An S4F-related monotonic modal logic

Ezgi Iraz SU*

University of Lisbon, Department of Mathematics, CMAF-CIO, Lisbon, Portugal eirsu@fc.ul.pt

Abstract. This paper introduces a novel monotonic modal logic, allowing us to capture the nonmonotonic variant of the modal logic **S4F**: we add a second new modal operator into the original language of **S4F**, and show that the resulting formalism is strong enough to characterise the *logical consequence* of (nonmonotonic) **S4F**, as well as its *minimal model* semantics. The latter underlies major forms of nonmonotonic logic, among which are (reflexive) autoepistemic logic, default logic, and nonmonotonic logic programming. The paper ends with a discussion of a general strategy, naturally embedding several nonmonotonic logics of a similar floor structure on which a (maximal) *cluster* sits.

Keywords: nonmonotonic S4F, minimal model semantics, monotonic modal logic

1 Introduction

The use of monotonic modal logics for describing nonmonotonic inference has a long tradition in Artificial Intelligence. There exists a considerable amount of research in the literature [1,2,3,4,5,6,7,8], logically capturing important forms of nonmonotonic reasoning. Theoretically, we obtain a clear and simple monotonic framework for studying further language extensions and possible generalisations. From a practical point of view, we can check nonmonotonic deduction with a validity proving procedure in a corresponding monotonic setting.

The modal logic S4F (aka, S4.3.2) is obtained from S4 by adding the axiom schema

$$\mathbf{F} : (\varphi \land \mathsf{ML}\psi) \to \mathsf{L}(\mathsf{M}\varphi \lor \psi)$$

[9] in which L is the epistemic modal operator, and M is its dual, defined by $\neg L \neg$. A first and detailed investigation of this logic was given in [10]; yet in time, **S4F** has also found interesting theoretical applications in Knowledge Representation [11,12,13,14,15,16,17].

S4F is characterised by the class of Kripke models (W, \mathcal{T}, V) in which $W = W_1 \cup W_2$ for some disjoint sets W_1 and W_2 such that W_2 is nonempty. Moreover, $x\mathcal{T}y$ if and only if $y \in W_2$ or $x \in W_1$. *V* is the *valuation* function such that V(x) is a set of propositional

^{*} I am grateful to Luis Fariñas del Cerro, Andreas Herzig, and Levan Uridia for motivation, and the anonymous reviewers for their useful comments. This paper has been supported by the institution "*Fundação para a Ciência e a Tecnologia (FCT)*", and the research unit "*Centro de Matemática, Aplicações Fundamentais e Investigação Operacional (CMAF-CIO)*" of the University of Lisbon, Portugal via the grant, identified by the number "UID/MAT/04561/2013".

variables for every $x \in W$. A *cluster* is simply a trivial **S5** model (C, \mathcal{T}, V) such that $x\mathcal{T}y$ for every $x, y \in C$. In terms of Kripke semantics, **S5** is the modal logic, characterised by models in which the accessibility relation is an equivalence relation: it is reflexive, symmetric, and transitive. Now, we can alternatively identify an **S4F** model with the ordered triple (C_1, C_2, V) in which C_1 and C_2 are disjoint cluster structures, $C_2 \neq \emptyset$, and any world in C_2 can be accessed from every world in C_1 .

This paper follows a similar approach to [18] and [8]: the former captures the reflexive autoepistemic reasoning [19,20] of nonmonotonic **SW5** [21,22,23]. The latter successfully embeds equilibrium logic [24,25], which is a logical foundation for answer set programming (**ASP**) [26,27,28], into a monotonic bimodal logic called **MEM**. All these works are, in essence, parts of a project that aims to reexamine the logical and mathematical foundations of nonmonotonic logics. The overall project will then culminate in a single monotonic modal framework, enabling us to obtain a unified perspective of various forms of nonmonotonic reasoning.

As a reference to the analogy between all such works, we here keep the same symbols \mathcal{T} and \mathcal{S}^1 with [8,18] for the accessibility relations. Roughly speaking, [8,18] and this paper all propose Kripke models, composed of a union of 2-floor (disjoint) structures. In general, while the relation \mathcal{T} helps access from 'bottom' (first floor) to 'top' (second floor), the relation S works in the opposite direction. However, the structures of bottom and top differ in all formalisms. In particular, the models here and in [18] are respectively the extensions of the Kripke models of S4F and SW5 with the S-relation; whereas **MEM** restricts top to a trivial cluster of a singleton, and forces all subsets of the top valuation to appear inside the bottom structure to check the minimality criterion of *equilibrium models* [24,25]. Similarly to [8,18], we also propose here a modal language $\mathcal{L}_{[T],[S]}$ with two (unary) modal operators, namely [T] and [S]. The former is a direct translation of L in the language of S4F (\mathcal{L}_{S4F}) into $\mathcal{L}_{[T],[S]}$ via a mapping $tr: \mathcal{L}_{S4F} \longrightarrow \mathcal{L}_{[T],[S]}$. The relations \mathcal{T} and \mathcal{S} respectively interpret the modal operators [T] and [S]. We call the resulting monotonic formalism MLF. We then add into MLF the negatable axiom, resulting in MLF*: modal logic of nonmonotonic S4F. The negatable axiom ensures that the cluster C_1 (bottom) of MLF frames is nonempty, so it turns our frames into exactly 2-floor structures in MLF*: both floors are maximal clusters w.r.t. the relation \mathcal{T} . Essentially, this axiom enables us to refute any nontautology of $\mathcal{L}_{[T],[S]}$ as it allows us to have all possible valuations in an **MLF**^{*} model. Thus, we show that the formula $\langle T \rangle [T](\varphi \wedge [S] \neg \varphi)$ characterises maximal φ -clusters in **MLF**^{*}. This result paves the way to our final goal in which we capture nonmonotonic consequence (abbreviated ' \models_{s4F} ') of S4F in the monotonic modal logic MLF*:

 $\varphi \models_{\mathbf{S4F}} \psi$ if and only if $[\mathbf{T}](tr(\varphi) \land [\mathbf{S}] \neg tr(\varphi)) \rightarrow [\mathbf{T}]tr(\psi)$ is valid in \mathbf{MLF}^* .

The rest of the paper is organised as follows. Section 2 introduces the monotonic modal logic **MLF**: we first define its bimodal language, and then propose two classes of frames, namely **K** and **F**. They are respectively based on standard Kripke frames, and the cluster-based component frames, which are in the form of a floor structure. We axiomatise the validities of our logic, and finally prove that **MLF** is sound and complete

¹ The symbols \mathcal{T} and \mathcal{S} of [8] respectively refer to '*Top*' and '*Subset*'. However, the relation \mathcal{S} has a different character and meaning in this paper, which is similar to those of [18].

w.r.t. both semantics. In Section 3, we extend **MLF** with the negatable axiom, and call the resulting logic **MLF**^{*}. We introduce two kinds of model structures, **K**^{*} and **F**^{*}, and end with the soundness and completeness results. Section 3.1 recalls minimal model semantics of nonmonotonic **S4F**: we define the preference relation, and then give the definition of a minimal model for **S4F**. Section 3.2 first captures minimal models of **S4F**, and then embeds the consequence relation of **S4F** into **MLF**^{*}. Section 4 discusses a general approach, allowing us to capture major nonmonotonic logics. Section 5 makes a brief overview of this paper, and mentions our future goals.

