
Extended UML Class Diagram Constructs for  

Visual SPARQL Queries in ViziQuer/web 

Kārlis Čerāns1,∗, Juris Bārzdiņš2, Agris Šostaks1, Jūlija Ovčiņņikova1,*, Lelde Lāce1,*,  
Mikus Grasmanis1, Artūrs Sproģis1 

1 Institute of Mathematics and Computer Science, University of Latvia 
{karlis.cerans, agris.sostaks, julija.ovcinnikova, lelde.lace, 

mikus.grasmanis, arturs.sprogis}@lumii.lv 

2 Department of Medicine, University of Latvia 
juris.barzdins@gmail.com 

Abstract. Visual notations based on customized entity relationship and basic 
UML class diagram paradigm of classes, associations and attributes are success-
fully used in data modeling and data querying alike, both in relational database 
and in semantic/conceptual model setting. We propose a number of constructs 
for extending the basic diagrammatic framework in the setting of visual specifi-
cation of SPARQL select queries for enabling visual specification of hierarchic 
data instance and aggregated queries. Our proposal includes: (i) a visual notation 
for subqueries, (ii) separate lists of aggregated and grouping attributes in aggre-
gated queries, (iii) query control nodes (unit and union) not corresponding to data 
instances, and (iv) integration with textual SPARQL fragments. We report on an 
initial user study validating the understandability of the subquery notion by users 
without specific IT training, as well as announce implementation of the proposed 
notation constructs in a web-based diagrammatic (multi-modal) query tool.  

Keywords: Visual queries, ad-hoc queries, data analysis, RDF data endpoints 

1 Introduction 

The ontology-based data access (OBDA) paradigm (cf. [7]) opens a new perspective 
of data access on the basis of high-level domain ontology, rather than technical database 
schema structure. An end-user notation for query formulation is important to enable 
direct access to data by its end users that may not be IT professionals [11], it can be 
aimed towards easing the professionals’ work with queries, as well. 

The visual/diagrammatic notations, along with approaches based on keyword search, 
forms (e.g. [12]) and natural language (e.g. [5]), are a major paradigm considered for 
end-user accessing of data organized in the form of RDF [9] data model, natively ac-
cessible by the textual SPARQL [10] query language.  

                                                           
* Supported, in part, by Latvian State Research program NexIT project No.1 “Technologies of 

ontologies, semantic web and security”. 

87



Most of the existing diagrammatic notations for RDF data access, including Optique 
VQs [11], Query VOWL [6], or early versions of ViziQuer [13], although efficient for 
visual formulation of wide range of queries, still do not include queries with data ag-
gregation and statistics options, so important and central e.g. for business intelligence 
area (cf. [1],[8]). The work on visual queries for OBDA in [11] explicitly limits the 
visual query notation and end user involvement to non-aggregated queries with simple 
data attribute selection, justifying these to be most important in their usage context. 

The notations of [11] and [13] rely on UML class diagram constructs for query con-
struction; they use nodes for data instance class specification, edges for data instance 
links and attributes for both the selection attributes and their links to the node data in-
stance; there are also conditions for additional filters on data instance attribute values. 
A similar query paradigm is also used in query systems for major relational databases.  

We propose here to extend the basic UML-style query formulation paradigm with 
means for visual formulation aggregated and nested queries, so to enable the users pre-
ferring the visual query formulation style, to work also with this kind of queries.  

The previous work by authors on aggregate queries within the UML-style ViziQuer 
tool [3, 4] introduces aggregate queries simply by including aggregate fields within the 
query node field lists. This suffices for simply structured queries that e.g. select data 
from a number of linked classes, while leaving open the issue of more complex queries, 
available e.g. in SPARQL. Here we make a more radical extension to the basic UML-
style query formulation notation, involving the following principal novel points: 

(i) Fully visual notation for subqueries; 
(ii) Separate aggregate and grouping field lists in query nodes; 
(iii) Unit and union nodes for query structuring; 
(iv) Integration of textual SPARQL fragments into the visual notation. 
We report also on a pilot user study testing the understandability of simple constructs 

from the introduced notation; the study results show the understanding ability of the 
subquery notion also by domain experts that are not IT professionals. 

