compares unranked expanded set
(a) with our proposed ranked model (b) using the metric P@Kequal; the second row compares unranked expanded set (c) with our proposed
ranked model (d) using P@Kweight.

Assessing search effectiveness
We measured the search effectiveness on the non-redundant
data set as follows. Given a query Q, let F be the list of
fetched (retrieved) representatives from the non-redundant
database, E its expanded set, and R the set of relevant se-
quences. Here, F is a ranked list, consisting of represen-
tatives ordered by BLAST scores, whereas E contains rep-
resentatives and the associated cluster members, which may
not have a particular order. R in this case stands for all the
fetched sequences for Q from the original UniProtKB/Swiss-
Prot as the gold standard. Each sequence, either in F or E,
is scored by a function S: 0 if it is not in R, 1 otherwise.
We compared the number of query-target pairs in F , E and
R respectively. This examines how many retrieved results
users need to browse in the non-redundant version compared
with original database. We also employed standard evalua-
tion metrics from information retrieval, adapted specifically
for our study, as below.

Since users may or may not expand the search results, we
measured Precision of both representatives and expanded set:

Precison(F ) =
|F ∩R|
|F | Precision(E) =

|E ∩R|
|E| (1)

Users may focus on top-ranked retrieved representatives and
expand only those. Overall Precision cannot capture such

cases. We therefore measured P@K, Precision at top K re-
trieved sequences. P@K for R measures the Precision at K
representatives, which is a standard metric used in Informa-
tion Retrieval evaluation [Webber, 2010]:

P@K(F ) =
1

K

K∑
i=1

S(Fi) (2)

P@K for E, however, is not straightforward. K in this con-
text refers to K clusters, which contain many more than K
records; thus is not directly comparable. We propose two
P@K metrics for E, summarised in Formula 3 and 4. In this
formula, Ci, |Ci|, Ci,j are an expanded cluster, the expanded
cluster size, and a sequence in the expanded cluster, respec-
tively. The idea is to transform the score of a sequence rela-
tive to the cluster size; for example, the score of a sequence in
a cluster of 10 records will be 1

10 . The former formula treats
every cluster equally, that is, ( 1

K ). The latter weights clusters
such that larger clusters have higher weights.

P@Kequal(E) =

K∑
i=1

1

K|Ci|

|Ci|∑
j=1

S(Ci,j) (3)

P@Kweight(E) =

K∑
i=1

|Ci|∑K
i=1 |Ci|

|Ci|∑
j=1

S(Ci,j) (4)



Figure 4: Comparative results for original (unranked) expanded set and our proposed ranked model. Sub-graphs (a): P@K measures; (c):
Recall results; and (d): Jaccard results. Each of them shows the mean and median result of the metrics, where median is represented in dash.
(b) presents Number of retrieved hits. RA(seq, annotation, proportion) refers the ranked model summarised in Section 5, where seq and
annotation refer to the weight of sequence identity and annotation similarity, effectively α and β in Formula 6 and proportion refers to the
proportion specified by users to expand search results.

We also measured Recall and Jaccard similarity to assess
whether E is (near) identical to R. Recall is used in the pre-
vious study. However, it may be biased if an expanded set has
more hits than original search. Jaccard similarity is thus used
as a complementary metrics because it can better illustrate the
differences between two sets of results. Note that those two
metrics are not applicable for F , since F are intended to only
retrieve a subset of the complete results.

Recall(E) =
|E ∩R|
|R| Jaccard(E) =

|E ∩R|
|E ∪R| (5)

5 Results and Discussion
Our experiments on the number of query-target pairs in
the clustered non-redundant data as compared with original
database demonstrate that Recall is over-estimated and in turn
is not informative, due to the expanded set having even more
query-target pairs than the original dataset. Figure 2(a) com-
pares the number of query-target pairs. The retrieved pairs
among representatives include only about 15% of the pairs
from the original dataset. On the one hand this indicates that
users can browse the search results more efficiently. On the
other hand it shows that expansion of results is valuable since
potential interesting records may be in the other 85%. How-
ever, the expanded set produces 40,095,619 more pairs than
the original. Figure 2(b) further shows that the expanded set
produces more pairs on over 89% of queries (492,129 out of
547,476), and on average produces about 10 pairs per query
(Figure 2(c)). Having more pairs results in high Recall. Both
median and mean Recall (Figure 2(d)) are above 90%, but

this comes with the cost of producing more 40 million pairs.
Jaccard similarity by comparison is almost 20% lower than
Recall, which clearly shows the results of the expanded set
are not similar to those of the original database.

In addition, the Precision of the expanded set distinctly de-
grades at top-ranked hits. Table 1 shows different levels of
Precision on representatives and the expanded sets. We as-
sessed both measures at depth 10, 20, 50, 100, and 200 re-
spectively to quantify the Precision of the top-ranked hits that
are more likely examined by users. In general, top-ranked
hits from representatives are valuable: Precision is over 96%
across different K. The Precision of the expanded set, either
P@Kequal or P@Kweight, is always lower than that of rep-
resentatives, with degradation of up to 7% at K = 200. It
may be argued that, for a representative, if its relevance is 1,
the relevance of the associated expanded set will almost be
lower, since each record in the expanded set would also have
to be relevant. Conversely, the relevance of the expanded set
is likely to be higher if the relevance of the representative is 0,
since a single relevant record will improve on this.

We further compared Precision in detail on an individual
query level, as summarised in Figure 3. The Precision of rep-
resentatives at the top K positions is higher than that of the
expanded sets for at least 80% of the queries; the proportion
increases as K grows.