2 A monotonic modal logic related to nonmonotonic S4F

We here propose a new formalism called MLF, which is closely associated with S4F.

2.1 Language $(\mathcal{L}_{[T],[S]})$

Throughout the paper we suppose \mathbb{P} an infinite set of propositional variables, and \mathbb{P}_{φ} its restriction to those of a formula φ . We also consider *Prop* as the set of all propositional formulas of our language. The language $\mathcal{L}_{[T],[S]}$ is formally defined by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \to \varphi \mid [T]\varphi \mid [S]\varphi$$

where *p* ranges over \mathbb{P} . $\mathcal{L}_{[T],[S]}$ is therefore a bimodal language with the modalities [T] and [S]. As usual, $\top \stackrel{\text{def}}{=} \varphi \rightarrow \varphi, \perp \stackrel{\text{def}}{=} \neg(\varphi \rightarrow \varphi), \varphi \lor \psi \stackrel{\text{def}}{=} \neg\varphi \rightarrow \psi, \varphi \land \psi \stackrel{\text{def}}{=} \neg(\varphi \rightarrow \neg\psi),$ and $\varphi \leftrightarrow \psi \stackrel{\text{def}}{=} (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$. Moreover, $\langle T \rangle \varphi$ and $\langle S \rangle \varphi$ respectively abbreviate $\neg [T] \neg \varphi$ and $\neg [S] \neg \varphi$.

2.2 Kripke semantics for MLF

We now describe the class **K** of Kripke frames for **MLF**. A **K**-*frame* is a triple (W, \mathcal{T}, S):

- W is a non-empty set of possible worlds.
- $-\mathcal{T}, \mathcal{S} \subseteq W \times W$ are binary relations such that for every $w, u, v \in W$,

$(w,w) \in \mathcal{T}$	$\operatorname{refl}(\mathcal{T})$
$(w, u) \in \mathcal{T}$ and $(u, v) \in \mathcal{T} \Rightarrow (w, v) \in \mathcal{T}$	$trans(\mathcal{T})$
$(w,u) \in \mathcal{T}, (u,w) \notin \mathcal{T} \text{ and } (w,v) \in \mathcal{T} \Rightarrow (v,u) \in \mathcal{T}$	$f(\mathcal{T})$
$(w,u) \in \mathcal{S} \Longrightarrow (u,u) \in \mathcal{S}$	$\operatorname{refl}_2(\mathcal{S})$
$(w, u) \in S$ and $(u, v) \in S \Rightarrow u = v$	wtriv ₂ (S)
$(w,u) \in \mathcal{T} \Rightarrow (u,w) \in \mathcal{T} \text{ or } (u,w) \in \mathcal{S}$	$\operatorname{msym}(\mathcal{T},\mathcal{S})$
$(w, u) \in S \Rightarrow w = u \text{ or } (u, w) \in \mathcal{T}$	wmsym(\mathcal{S},\mathcal{T}).

The first three properties above characterise the frames of the modal logic **S4F** [9]. Thus, a **K**-frame is an extension of an **S4F** frame by a second relation *S*. Given a **K**-frame $\mathcal{F} = (W, \mathcal{T}, S)$, a **K**-model is a pair $\mathcal{M} = (\mathcal{F}, V)$ in which $V : W \to 2^{\mathbb{P}}$ is the map, assigning to each $w \in W$ a valuation V(w). Then, given $w \in W$, a pointed **K**-model is a pair $\mathcal{M}_w = (\mathcal{M}, w)$, and similarly, a pointed **K**-frame is a pair $\mathcal{F}_w = (\mathcal{F}, w)$. **Truth conditions** The truth conditions are standard: (for $p \in \mathbb{P}$)

$\mathcal{M}, w \models_{\mathbf{MLF}} p$	if	$p \in V(w);$
$\mathcal{M}, w \models_{\mathrm{MLF}} \neg \varphi$	if	$\mathcal{M}, w \not\models_{\mathbf{MLF}} \varphi;$
$\mathcal{M}, w \models_{\mathrm{MLF}} \varphi \to \psi$	if	$\mathcal{M}, w \not\models_{\mathbf{MLF}} \varphi \text{ or } M, w \not\models_{\mathbf{MLF}} \psi;$
$\mathcal{M}, w \models_{\mathrm{MLF}} [\mathrm{T}] \varphi$	if	$\mathcal{M}, u \models_{\mathrm{MLF}} \varphi$ for every <i>u</i> such that $w\mathcal{T}u$;
$\mathcal{M}, w \models_{\mathrm{MLF}} [\mathrm{S}] \varphi$	if	$\mathcal{M}, u \models_{\mathrm{MLF}} \varphi$ for every <i>u</i> such that <i>wSu</i> .

We say that φ is **MLF** satisfiable if $\mathcal{M}, w \models_{MLF} \varphi$ for some **K**-model \mathcal{M} and w in \mathcal{M} . Moreover, φ is **MLF** valid (for short, $\models_{MLF} \varphi$) if $\mathcal{M}, w \models_{MLF} \varphi$ for every w of every **K**-model \mathcal{M} . Then, φ is valid in $\mathcal{M}(\mathcal{M}\models_{MLF} \varphi)$ when $\mathcal{M}, w \models_{MLF} \varphi$ for every w in \mathcal{M} .

2.3 Cluster-based floor semantics for MLF

We here define the frames of a floor structure for MLF, and call their class F. The underlying idea is due to the property 'f(\mathcal{T})' of K-frames, and in fact, F is only a subclass of K. However, F-frames with some additional properties play an important role in the completeness proof. We now start with the definition of a \mathcal{T} -cluster² [22,29].

Definition 1. Given a K-frame (W, \mathcal{T}, S) , let C be a subset of W. Then,

- *C* is a \mathcal{T} -cluster if $w\mathcal{T}u$ for every $w, u \in C$;
- C is maximal if no proper superset of C in W is a \mathcal{T} -cluster.
- C is a \mathcal{T} -cone if for every $w \in W$, and every $u \in C$, $u\mathcal{T}w$ implies $w \in C$;
- C is final if wTu for every $w \in W$ and every $u \in C$.

It follows from Definition 1 that the restriction of \mathcal{T} to a \mathcal{T} -cluster *C* (abbreviated $\mathcal{T}|_C$) is a *universal* relation, viz. $\mathcal{T}|_C = C \times C$. So, (C, \mathcal{T}) happens to be a trivial **S5** frame.