The visual query notation proposed here is supported by a web-based diagrammatic 
(multi-modal) query tool, available at viziquer.lumii.lv. 

In what follows, Section 2 reviews the revised basic visual notation. Section 3, the 
central one of the paper, presents the extended query constructs. Section 4 discusses the 
SPARQL construct coverage; Section 5 describes the user study for notation evaluation. 
Tool environment is outlined in Section 6. Section 7 concludes the paper.   

2 Basic Visual Notation 

The visual/diagrammatic query definition is based on data model containing the vo-
cabulary of entities, each identified by a local name and optional name prefix and 
providing the full entity URI, and the schema information stating the applicability, or-
dering and cardinalities of properties in the context of the model classes. We shall con-
sider here example queries over a simple mini-hospital data schema, developed origi-
nally in [2] to describe a fragment of a realistic hospital information system and pre-
sented here in Fig. 1. The names of properties connecting the classes, if not specified, 

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

88



coincide with the target class name with lowercase first letter1. There is default maxi-
mum and minimum default cardinality 1 assumption for properties, as well. 

 
Figure 1. Hospital domain ontology fragment 

 
The ontology is organized around the patient class, with possibly both hospital and 

outpatient episodes for each patient. A hospital episode can run over several treatments 
in hospital wards, each identified by an order number. A hospital episode has records 
of admission and discharge diagnoses, pointing to the CDiagnosis classifier. Hospital 
and outpatient episodes and treatments in wards may have associated physicians in dif-
ferent roles, as well. 

A basic visual query (cf. [13,4]) is a UML class diagram style graph with nodes 
describing data instances, the edges describing their connections and the attributes 
forming the query selection list from the node instance attributes and their expressions; 
every node can specify both the instance class and additional conditions on the instance. 
One of the graph nodes is the main query node (shown as orange round rectangle in the 
diagram); the structural edges (all edges except the condition ones, as described below) 
within the graph form its spanning tree with the main query node being its root. 

Figure 2 shows an example visual query and its translation into SPARQL. The query 
is based on three related classes, a mandatory link (HospitalEpisode -> Patient) and an 
optional link to CPhysician. The attributes are by default assumed to be optional, not 
to bypass entire solution rows because of missing attribute values (this contrasts [13,4]). 

Figure 2. Select top 10 most expensive hospital episodes, show episode length in days, total 
cost and case record number, together with patient name and surname, as well as name and sur-

name of referring physician, if specified. 

                                                           
1 The data schema is presented in UML class diagram style with an attribute or outgoing associ-

ation role ascribed to a class denoting the availability of the property within the context of the 
class, without domain assertion claims typically used in ontology visualizations. 

HospitalEpisode
referringPhysician:CPhysician[0..1]

responsiblePhysician:CPhysician

admissionTime:dateTime

dischargeTime:dateTime

dischargeReason:{"cured", 

"deceased", "other"}[0..1]

lengthInDays:integer

totalCost:decimal

caseRecordNo:integer

AdmissionDiagnosisRecord
diagnosis:CDiagnosis

orderNo:integer

DischargeDiagnosisRecord
diagnosis:CDiagnosis

orderNo:integer

TreatmentInWard
attendingPhysician:CPhysician

ward:string

arrivalTime:dateTime

transferTime:dateTime

orderNo:integer

Patient
personCode:string

name:string

surname:string

gender:{"male", "female"}

birthDate:date

familyDoctor:CPhysician

OutpatientEpisode
vis itDate:date

vis itDuration:duration

vis itCost:decimal

physician:CPhysician

<<EnumClass>>

CDiagnosis
code:string

name:string

<<EnumClass>>

CPhysician
personCode:string

name:string

surname:string

*

*

*

*

*

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

89



The required attribute specification (corresponding to the class instance, attribute 
property and attribute value triple in RDF/SPARQL sense) can be achieved by a single 
check box click for ‘Required Values’ in the query tool user interface, and is marked 
by the ‘{+}’ mark besides the attribute (expression) specification, as in Fig. 3 (a). 