Driven by these observations, we propose a simple solu-
tion that ranks records in terms of their similarity with cluster
representatives and only returns the top X%, a user-defined
proportion, when they expand search results. To our knowl-
edge, existing databases such as UniRef select representa-
tives based on whether a record is reviewed by biocurators,



P@K
K=10 20 50 100 200

Representatives 0.968 0.977 0.983 0.985 0.983

P@Kequal original 0.938 0.951 0.958 0.980 0.952
Ranked sequence 0.938, 0.946 0.952, 0.960 0.958, 0.966 0.959, 0.967 0.952, 0.963
Ranked seq & annotation 0.938, 0.947 0.952, 0.960 0.959, 0.967 0.959, 0.968 0.953, 0.953

P@Kweight original 0.924 0.935 0.938 0.929 0.917
Ranked sequence 0.926, 0.940 0.937, 0.952 0.940, 0.957 0.933, 0.953 0.922, 0.947
Ranked seq & annotation 0.926, 0.940 0.938, 0.952 0.941, 0.957 0.933, 0.954 0.923, 0.947

Table 1: P@K measure results. Representatives: P@K for representatives (Formula 2); P@Kequal and P@Kweight are P@K for
expanded sets (Formulas 3 and 4 respectively); Original refers to expanded whole records and Ranked refers to our ranked model (Formula 6).
Ranked sequence takes sequence identity only; Ranked seq & annotation takes sequence identity weighted 80% and annotation similarity
weighted 20%. The results of the ranked model were measured at 20%, 30%, 50%, 70% and 80%, the user-specified proportion to expand
search results, summarised in the form of min,max.

is from a model organism and other such record-external fac-
tors. They do not compare and rank the similarity between
records. Also they expand all the records in a cluster rather
than choosing only a subset.

In our proposal, the notion of similarity between a record
and its cluster representative is modelled based on sequence
identity and annotation similarity. This similarity function
is shown in Formula 6, where R and M refer to a repre-
sentative and an associated cluster member record. Simseq
and Simannotation stand for their sequence identity and annota-
tion similarity respectively. Annotations are based on record
metadata, such as GO terms, literature references and descrip-
tions. Sequence identity is arguably the dominant feature, but
existing studies for other tasks demonstrate that combining
sequence identity and metadata similarity is valuable [Chen
et al., 2016b]. α and β refer to their corresponding weights;
for example, sequence identity accounts for 80% of the ag-
gregated similarity and annotation similarity accounts for an-
other 20% when α is 0.8 and β is 0.2.

Sim(R,M) = αSimseq(R,M) + βSimannotation(R,M)
(6)

The records in each cluster are thus ranked by this similarity
function in descending order. The top-ranked X% records,
with X specified by a user, will be presented when the user
expands search results. The ranked model can be adjusted
by both database staff and database users. On the one hand,
database staff can customise the ranking function, such as ad-
justing weights and selecting different types of annotations,
when creating non-redundant databases. On the other hand,
database users can select how many records to browse rather
than seeing all records when expanding search results.

In this study, we used sequence identity reported by CD-
HIT and Molecular Function (MF) GO term similarities as
annotation similarity. MF GO terms are extracted from
UniProt-GOA dataset [Courtot et al., 2015] and the similar-
ity is calculated using the well-known LinAVG metric [Lin,
1998]. We applied the ranking function with two sets of
weights: the first is when α = 100% and β = 0%, i.e., only
rank based on sequence identity, whereas the second is α =
80% and β = 20%. We then measured in different proportions

20%, 30%, 50%, 70%, and 80% to reflect how much propor-
tion users want to expand. RA(seq, annotation, proportion)
used in Figure 4 shows the values of α, β and the returned
proportion, respectively.

Table 1 compares detailed P@K measures for the ranked
model with the original unranked expanded set. The ranked
model always has higher Precision across different ratios and
values of K. Figure 3 shows that over 85% queries have
higher Precision in representatives than the expanded set.
The ranked model decreases this dramatically, to about 35%,
showing that the ranked model has the potential to maintain
Precision over expanded search results. Results in Figure 4
further confirmed the findings. Figure 4(b) illustrates that
user-defined proportions can significantly reduce the num-
ber of expanded query-target pairs: even the highest pro-
portion 80% has about 50 million fewer query-target pairs
than the full expanded set, and its median and mean Preci-
sion are higher than that of the full expanded set (shown in
Figure 4(a)). This shows that in practice users can browse
many fewer results. This shows the plausibility of our solu-
tion and also demonstrates that metadata is effective in the
context of sequence search. Another advantage of our so-
lution is that it does not require additional time in sequence
searching: CD-HIT by default reports the identities between
representatives and members; MF GO terms similarities can
also be pre-computed.

A limitation of the approach is that it has lower Recall and
Jaccard similarity than the full expanded set (shown in Fig-
ure 4(c,d)). However, it is our view that the number of ex-
panded query-target pairs and Precision measures are more
critical to user satisfaction. For instance, proportion at 20%
produces around 200 million fewer query-target pairs and has
2% higher P@K and mean Precision. Users may already find
enough interesting results from the expanded 20% results.

6 Conclusion
We have analysed the search effectiveness of sequence clus-
tering from the perspective of completeness. The detailed as-
sessment results illustrate that the Precision of representatives
is high, but that expansion of search results can degrade Preci-
sion and reduce user satisfaction by producing large numbers



of additional hits. We proposed a simple solution that ranks
records in terms of sequence identity and annotation similar-
ity. The comparative results show that it has the potential to
bring more precise results while still providing users with ex-
panded results.
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