Given a **K**-frame $\mathcal{F} = (W, \mathcal{T}, S)$, the relation \mathcal{T} partitions \mathcal{F} into disjoint subframes $\mathcal{F}' = (W', \mathcal{T}, S)$ in which $W' = C_1 \cup C_2$ for some maximal clusters $C_1, C_2 \subseteq W' \subseteq W$ such that $C_1 \cap C_2 = \emptyset$, and $C_2 \neq \emptyset$ is a final cone in W'. Thus, $\mathcal{T}|_{W'} = (W' \times C_2) \cup (C_1 \times C_1)$. We now define the operators $\mathcal{T}(\cdot), S(\cdot) : 2^W \longrightarrow 2^W$, respectively assigning to every $X \subseteq W$,

 $\mathcal{T}(X) = \{ u \in W : w\mathcal{T}u \text{ for some } w \in X \};$ $\mathcal{S}(X) = \{ u \in W : w\mathcal{S}u \text{ for some } w \in X \}.$

When $X=\{w\}$, we simply write $\mathcal{T}(w)$ (resp. $\mathcal{S}(w)$), denoting the set of all worlds that w can access via \mathcal{T} (resp. \mathcal{S}). Note that $\mathcal{T}(\cdot)$ and $\mathcal{S}(\cdot)$ are homomorphisms under union:

 $\mathcal{T}(X \cup Y) = \mathcal{T}(X) \cup \mathcal{T}(Y)$ and $\mathcal{S}(X \cup Y) = \mathcal{S}(X) \cup \mathcal{S}(Y)$.

We now formally define the above-mentioned partitions of a K-frame w.r.t. \mathcal{T} .

Definition 2. Given a **K**-frame $\mathcal{F} = (W, \mathcal{T}, S)$, let $\mathbb{C} = (C_1, C_2)$ be a pair of disjoint subsets of W such that $C_2 \neq \emptyset$. Then, \mathbb{C} is called a component of \mathcal{F} if:

1. C_1 and C_2 are maximal clusters;

² Unless specified otherwise, any definition of this paper is given w.r.t. the relation \mathcal{T} .

2. $\mathcal{T} \cap (C_1 \times C_2) = C_1 \times C_2$.

So, a component $\mathbb{C} = (C_1, C_2)$ has a 'two-layered' structure: C_1 is the *first floor* ('*F1-cluster*'), and C_2 is the *second floor* ('*F2-cluster*'). Clearly, C_2 is the final cone of the structure \mathbb{C} . Note that \mathbb{C} can also be transformed into a special **K**-frame

$$\mathcal{F}^{\mathbb{C}} = \left(C_1 \cup C_2, \ \left((C_1 \cup C_2) \times C_2 \right) \cup (C_1 \times C_1), \ (C_2 \times C_1) \cup \varDelta_{C_1} \right)$$
(1)

where Δ_{C_1} is the diagonal of $C_1 \times C_1$, i.e., $\Delta_{C_1} = \{(w, w) : w \in C_1\}$. Given any two different components $\mathbb{C} = (C_1, C_2)$ and $\mathbb{C}' = (C'_1, C'_2)$ of a **K**-frame $\mathcal{F}, C_1 \cup C_2$ and $C'_1 \cup C'_2$ are disjoint, and \mathbb{C} and \mathbb{C}' are disconnected in the sense that there is no \mathcal{T} -access (nor an S-access) from one to the other. As a result, a **K**-frame \mathcal{F} is composed of an arbitrary union of components; however, when \mathcal{F} contains a component in which the F1-cluster is empty, and $S \neq \emptyset$ (and so, S is arbitrary), (1) is not sufficient to recover \mathcal{F} . This ambiguity in the transformation will be solved in the following section as the proposed logic **MLF**^{*} does not accept components whose F1-cluster is empty.

Definition 3. An **F**-frame is a pair $\mathbb{C} = (C_1, C_2)$, having a component structure.

We now define a function $\mu : \mathbf{F} \to \mathbf{K}$, assigning a **K**-frame $\mu(\mathbb{C}) = \mathcal{F}^{\mathbb{C}}$ (see (1)) to each **F**-frame \mathbb{C} . As two distinct components \mathbb{C} and \mathbb{C}' give rise to two distinct **K**-frames $\mathcal{F}^{\mathbb{C}}$ and $\mathcal{F}^{\mathbb{C}'}$, μ is 1-1, but not onto³. Thus, **F** is indeed a (proper) subclass of **K**.

Proposition 1. Given a **K**-frame $\mathcal{F} = (W, \mathcal{T}, S)$, let $\mathbb{C} = (C_1, C_2)$ be a component of \mathcal{F} , and $w \in C_1 \cup C_2$, then

- *1. if* $w \in C_1$, *then* $\mathcal{T}(w) = C_1 \cup C_2$, *and* $\mathcal{S}(w) = \{w\}$ *;*
- 2. if $w \in C_2$, then $\mathcal{T}(w) = C_2$, and $\mathcal{S}(w) = C_1$ when $C_1 \neq \emptyset$; otherwise $\mathcal{S}(w)$ is arbitrary.

The proof easily follows from the frame properties of K.

Corollary 1. For a **K**-frame $\mathcal{F} = (W, \mathcal{T}, S)$, and a component $\mathbb{C} = (C_1, C_2)$ of \mathcal{F} , we have:

1. $\mathcal{T}(C_1 \cup C_2) = C_1 \cup C_2;$ 2. $\mathcal{S}(C_1 \cup C_2) \subseteq C_1 \cup C_2.$

Corollary 2. Given a pointed **K**-frame \mathcal{F}_w , let $C = \mathcal{T}(w) \setminus C_1$ if w is in an F1-cluster C_1 ; else if w is in an F2-cluster C_2 , let $C = \mathcal{T}(w)$. Take $C' = \mathcal{S}(C) \setminus C$. Then, $\mathbb{C}^{\mathcal{F}_w} = (C', C) \in \mathbf{F}$.

Note that the component generated by $w \in \mathcal{F}$ is exactly the one in which *w* is placed. So, any point from the same component forms itself. Using Corollary 2, we now define another function *v*, assigning to each pointed **K**-frame \mathcal{F}_w an **F**-frame $\mathbb{C}^{\mathcal{F}_w}$. Clearly, *v* is not 1-1, but is onto. Finally, { $v(\mathcal{F}_w) : w \in W$ } identifies all the components in \mathcal{F} . The following proposition generalises this observation.

Proposition 2. Given an **F**-frame $\mathbb{C} = (C_1, C_2)$ and $w \in C_1 \cup C_2$, we have $v(\mu(\mathbb{C}), w) = \mathbb{C}$.

³ Note that there is no **F**-frame being mapped to (i) a **K**-frame containing more than one component structure in it, and (ii) a **K**-frame composed of only one component with a single (nonempty) cluster structure in which $S \neq \emptyset$.

These transformations between frame structures of MLF enable us to define valuations also on the components $\mathbb{C} \in \mathbf{F}$, resulting in an alternative semantics for MLF via Fmodels. The new semantics can be viewed as a reformulation of the Kripke semantics: given a **K**-model $\mathcal{M} = (\mathcal{F}^{\mathbb{C}}, V)$ for some Kripke frame $\mathcal{F}^{\mathbb{C}} \in \mu(\mathbf{F})$ and a valuation V, one can transform $\mathcal{F}^{\mathbb{C}}$ to a component $\nu(\mathcal{F}^{\mathbb{C}}_{w}) = \mathbb{C} \in \mathbf{F}$ for some $w \in C_1 \cup C_2$ (see Proposition 2). This discussion allows us to define pairs (\mathbb{C}, V) in which $\mathbb{C} \in \mathbf{F}$, and V is the valuation restricted to C. Such valuated components are called 'F-models', and they make it possible to transfer K-satisfaction to F-satisfaction.