Figure 3 (b) illustrates the notation for conditions and the ‘*’- notation for selecting 
all attributes defined in the data model for the query class (the optional attribute seman-
tics is essential here not to have counter-intuitive results). Fig. 3 (c) shows a negated 
link to a condition class and the option to hide the link name from the query presenta-
tion, if it is unanimously clear from the class name specifications in the link start and 
end nodes (the hiding could have been applied also to the patient link in Fig. 2). 

 

Figure 3. Further basic query notation illustrations 

3 Extended Query Structuring Facilities 

In this section we explain advanced query structuring facilities that go beyond the sim-
ple class – attribute – link – condition paradigm for query specification. 

3.1 Aggregate and Grouping Field Separation 

Figure 4. (a) count the hospital episodes lasting for at least 10 days (a single-number query),  
(b) count the treatment in ward cases for each ward (a simple statistics query)  

(c) count the hospital episodes, grouped by discharge reason and patient’s gender. 
 

Figure 4 shows examples of aggregated query definition in the visual notation. An 
aggregated field in the query is specified in a compartment above the query node class 
name. This explicitly separates the aggregation fields from the instance-level fields in 
the usual node field compartment below the node class name that are acting as the 
grouping fields within the aggregate query. The separation offers means of visual cap-
turing of the fundamentally different roles that the aggregation and grouping fields play 
within an aggregate query. This separation is especially important for enabling smooth 
aggregate inclusion in queries with further advanced subquery and control structures. 

The aggregation is computed over the raw data set returned by the query obtained 
from the original one by replacing the aggregate fields by their respective aggregate 
function arguments. We restrict the aggregate field specifications to the main query 
node and the head nodes of subqueries (cf. Section 3.2) only. 

Figure 5 shows an example of simultaneous multiple aggregate specification. 

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

90



Figure 5. A query with multiple aggregations 
 

The multiple aggregation possibility shall be exploited with care not to induce the 
query raw result set blow-up due to additional dimensions introduced by possibly mul-
tiple-valued various attributes and expressions that are to be aggregated (the additional 
data dimensions can be introduced by the “usual” field values, as well).  

The count_distinct(.) aggregation option allows counting only the distinct instances 
from the raw result set. The subquery and control node constructs, explained in the 
following sections, can be used to create queries without multiplicative effects, as well. 

3.2 Explicit Subquery Notation 

The SPARQL 1.1 notation allows for subquery specification. In combination with 
aggregation, the subquery construct allows inter alia selecting data instances together 
with their aggregate characteristics within the data environment (e.g. the count of re-
lated instances). There is no common similar construct in UML-style query notations, 
neither within the semantic technology domain (cf. [11], [13], [4]), nor for the relational 
database visual query builders. 

Since the primary target of the subquery notation is to describe subqueries over in-
stances related to a certain main query node instance, it is natural to associate the main 
query to subquery relation with an edge in the query. Both plain (non-subquery) and 
subquery edges typically correspond to a link in the data model; the options for query 
links not matching exactly the data links are described in Section 3.3. 

The subquery links in the visual notation are starting by black bullets. The example 
in Fig. 6 example (left) contains a subquery link based on the single treatmentInWard 
link between HospitalEpisode and TreatmentInWard classes in the data model. 

Figure 6. Select all hospital episodes with at least 4 treatment wards, show episode case record 
number and number of treatment wards; order descending by the treatment ward count 

The scope of the subquery involves the subquery edge itself and the part of the query 
graph below it in the graph’s tree shape structure. The selection list of the subquery 
contains the explicitly specified query outputs, as well as all references to query nodes 
and fields outside the subquery scope (typically including the instance of the subquery 

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

91



hosting node). The subquery results are projected into the hosting query; they can be 
used in conditions, further field definitions and ordering lists in the same way, as in-
stance model attributes. To include a subquery output in the selection list for the main 
query, it has to be explicitly included in the subquery hosting node field list. 