Truth conditions (the modal cases) for an **F**-model (\mathbb{C} , V)=(C_1 , C_2 , V) and $w \in C_1 \cup C_2$, $(\mathbb{C}, V), w \models_{\mathbf{MLF}} [\mathbf{T}] \psi$ if and only if

- if $w \in C_1$ then $(\mathbb{C}, V), v \models_{\text{MLF}} \psi$ for all $v \in C_1 \cup C_2$ (i.e., $(\mathbb{C}, V) \models_{\text{MLF}} \psi$); if $w \in C_2$ then $(\mathbb{C}, V), v \models_{\text{MLF}} \psi$ for all $v \in C_2$.
- $(\mathbb{C}, V), w \models_{\mathbf{MLF}} [S] \psi$ if and only if
- if w ∈ C₁ then (ℂ, V), w ⊨_{MLF}ψ;
 if w ∈ C₂ then (ℂ, V), v ⊨_{MLF}ψ for all v ∈ C₁ if C₁ ≠ Ø; else 'no strict conclusion'.

The next result reveals the relation between the Kripke and the floor sematics of MLF.

Proposition 3 (corollary of Proposition 2). For an **F**-model (\mathbb{C} , V), $w \in \mathbb{C}$, and $\varphi \in$ $\mathcal{L}_{\text{[TL]S]}}$, $(\mathbb{C}, V), w \models_{\text{MLF}} \varphi$ if and only if $(\mathcal{F}^{\mathbb{C}}, V), w \models_{\text{MLF}} \varphi$.

2.4 Axiomatisation of MLF

We here give an axiomatisation of MLF, and prove its completeness. Recall that K([T]), T([T]), 4([T]) and F([T]) characterise the modal logic S4F [30]. The monotonic logic defined by Table 1 is MLF. The schemas T₂([S]) and WTriv₂([S]) can be combined

K ([T]) K ([S])	the modal logic K for [T] the modal logic K for [S]
T([T]) 4([T]) F([T])	$\begin{split} [T]\varphi &\to \varphi \\ [T]\varphi &\to [T][T]\varphi \\ (\varphi \wedge \langle T \rangle [T]\psi) &\to [T](\langle T \rangle \varphi \lor \psi) \end{split}$
T ₂ ([S]) WTriv ₂ ([S])	$\begin{split} & [S]([S]\varphi \to \varphi) \\ & [S](\varphi \to [S]\varphi) \end{split}$
MB([T],[S]) WMB([S],[T])	$\begin{split} \varphi &\to [T](\langle T \rangle \varphi \lor \langle S \rangle \varphi) \\ \varphi &\to [S](\varphi \lor \langle T \rangle \varphi) \end{split}$

Table 1. Axiomatisation of MLF

into the axiom Triv₂([S]), i.e., [S]([S] $\varphi \leftrightarrow \varphi$), referring to the "triviality in the second S-step". Finally, MB([T], [S]) and WMB([S], [T]) are familiar from tense logics.

2.5 Soundness and completeness of MLF

The axiom schemas given in Table 1 precisely characterise the class **K** of **MLF** frames. We only show that F([T]) describes the property $f(\mathcal{T})$ of **K**-frames, but the rest is similar.

- Let $\mathcal{M}=(\mathcal{W},\mathcal{T},\mathcal{S},V)$ be a **K**-model, satisfying $f(\mathcal{T})$. We want to show that F([T]) is valid in \mathcal{M} . Let $w \in W$ be such that $\mathcal{M}, w \models_{MLF} \varphi \land \langle T \rangle [T] \psi(\star)$. Then, it suffices to prove that $\mathcal{M}, w \models_{MLF} [T](\langle T \rangle \varphi \lor \psi)$. For an arbitrary $u \in W$, assume that $(w, u) \in \mathcal{T}$. Case (1): let $(u, w) \in \mathcal{T}$. The assumption (\star) implies that $\mathcal{M}, w \models_{MLF} \varphi$. Then, it also holds that $\mathcal{M}, u \models_{MLF} \langle T \rangle \varphi$; clearly, so does $\mathcal{M}, u \models_{MLF} \langle T \rangle \varphi \lor \psi$. Case (2): let $(u, w) \notin \mathcal{T}$. Then, by the assumption $(\star), \mathcal{M}, w \models_{MLF} \langle T \rangle [T] \psi$. Thus, there is $v \in W$ such that $(w, v) \in \mathcal{T}$ and $\mathcal{M}, v \models_{MLF} [T] \psi$. As \mathcal{M} satisfies $f(\mathcal{T})$, we get $(v, u) \in \mathcal{T}$. As $\mathcal{M}, v \models_{MLF} [T] \psi$, we have $\mathcal{M}, u \models_{MLF} \psi$; hence, $\mathcal{M}, u \models_{MLF} \langle T \rangle \varphi \lor \psi$.
- Let $\mathcal{F} = (W, \mathcal{T}, S)$ be a **K**-frame in which $f(\mathcal{T})$ fails. So, there exists $w, u, v \in W$ with $(u, w) \notin \mathcal{T}$ while $(w, u) \in \mathcal{T}$ and $(w, v) \in \mathcal{T}$; yet $(v, u) \notin \mathcal{T}$. Thanks to the last 2 claims, we have $w \neq v$ (otherwise $(v, u) \notin \mathcal{T}$ would contradict $(w, u) \in \mathcal{T}$). Due to the first 2 claims, $w \neq u$ (otherwise, (w, u) = (u, w), and $(u, w) \in \mathcal{T}$). We now take a valuation V satisfying: $\mathcal{M}, w \models_{MLF} \varphi$ (\blacktriangle), but $\mathcal{M}, x \not\models_{MLF} \varphi$ for any $x \neq w$; similarly, $\mathcal{M}, u \not\models_{MLF} \psi$ (\blacktriangledown), but $\mathcal{M}, y \models_{MLF} \psi$ for every $y \neq u$. Since $(v, u) \notin \mathcal{T}$, and thanks to the choice of V, $\mathcal{M}, v \models_{MLF} [T] \psi$. As $(w, v) \in \mathcal{T}$, and also by using (\bigstar), we have $\mathcal{M}, w \models_{MLF} \varphi \land \langle T \rangle [T] \psi$. On the other hand, $\mathcal{M}, u \models_{MLF} [T] \neg \varphi$ since $(u, w) \notin \mathcal{T}$ and w is the only point satisfying φ . Then, (\blacktriangledown) further implies that $\mathcal{M}, u \models_{MLF} [T] \neg \varphi \land \neg \psi$. Since $(w, u) \in \mathcal{T}$, we also get $\mathcal{M}, w \models_{MLF} \langle T \rangle ([T] \neg \varphi \land \neg \psi)$. So, we are done.

Corollary 3. MLF is sound w.r.t. the class K of frames.

Here, we only need to show that the inference rules of MLF are validity-preserving.

Theorem 1. MLF is complete w.r.t. the class of K-frames.

Proof. We use the method of canonical models (see [29]), so we first define the canonical model $\mathcal{M}^c = (W^c, \mathcal{T}^c, \mathcal{S}^c, V^c)$ in which

- $-W^c$ is the set of maximally consistent sets of MLF.
- \mathcal{T}^c and \mathcal{S}^c are the accessibility relations on W^c with:

 $\Gamma \mathcal{T}^c \Gamma'$ if and only if $\{\psi : [T]\psi \in \Gamma\} \subseteq \Gamma';$ $\Gamma \mathcal{S}^c \Gamma'$ if and only if $\{\psi : [S]\psi \in \Gamma\} \subseteq \Gamma'.$

- V^c is the valuation s.t. $V^c(\Gamma) = \Gamma \cap \mathbb{P}$, for every $\Gamma \in W^c$.