The Fig. 6 (right) single-node query shows the option to define a single-number 
subquery over property-linked instances in a textual form; in this case the value T is by 
default included in the main query selection list, as well as it is computed also for epi-
sodes without any treatments in wards, should there be ones. 

Figure 7 shows a simple example of nested subqueries. 

Figure 7. Count patients with at least 3 hospital episodes, running over at least 5 wards each 
 

The subquery mechanism is not bound to just local aggregate computation. In the 
case, if a subquery does not return any result except the host node instance for which it 
has been created, it works as an existential filter, as in Fig. 8, left. The right single-node 
query models the same behavior, using explicit predicate exists and property paths. 

Figure 8. Subquery as a graphical existential filter 

It has been an explicit design decision to stay with simple join semantics in the case 
of queries with nodes linked by plain required or optional edges. Should the link in Fig. 
8 not have been marked as a subquery, the raw data set consisting of patients and all 
their hospital episodes would have been created leading to counting each patient as 
many times as it has the hospital episodes lasting for at least 10 days. In the case of 
counting the instances one could use count_distinct(.), however using the subquery 
mechanism leaves a clean un-duplicated result set of subquery host node instances, 
ready for output, as well as participation in further aggregate operations. 

The count of patients having a hospital episode and not having an outpatient episode 
can be specified by either of query diagrams in Fig. 9 since the non-existence of a re-
lated instance would not cause any data graph blow-up. 

Further subquery notation usage possibilities are discussed in Section 3.3. 

Figure 9. Condition of existence and non-existence of a link 

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

92



3.3 Extensions to Model Tree Shape 

The visual notation discussed so far is suitable for visual query specification, if the 
query has a tree form that is matching a data model fragment. The query structure can 
be extended either by visual condition links (visualized by a thinner line with diamonds 
on both ends, cf. Fig. 10a) that are added on top of the query tree structure, or by explicit 
(other) node references in the node attribute expressions (e.g. H and P in Fig. 10b). The 
non-model links (marked by the label ++), allow to have structural query links that do 
not correspond to links in the data model.  

Figure 10. Count patients having at least three hospital episodes without a matching outpatient 
episode for the same patient within the 30 day range before the hospital episode. 

In Fig. 10 the non-existence of an outpatient episode is considered not for a patient 
but for a hospital episode. Therefore, the query structure link is drawn from the Hospi-

talEpisode to OutpatientEpisode (in the example it happens to be a negated link) while 
the necessary model link between the Patient and OutpatientEpisode is encoded either 
as a condition link (a), or as an explicit condition within the OutpatientEpisode node 
(b). 

As a more radical structure extension, the control nodes: unit (denoted by [ ]) and 
union (denoted by [ + ]), not describing any data instance, can be introduced to the 
queries. The unit node can typically be used as an outer query structuring layer, able to 
collect the results from a single or multiple subqueries, combine, project, filter them, as 
well as apply distinct or aggregation clauses over them. The example queries in Fig. 11 
use the statistics by attribute notation from Section 3.1 within a subquery, embraced 
within an outer main query consisting of a union node. 

Figure 11. List (a) and count (b) all wards (attribute ward values of TreatmentInWard class in-
stances) with more than 1000 treatment cases. 

Figure 11a shows the possibility of modeling the SPARQL having clause over the 
aggregated result set. The technique of unit nodes offered here, however, allows for 
much richer aggregate result handling than just filtering, as can be seen e.g. in Fig. 11b. 

The union node introduces a disjunction of its sub-trees into the query (the link to 
the subtree from the union node is perceived as the link from the parent of the union 
node), as illustrated in Fig. 12. There are options to use subquery links both above and 
below the union node, as well. 