By induction on φ , we prove a truth lemma saying: " $\Gamma \models_{MLF} \varphi$ iff $\varphi \in \Gamma$ " for every $\varphi \in \mathcal{L}_{[T],[S]}$. Then, it remains to show that \mathcal{M}^c satisfies all constraints of **K**, and so is a legal **K**-model of **MLF**. We here give the proof only for wtriv₂(S) and wmsym(S, \mathcal{T}). \blacktriangleright The schema WTriv₂([S]) guarantees that \mathcal{M}^c satisfies wtriv₂(S): let $\Gamma_1 S^c \Gamma_2$ (\star) and $\Gamma_2 S^c \Gamma_3$ ($\star \star$). Assume for a contradiction that $\Gamma_2 \neq \Gamma_3$. Thus, there exists $\varphi \in \Gamma_2$ with $\neg \varphi \in \Gamma_3$, implying that $\langle S \rangle \neg \varphi \in \Gamma_2$ by the hypothesis ($\star \star$). Since Γ_2 is maximally consistent, $\varphi \land \langle S \rangle \neg \varphi \in \Gamma_2$. So, using the hypothesis (\star), we get $\langle S \rangle (\varphi \land \langle S \rangle \neg \varphi) \in \Gamma_1$. However, since Γ_1 is maximally consistent, any instance of WTriv₂([S]) is in Γ_1 . Thus, $[S](\varphi \rightarrow [S]\varphi) \in \Gamma_1$, and it contradicts the consistency of Γ_1 .

▶ The schema WMB([S], [T]) ensures that wmsym(S, T) holds in \mathcal{M}^c : suppose that $\Gamma S^c \Gamma'(\star)$ for $\Gamma, \Gamma' \in W^c$. W.l.o.g., let $\Gamma \neq \Gamma'$. Then, there exists $\psi \in \Gamma'$ with $\neg \psi \in \Gamma$. We need to show that $\Gamma' \mathcal{T}^c \Gamma$. So, let φ be such that $[T]\varphi \in \Gamma'$. As Γ' is maximally consistent, we have both $\varphi \lor \psi \in \Gamma'$ and $[T]\varphi \lor [T]\psi \in \Gamma'$. We know that $[T]\varphi \lor [T]\psi \rightarrow [T](\varphi \lor \psi)$ is a theorem of **MLF**, so it is in Γ' . Then, by Modus Ponens (MP), we get $[T](\varphi \lor \psi) \in \Gamma'$, further implying $(\varphi \lor \psi) \land [T](\varphi \lor \psi) \in \Gamma'$ since we already have $(\varphi \lor \psi) \in \Gamma'$. The assumption (\star) gives us that $\langle S \rangle ((\varphi \lor \psi) \land [T](\varphi \lor \psi)) \in \Gamma$. Since Γ is maximally consistent, any instance of WMB([S], [T]) is in Γ ; in particular, so is $\langle S \rangle ((\varphi \lor \psi) \land [T](\varphi \lor \psi)) \rightarrow (\varphi \lor \psi)$. Finally, again by MP, we have $\varphi \lor \psi \in \Gamma$. Since $\neg \psi \in \Gamma$, it follows that $\varphi \in \Gamma$.

Soundness and completeness of MLF w.r.t. F. Since any component $\mathbb{C} \in \mathbf{F}$ can be converted to a K-frame $\mu(\mathbb{C})$, soundness follows from Corollary 3 and Proposition 2. As to completeness, for a non-theorem $\varphi \in \mathcal{L}_{[T],[S]}$, $\neg \varphi$ is consistent. Let $\Gamma_{\neg \varphi}$ be a maximally consistent set in the canonical model \mathcal{M}^c such that $\neg \varphi \in \Gamma_{\neg \varphi}$. As the canonical frame $\mathcal{M}^c = (W^c, \mathcal{T}^c, \mathcal{S}^c)$ is a member of the class K, Proposition 1 and Proposition 2 allow us to define the component $\mathbb{C}^c = (C_1^c, C_2^c)$ with $\Gamma_{\neg \varphi} \in C_1^c \cup C_2^c$. Moreover, by Corollary 1, $C_1^c \cup C_2^c$ is closed under the operators $\mathcal{T}^c(\cdot)$ and $\mathcal{S}^c(\cdot)$. Therefore, modal satisfaction is preserved between \mathcal{M}^c and \mathbb{C}^c . As a result, $\mathbb{C}^c, \Gamma_{\neg \varphi} \nvDash_{MLF} \varphi$ (i.e., $\mathbb{C}^c, \Gamma_{\neg \varphi} \vDash_{MLF} \neg \varphi$).

3 Where we capture nonmonotonic S4F: Modal logic MLF*

We here propose an extension of MLF with a new axiom schema

 $\operatorname{Neg}([S],[T]): \ \langle T \rangle [T] \varphi \to \langle T \rangle \langle S \rangle \neg \varphi$

where $\varphi \in Prop$ is non-tautological. We call this schema '*negatable axiom*' and the resulting formalism **MLF**^{*}. **MLF**^{*}-models are of 2 kinds, namely **K**^{*} and **F**^{*}. They are obtained respectively from the classes **K** and **F** by adding a 'model' constraint:

 $\operatorname{neg}(S, \mathcal{T})$: for every $P \subseteq \mathbb{P}$, there exists a world *w* such that P = V(w).

In other words, **MLF**^{*}-models can falsify any nontheorem of our logic, i.e., for every such φ , there exists a world w such that $w \models_{MLF^*} \neg \varphi$. Every **F**^{*}-model (C_1, C_2, V) now has an exactly 'two-floor' form: $C_1 \neq \emptyset$, and C_1 includes a world w, at which a propositional nontheorem φ , valid in C_2 , is refuted. A **K**^{*}-model is indeed an arbitrary combination of **F**^{*}-models. Below we show that Neg([S], [T]) precisely corresponds to neg(S, \mathcal{T}).

Proposition 4. *Given a* **K***-model* $\mathcal{M} = (W, \mathcal{T}, \mathcal{S}, V)$ *in* **MLF***,*

Neg([S], [T]) is valid in \mathcal{M} if and only if \mathcal{M} is a \mathbf{K}^* -model.

Proof. Let $\mathcal{M} = (W, \mathcal{T}, \mathcal{S}, V)$ be a **K**-model of **MLF**.

 (\Longrightarrow) : Assume that \mathcal{M} is not a **K**^{*}-model. Then, there exists a nontautological propositional formula $\varphi \in Prop$ such that $\mathcal{M} \models_{MLF} \varphi$. Clearly, $[T]\varphi$, $[S]\varphi$ and $[T][S]\varphi$ are all

valid in \mathcal{M} , but then so is $\langle T \rangle [T] \varphi$ (thanks to the reflexivity of \mathcal{T}). This implies that $\langle T \rangle [T] \varphi \wedge [T] [S] \varphi$ is also valid in \mathcal{M} . Thus, Neg([S], [T]) is not valid in \mathcal{M} .