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

93



Figure 12. Query with union node: Count all (distinct) patients that are related to diagnosis 
‘A69.2’ (Lyme disease) either as admission or as discharge diagnosis of a hospital episode. 

The idea of the subquery concept, as explained in Section 3.2, is to offer means of 
computing local characteristics of a data node within a query. Since the semantics of 
the query language constructs is defined on the basis of their translation into SPARQL, 
the local characteristics computing subqueries cannot be allowed to contain the slicing 
limit and offset modifiers (in SPARQL the subqueries are computed globally). For the 
situations where the ordering and slicing modifiers are important within a subquery the 
global subquery notation (a white bullet at the edge start) has been introduced.  

As an example, consider the query in Fig 13. The ‘==’ notation marks the query link 
to connect a resource (or a data value) to itself. It is necessary to take 5 most expensive 
hospital episodes before their joining to the treatment in ward data.  

Figure 13. Limit-bound “global” subquery example: Select top 5 most expensive hospital epi-
sodes (show the episode case record number and total cost), list them together with all their 

treatment wards (show the order number and the ward). 
 

 As far as the translation into SPARQL semantics is considered, there is no differ-
ence between local and global subqueries (except that slicing is not allowed in local 
subqueries). The main difference between local and global subqueries is in the mindset 
of reading the queries (local vs. global context). Should other visual query language 
implementations become available (e.g. by translating the visual queries directly into 
SQL), the slicing could be introduced also for local subqueries, with a principally dif-
ferent semantics of computing the slice (e.g. the topmost or the top n records) from the 
subquery for each data instance tuple forming the subquery context. 

3.4 Exploratory Queries and Textual SPARQL Fragments 

The ViziQuer/web notation allows also for explicit query variable usage in the place 
of class and property names. Using an explicit query variable in place of a class or 

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

94



property name creates the SPARQL query variable with the same name, uses it within 
the query just as the class or property name, then adds it to the query output. Fig. 14 
shows examples of exploratory queries over a SPARQL endpoint in the visual notation, 
re-worked and extended from [4]: (a) select all classes together with their instance 
count, (b) select all properties together with all class pairs connected by them (select 
distinct specification is necessary since the raw data graph is computed on data instance 
level); (c,d) two forms of selecting all triples from the data set (in (d) ‘a’ denotes the 
“current instance”, p – the property, ‘b’ – the “target instance”; {+} marks a required 
triple presence); (e,f) select all properties together with their usage count (in (f) the 
triple has to be marked as required by {+} as well as by {internal} not to have its re-
sulting value included in the selection set); (g) if an explicit query variable is introduced 
within a subquery, a reference to it within an enclosing query is to be made by the 
variable name without the preceding variable mark ‘?’. 

 

Figure 14. Exploratory query examples. 
 

The visual notation has not been designed specifically to ease the formulation of the 
exploratory queries, Fig. 14 just shows the possibility and options for exploratory que-
ries in the visual notation, outlining also the usage variability of the notation constructs 
(e.g. using query nodes with empty class names or with no content at all). 

For the situations where the visual notation constructs either do not support the query 
definition, or are not convenient for it, there is an option (clearly meant for expert users) 
to introduce explicit textual SPARQL fragments into the visual symbols. Both the syn-
tax of SPARQL group graph patterns and SPARQL select queries are supported. Fig. 
15 shows two options of a simple example of selecting all data set triples. The variables 
selected out of the direct SPARQL clause can in the enclosing query be referred to by 
their name (without the preceding variable mark ‘?’). 

       
Figure 15. Direct SPARQL examples. 

4 Expressivity and Limitations 

Apart from the possibility to include direct SPARQL graph patterns and full 
SPARQL select sub-queries in the query node compartments, there are explicit coun-
terparts for most of SPARQL query constructs in the visual query notation itself. 

So, a basic graph pattern can be modeled by a property-labelled edge between two 
nodes (the class name specification in a visual query node is optional). A group graph 

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

95



pattern can be a set of graph pattern fragments, interconnected by free edges; a variable 
from several patterns can go into a single query node. The filters correspond to condi-
tions at query nodes; the variable binding and selection – to field lists at query nodes.  

The projection can be modeled by adding a new unit node to the query and connect-
ing the original query to it as a subquery; the unit node provides the context of selecting 
the fields corresponding to the projection variables; further operations on initial query 
results in the unit node are possible, as well. If the initial query is aggregated one, a 
filter in the unit head node can model SPARQL having clause of the initial query.  

The optional blocks correspond to optional edges, existence filters to subqueries with 
empty result sets, non-existence filters to negated edges. There are also direct counter-
parts in the visual notation to aggregation, subqueries, select distinct and union con-
structs. Although not described here, the SPARQL minus construct can be handled by 
negated global subqueries. 

The main limitations of the current visual notation are the requirement of queries to 
be placed over single graph, non-covered advanced property path expressions, select * 
(in SPARQL sense) and reduced. None of these constructs is of principal difficulty for 
the visual notation with SPARQL-based implementation, however, they are not so clear 
for eventual other implementations, e.g. by translating queries directly into SQL. 

5 Evaluation: Visual Queries over Hospital Data 

The hospital data schema shown in Figure 1 corresponds to a fragment of data struc-
ture of Children’s Hospital in Riga, Latvia. The resource point viziquer.lumii.lv/med 
illustrates a number of queries that have been important during the analysis of the real 
hospital data. An expert assessment of the query creation process allows to judge that 
it should be possible for an IT-trained expert, who has learned the notation, to success-
fully create the queries.  

An early pilot study on visual notation understandability was performed on a group 
of Master degree medical students at University of Latvia and their teacher, together 7 
participants, neither of whom have a specific IT training. 

The participants were given an ontology (a fragment of Fig. 1 ontology, with vocab-
ulary expressed in Latvian), and a simple data instance graph with two patients, alto-
gether with 2 hospital episodes and 1 outpatient episode, and related diagnoses. The 
participants were asked to interpret 10 simple queries, shown in Fig. 16, over the given 
data set. The introductory time for notation presentation was 40 minutes, followed by 
40 minutes query answering time. The results are collected in Fig. 17, where each row 
corresponds to replies by one participant (Row 1 are the teacher’s replies). 

The results indicate that 6 of 7 participants were able to interpret at least 70% of the 
queries, with similar results both for non-aggregated and aggregated queries. The 
subquery notation used in examples (6), (7), (8) can be observed as not causing a par-
ticular difficulty. For the queries (4) and (5) the difficulty was to interpret a condition 
placed outside the main query class. The unexpected difficulty with query (9) can indi-
cate the need for appropriate examples in query notation presentation since an analo-
gous statistics query (10) presented over several data nodes, was answered quite well.  

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

96



 
Figure 16. User study queries. 

 

 

++: correct interpretation 
+: almost correct 
/: part of constructs understood correctly (dif-
ficulty with conditions outside the main class) 
-: incorrect interpretation 
empty cell: no answer 

Figure 17. Users’ response evaluation 

6 Query Tool Environment 

A web-based prototype tool supporting the visual notation presented in this paper is 
available from http://viziquer.lumii.lv/. After the registration and logging into the envi-
ronment the user has an option to create and manage projects. Each project has to be 
configured by uploading the data schema (used e.g. for SPARQL generation from vis-
ual representations of entity local names, as well as for code completion) and setting up 
project parameters (e.g. connection to the SPARQL endpoint for direct execution of 
generated SPARQL queries). The containers for queries within a project are diagrams; 
each diagram can typically contain multiple visual queries; the user each time makes a 
visual selection of the query to be executed within the query diagram. 

The tool architecture allows both for a centralized server with each user uploading a 
custom data schema, as well as configurations that are dedicated for work with specific 
SPARQL endpoints. We plan to release the tool code as open source. 