(\Leftarrow): Let \mathcal{M} be a **K**^{*}-model (•). Let $\varphi \in Prop$ be a nontheorem. Take $\beta = \langle T \rangle[T]\varphi \rightarrow \langle T \rangle \langle S \rangle \neg \varphi$. We need to show that $\mathcal{M} \models_{MLF^*} \beta$. Let $w \in W$ be such that $\mathcal{M}, w \models_{MLF^*} \langle T \rangle[T]\varphi$. We first consider the **F**-model $\mathbb{C} = (C_1, C_2, V)$, generated by w as in Corollary 2. By construction, φ is valid in C_2 , and (•) implies an existence of $u \in C_1$ such that u refutes φ . By the frame properties of **F**, there exists $v \in C_2$ satisfying vSu and $\mathcal{M}, v \models_{MLF^*} \langle S \rangle \neg \varphi$. Regardless of the floor to which w belongs, $w\mathcal{T}v$, and $v \in C_2$. Thus, $\mathcal{M}, w \models_{MLF^*} \langle T \rangle \langle S \rangle \neg \varphi$.

Proposition 5. *Given an* **F***-model* $(\mathbb{C}, V) = (C_1, C_2, V)$ *in* **MLF***,*

Neg([S],[T]) is valid in (\mathbb{C}, V) if and only if (\mathbb{C}, V) is an \mathbf{F}^* -model.

Neg([S], [T]) has an elegant representation. However, as it makes the reasoning clear in the demanding proofs of this section, we find it handier to use the equivalent version

Neg'([S],[T]): $\langle T \rangle [T] \varphi \rightarrow \langle T \rangle \langle S \rangle (\neg \varphi \land Q)$

of Neg([S], [T]) in which $\varphi \in Prop$ is a nontheorem, and Q is a conjunction of a finite set of literals (i.e., p or $\neg p$, for $p \in \mathbb{P}$) such that the set { $\neg \varphi, Q$ } is consistent.

Proposition 6. For a \mathbf{K}^* -model $\mathcal{M}=(W, \mathcal{T}, \mathcal{S}, V)$ and $w \in W$,

 $\mathcal{M}, w \models_{\mathrm{MLF}^*} \mathrm{Neg}([S], [T])$ if and only if $\mathcal{M}, w \models_{\mathrm{MLF}^*} \mathrm{Neg'}([S], [T])$.

Proof. The right-to-left direction is straightforward: take $Q = \emptyset$ and the result follows. For the opposite direction, we first assume that $\mathcal{M}, w \models_{\text{MLF}^*} \text{Neg}([S], [T]) (\blacktriangle)$. Let $\varphi \in Prop$ be a nontheorem of MLF^* viz. $\mathcal{M}, w \models_{\text{MLF}^*} \langle T \rangle [T] \varphi (\blacktriangledown)$. Let Q be a conjunction of finite literals such that $\neg \varphi \land Q$ is consistent. Then, $\varphi \lor \neg Q \in Prop$ is a nontheorem of MLF^* . Moreover, from the assumption (\blacktriangledown) , we also get $\mathcal{M}, w \models_{\text{MLF}^*} \langle T \rangle [T] (\varphi \lor \neg Q)$. Lastly, by the hypothesis (\blacktriangle) , we have $\mathcal{M}, w \models_{\text{MLF}^*} \langle T \rangle \langle S \rangle (\neg \varphi \land Q)$.

We finally transform a valuated cluster (C, V) into an \mathbf{F}^* -model. We first construct a set

 $C_1 = \{x_{\varphi} : \text{ for every } \varphi \in Prop \text{ such that } \neg \varphi \nvDash \bot, (C, V) \models_{MLF} \varphi \text{ and } x_{\varphi} \notin C\}$

into which we put a point $x_{\varphi} \notin C$ for every nontheorem φ that is valid in *C*. So, $C \cap C_1 = \emptyset$. Then, we extend the universal relation \mathcal{T} on *C* to $\mathcal{T}' = ((C_1 \cup C) \times C) \cup (C_1 \times C_1)$ on $C \cup C_1$. The valuation *V* defined over *C* is also extended to $V' : C_1 \cup C \longrightarrow \mathbb{P}$ satisfying: $V'|_C = V$, and $V'(x_{\varphi})$ is designed to falsify φ . Hence, by definition, $(C_1, C, V') \in \mathbf{F}^*$.

Soundness and completeness of MLF^{*} We have seen that **MLF** is sound w.r.t. **F**, so Proposition 5 implies that **MLF**^{*} is sound w.r.t. **F**^{*}. Since any **K**^{*}-model is a combination of **F**^{*}-models, we can generalise this result to **K**^{*}. We here show that **MLF**^{*} is complete w.r.t. **F**^{*}: first we take a canonical model $\mathcal{M}^c = (W^c, \mathcal{T}^c, \mathcal{S}^c, V^c)$ of **MLF**^{*} (see Theorem 1 for the details). Then, we define a valuated component $(\mathbb{C}^c, V^c) = (C_1^c, C_2^c, V^c)$ for $C_1^c, C_2^c \subseteq W^c$ as in Section 2.5. We want to show that (\mathbb{C}^c, V^c) is an **F**^{*}-model. So, it is enough to prove that Neg([S], [T]) ensures the property neg(\mathcal{S}, \mathcal{T}). First recall that every **F**-frame \mathbb{C} corresponds to a **K**-frame $\mu(\mathbb{C}) = \mathcal{F}^{\mathbb{C}}$, and by Proposition 2, $\nu(\mu(\mathbb{C}), w) = \mathbb{C}$ for $w \in C_1 \cup C_2$. Thus, such $(\mu(\mathbb{C}^c), V^c)$ is a submodel of \mathcal{M}^c since it is a **K**^{*}-frame. For nontautological $\varphi \in Prop$, let us assume $\Gamma \models_{\mathsf{MLF}^*} \varphi$ (i.e., $\varphi \in \Gamma$) for every $\Gamma \in C_2^c$ (so, φ is consistent). This implies that $(\mathbb{C}^c, V^c), \Gamma \models_{\mathsf{MLF}^*} [T]\varphi$ (i.e., $[T]\varphi \in \Gamma$), for every $\Gamma \in C_2^c$. Using the fact that $\mu(\mathbb{C}^c)$ is part of the canonical model \mathcal{M}^c , we have $\mathcal{T}^c|_{C_1^c\cup C_2^c} \supset ((C_1^c\cup C_2^c) \times C_2^c)$. Thus, $(\mathbb{C}^c, V^c), \Gamma \models_{\mathsf{MLF}^*} \langle T \rangle [T]\varphi$ for every $\Gamma \in C_1^c \cup C_2^c$. As any instance of Neg([S], [T]) is valid in $(\mathbb{C}^c, V^c), \langle T \rangle \langle S \rangle \neg \varphi \in \Gamma$ for every $\Gamma \in C_1^c \cup C_2^c$. In other words, $(\mathbb{C}^c, V^c) \models_{\mathsf{MLF}^*} \langle T \rangle \langle S \rangle \neg \varphi$. Thus, there exists $\Gamma' \in W^c$ such that $\Gamma \mathcal{T}^c \Gamma'$ and $\Gamma' \models_{\mathsf{MLF}^*} \langle S \rangle \neg \varphi$ (i.e., $\langle S \rangle \neg \varphi \in \Gamma'$). As $\mathcal{T}(C \cup A) = C \cup A$ in **F**, we have $\Gamma' \in C_1^c \cup C_2^c$. Moreover, there also exists $\Gamma'' \in W^c$ such that $\Gamma' S^c \Gamma''$ and $\Gamma'' \models_{\mathsf{MLF}^*} \neg \varphi$. By Corollary 1, $S(C_1^c \cup C_2^c) \subseteq C_1^c \cup C_2^c$, yet from our initial hypothesis, we obtain $\Gamma'' \in C_1^c$. To sum up, Γ'' is a maximally consistent set in \mathbb{C}^c such that $(\mathbb{C}^c, V^c), \Gamma'' \not\models_{\mathsf{MLF}^*} \varphi$.