7 Conclusions 

The presented notation and examples demonstrate the possibility of extending the 
UML-style diagrammatic query creation paradigm of classes, associations, attributes 
and conditions by simple visual means for specification of advanced query building 
constructs, including subqueries, aggregations and additional query control structures.  

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

97



The performed pilot user study has shown that it is possible to introduce the visual 
notation, including the aggregation and subquery constructs to domain experts without 
specific IT training. The visual format of the query presentation in the style of UML 
class diagrams, together with the notation expressivity, may allow the notation to have 
a potential to ease the query formulation work of a semantic technology and/or database 
professional, as well. 

The visual notation can be extended, for instance, by a practically important con-
struct of sliced local subqueries, not supported directly in SPARQL 1.1, if alternative 
query language implementations to translation into SPARQL are considered. 

We expect that the availability of a web-based visual query environment infrastruc-
ture would initiate also use cases of the technology outside the group of its developers. 

References 

1. Adamson, C.: Mastering data warehouse aggregates: solutions for star schema performance. 
John Wiley & Sons, 2012. 

2. Barzdins, J., Grasmanis, M., Rencis, E., Sostaks, A., Barzdins, J.: Ad-Hoc Querying of Se-
mistar Data Ontologies Using Controlled Natural Language. // In: Frontiers of AI and Ap-
plications, Vol. 291, Databases and Information Systems IX, IOS Press, pp. 3-16, 2016, 
http://ebooks.iospress.com/volumearticle/45695 

3. Čerāns, K., Ovčiņņikova, J., Zviedris, M.: SPARQL Aggregate Queries Made Easy with 
Diagrammatic Query Language ViziQuer. In: Proceedings of the ISWC 2015 Posters & 
Demonstrations Track, CEUR Vol. 1486, (2015), http://ceur-ws.org/Vol-1486/paper_68.pdf  

4. Čerāns, K., Ovčiņņikova, J.: ViziQuer: Notation and Tool for Data Analysis SPARQL Que-
ries. In Proc. of the Second International Workshop on Visualization and Interaction for 
Ontologies and Linked Data (VOILA '16), Kobe, Japan. CEUR Workshop Proceedings, vol. 
1704, CEUR-WS.org, 2016, pp.151-159. 

5. Ferré, S.: SPARKLIS: a SPARQL Endpoint Explorer for Expressive Question Answering. 
In: In: Proceedings of the ISWC 2014 Posters & Demonstrations Track, CEUR Vol. 1272, 
(2014), http://ceur-ws.org/Vol-1272/paper_39.pdf  

6. Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: Visual Composition of SPARQL 
Queries. In: The Semantic Web: ESWC 2015 Satellite Events. LNCS, Vol.9341, pp. 62-66. 
Springer, (2015), http://vowl.visualdataweb.org/queryvowl/ 

7. Optique. Scalable End-User Access to Big Data, http://optique-project.eu  
8. Ponniah, P.: Data warehousing fundamentals for IT professionals. John Wiley & Sons, 2011. 
9. Resource Description Framework (RDF), http://www.w3.org/RDF/  

10. SPARQL 1.1 Query Language. W3C Recommendation 21 March 2013, 
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/ 

11. Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G.., Horrocks, I.: Experiencing 
OptiqueVQS: A Multi-paradigm and Ontology-based Visual Query System for End Users. 
Universal Access in the Information Society, March 2016, Volume 15, Issue 1, pp 129–152. 

12. Vega-Gorgojo, G., Giese, M., Heggestøyl, S., Soylu, A., Waaler, A. (2016). PepeSearch: 
Semantic Data for the Masses. PLoS ONE 11(3): e0151573. https://doi.org/10.1371/jour-
nal.pone.0151573. 

13. Zviedris, M., Barzdins, G.: ViziQuer: A Tool to Explore and Query SPARQL Endpoints. In: 
The Semantic Web: Research and Applications, LNCS, Volume 6644, pp. 441-445, (2011)  

Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

98