3.1 Minimal model semantics for nonmonotonic S4F

This section recalls the minimal model semantics for nonmonotonic **S4F** [22]. We first define a *preference* relation between **S4F** models, enabling us to check minimisation.

Definition 4. An S4F model $\mathcal{N} = (N, R, U)$ is preferred over a valuated cluster (C, V) if

- $-N = C \cup C_1$ for some (nonempty) set C_1 of possible worlds such that $C \cap C_1 = \emptyset$;
- $R = (N \times C) \cup (C_1 \times C_1);$
- The valuations V and U agree on C (i.e., $V = U|_C$);
- There exists $\varphi \in Prop$ such that $C \models \varphi$ and $N \not\models \varphi$.

We abbreviate it by N > (C, V). A valuated cluster (C, V) is then a *minimal model* of a theory (finite set of formulas) Γ in **S4F** if

- $(C, V), x \models \Gamma$ for every $x \in C$ (i.e., $(C, V) \models \Gamma$);
- $\mathcal{N} \not\models \Gamma$ for every \mathcal{N} such that $\mathcal{N} > (C, V)$.

Finally, a formula φ is a *logical consequence* of a theory Γ in **S4F** (abbreviated $\Gamma \models_{s4F} \varphi$) if φ is valid in every minimal model of Γ . For example, $q \models_{s4F} \neg p \lor q$, yet $\neg p \lor q \not\models_{s4F} q$.

3.2 Embedding nonmonotonic S4F into MLF*

We here embed nonmonotonic **S4F** into **MLF**^{*}. With this aim, we first translate the language of **S4F** (\mathcal{L}_{S4F}) into $\mathcal{L}_{[T],[S]}$ via a mapping '*tr*': we simply and only replace $L \in \mathcal{L}_{[T],[S]}$ by [T]. The following proposition proves that this translation is correct, and clarifies how to characterise minimal models of **S4F** in **MLF**^{*}.

Proposition 7. Given an \mathbf{F}^* -model $(\mathbb{C}, V) = (C_1, C, V)$, and $\alpha \in \mathcal{L}_{\mathbf{S4F}}$, we have:

- 1. $(\mathbb{C}, V), w \models_{\mathbf{MLF}^*} tr(\alpha)$, for every $w \in C$ if and only if $(C, V|_C) \models \alpha$.
- 2. $(\mathbb{C}, V) \models_{\mathbf{MLF}^*} \langle \mathbf{T} \rangle [\mathbf{T}] (tr(\alpha) \land [\mathbf{S}] \neg tr(\alpha))$ if and only if $(C, V|_C)$ is a minimal model of α .

Proof. The proof of the first item is by induction on α . As to the second item, for the proof of the 'only if' part, we first assume $(\mathbb{C}, V) \models_{MLF^*} \langle T \rangle [T](tr(\alpha) \land [S] \neg tr(\alpha)) (\blacklozenge)$. (1) From (\blacklozenge), we obtain that (\mathbb{C} , V), $u \models_{\mathrm{MLF}^*} tr(\alpha)$ (\blacktriangle), and (\mathbb{C} , V), $u \models_{\mathrm{MLF}^*} [S] \neg tr(\alpha)$ (\blacktriangledown) for every $u \in C$ (consider: for $w \in C_1$, (\blacklozenge) implies that there is $u \in C_1 \cup C$ such that $w\mathcal{T}u$ and (\mathbb{C}, V) , $u \models_{MLF^*} [T](tr(\alpha) \land [S] \neg tr(\alpha))$. So, $u \in C$; otherwise it yields a contradiction). Then, using Proposition 7.1 and (\blacktriangle), we get $(C, V|_C) \models \alpha$. So, the first condition holds. (2) By definition, it remains to show that $\mathcal{N} \not\models \alpha$ for every S4F model \mathcal{N} such that $\mathcal{N} > (C, V|_{C})$. Let $\mathcal{N} = (N, R, U)$ be a preferred model over the valuated cluster $(C, V|_{C})$ satisfying: $N = C \cup C'$ for some (cluster) C' such that $C \cap C' = \emptyset$, $R = (N \times C) \cup (C' \times C')$, and $U|_C = V|_C$. By Definition 4, we also know that there exists $\psi \in Prop$ such that $(C, V|_C) \models \psi(\bullet)$, but $\mathcal{N} \not\models \psi$. Therefore, there exists $r \in C'$ viz. $\mathcal{N}, r \not\models \psi$ (i.e., $\mathcal{N}, r \models \neg \psi$). (3) As (\mathbb{C}, V) is an \mathbf{F}^* -model, Neg([S], [T]) is valid in it; due to Proposition 6, so is Neg'([S],[T]). Hence, $(\mathbb{C}, V) \models \langle T \rangle [T] \varphi \rightarrow \langle T \rangle \langle S \rangle (\neg \varphi \land Q)$ for a non-theorem $\varphi \in Prop$ of \mathcal{L}_{MLF^*} , and a conjunction of a finite set of literals Q such that $\{\neg \varphi, Q\}$ is consistent. (4) By (•) in the item (2) and also using Lemma 7.1, we get $(\mathbb{C}, V), u \models_{MLF^*} tr(\psi)$ for every $u \in C$. Since (\mathbb{C}, V) is an \mathbf{F}^* -model, we also have $(\mathbb{C}, V), u \models_{\mathbf{MLF}^*} [\mathbf{T}] tr(\psi)$; even $(\mathbb{C}, V), u \models_{\mathrm{MLF}^*} \langle \mathrm{T} \rangle [\mathrm{T}] tr(\psi)$ for every $u \in C$ (*). Moreover, we know that $tr(\psi)$ is not a tautology; otherwise $\mathcal{N}, r \models \psi$. Let $Q' = \left(\bigwedge_{p \in (\mathbb{P}_a \cap U(r))} p \right) \land \left(\bigwedge_{q \in (\mathbb{P}_a \setminus U(r))} \neg q \right)$. It is clear that $N, r \models Q'$, but we also know that $N, r \models \neg \psi$, so we have $N, r \models \neg \psi \land Q'$. We so conclude that $\{\neg \psi, Q'\}$ is consistent; then so is $\{\neg tr(\psi), Q'\}$. As (\mathbb{C}, V) is an \mathbf{F}^* model, an instance of the negatable axiom, namely $\langle T \rangle [T] tr(\psi) \rightarrow \langle T \rangle \langle S \rangle (\neg tr(\psi) \land Q')$, is valid in (\mathbb{C}, V) . So, (\clubsuit) implies that $(\mathbb{C}, V), u \models_{\mathrm{MLF}^*} \langle \mathrm{T} \rangle \langle \mathrm{S} \rangle (\neg tr(\psi) \land Q')$ for every $u \in C$. This means that there exists a point $x_{\psi} \in C_1$ such that $(\mathbb{C}, V), x_{\psi} \models_{MLF^*} \neg tr(\psi) \land Q'$, i.e., $(\mathbb{C}, V), x_{\psi} \models_{\mathrm{MLF}^*} \neg tr(\psi) \text{ and } (\mathbb{C}, V), x_{\psi} \models_{\mathrm{MLF}^*} Q'. \text{ As a result, } V(x_{\psi}) \cap \mathbb{P}_{tr(\alpha)} = U(r) \cap \mathbb{P}_{\alpha}.$ (5) Note that *r* and x_{ψ} agree on \mathbb{P}_{α} . By $(\mathbf{\nabla})$, we also have (\mathbb{C}, V) , $x \models_{\mathsf{MLF}^*} \neg tr(\alpha)$ for every $x \in C_1$; in particular, (\mathbb{C}, V) , $x_{\psi} \models_{MLF^*} \neg tr(\alpha)$. To summarise the observation above:

- 1. The pointed model $((\{x_{\psi}\}, C, V|_{(C \cup \{x_{\psi}\})}), x_{\psi})$ in **MLF**^{*}, and the pointed model (\mathcal{N}, r) in **S4F** have the similar structure: both contain the same maximal valuated cluster $(C, V|_{C})$ and one additional reflexive point that can have access to all points of *C*;
- 2. $\mathbb{P}_{\alpha} = \mathbb{P}_{tr(\alpha)}$ and $V(x_{\psi}) \cap \mathbb{P}_{tr(\alpha)} = U(r) \cap \mathbb{P}_{\alpha}$;
- 3. Both α and $tr(\alpha)$ are the exact copies of each other, except that one contains L wherever the other contains [T] (note that $tr(\alpha)$ contains neither [S] nor $\langle S \rangle$).

Then, it follows that $N, r \not\models \alpha$, which further implies that $N \not\models \alpha$. By definition, $(C, V|_C)$ is a minimal model for α . The other part of the proof is similar.

We are now ready to show how we capture the logical consequence of S4F in MLF*.

Theorem 2. For $\alpha, \beta \in \mathcal{L}_{S4F}$, $\alpha \models_{S4F} \beta$ iff $\models_{MLF^*} [T](tr(\alpha) \land [S] \neg tr(\alpha)) \rightarrow [T]tr(\beta)$.

Proof. We first take $\zeta = [T](tr(\alpha) \land [S] \neg tr(\alpha)) \rightarrow [T]tr(\beta)$.

(⇒): Assume that $\alpha \models_{\mathbf{S4F}} \beta$ in **S4F** (▲). Let (\mathbb{C}, V) = (C_1, C_2, V) be an \mathbf{F}^* -model. Then ($C_2, V \mid_{C_2}$) is a valuated cluster over C_2 . We need to show that (\mathbb{C}, V) $\models_{\mathbf{MLF}^*} \zeta$. "For every $w \in C_1$, (\mathbb{C}, V), $w \models_{\mathbf{MLF}^*} \zeta$ " trivially holds: by the frame constraints w.r.t. \mathcal{T} in \mathbf{MLF}^* , (\mathbb{C}, V), $w \not\models_{\mathbf{MLF}^*}$ [\mathbf{T}]($tr(\alpha) \land [\mathbf{S}] \neg tr(\alpha)$) for any $w \in C_1$ (otherwise, (\mathbb{C}, V) $\models_{\mathbf{MLF}^*} tr(\alpha)$, but also (\mathbb{C}, V) $\models_{\mathbf{MLF}^*} \neg tr(\alpha)$, yielding a contradiction). Let $x \in C_2$ be such that (\mathbb{C}, V), $x \models_{\mathbf{MLF}^*}$

 $[T](tr(\alpha) \wedge [S] \neg tr(\alpha))$. We know that $\mathcal{T}|_{C_2}$ is a universal relation, so "for all $x \in C_2$, $(\mathbb{C}, V), x \models_{MLF^*} \langle T \rangle [T](tr(\alpha) \land [S] \neg tr(\alpha))$ " trivially follows. Then, by Proposition 7.2, we conclude that $(C_2, V|_{C_2})$ is a minimal model for α . Then, as $\alpha \approx_{s_{4F}} \beta$ by the hypothesis (**A**), β is valid in $(C_2, V|_{C_2})$, i.e., $(C_2, V|_{C_2}) \models \beta$. Thus, Proposition 7.1 gives us that $(\mathbb{C}, V), z \models_{MLF^*} tr(\beta)$ for every $z \in C_2$. Since C_2 is a cluster which is a final cone, we also have $(\mathbb{C}, V), z \models_{\mathbf{MLF}^*} [\mathbf{T}] tr(\beta)$ for every $z \in C$; in particular, $(\mathbb{C}, V), x \models_{\mathbf{MLF}^*} [\mathbf{T}] tr(\beta)$. (\Leftarrow): Assume that ζ is valid in **MLF**^{*} (\triangledown). We need to prove that $\alpha \models_{\mathbf{S4F}} \beta$. Let (C, V) be a minimal model of α . Then, we take an S4F model $\mathcal{N} = ((C \cup C'), R, U)$ preferred over (C, V). viz. N > (C, V). Thus, $N \not\models \alpha$ (\blacklozenge). Now, let us construct $(\mathbb{C}, \overline{V}) = (C_1, C_2, \overline{V})$ as follows: take C_2 as the maximal α -cluster C (i.e., exactly the same cluster C as in (C, V)), and $C_1 = \{r : N, r \not\models \alpha\}$. Simply, restrict R and U to $C_1 \cup C_2$, respectively resulting in \mathcal{T} and \overline{V} . Finally, arrange S in a way that would satisfy all the frame constraints of MLF. Thus, $(\mathbb{C}, \overline{V})$ is clearly an \mathbf{F}^* -model. By the minimal model definition, $(C, V) \models \alpha$. Then, Proposition 7.1 and (\blacklozenge) imply that $(\mathbb{C}, \overline{V})$, $x \models_{MLF^*} tr(\alpha)$ for every $x \in C_2$, and for every $y \in C_2$ C_1 , $(\mathbb{C}, \overline{V})$, $y \models_{\mathbf{MLF}^*} \neg tr(\alpha)$. As $(\mathbb{C}, \overline{V})$ is an \mathbf{F}^* -model, we have $(\mathbb{C}, \overline{V})$, $x \models_{\mathbf{MLF}^*} [S] \neg tr(\alpha)$ for every $x \in C_2$. As a result, $(\mathbb{C}, \overline{V})$, $x \models_{MLF^*} tr(\alpha) \land [S] \neg tr(\alpha)$ for every $x \in C_2$. Since C_2 is a cluster which is a final cone, we further have $(\mathbb{C}, \overline{V}), x \models_{MLF^*} [T](tr(\alpha) \land [S] \neg tr(\alpha))$ for each $x \in C_2$. From $(\mathbf{\nabla})$, it also follows that $(\mathbb{C}, \overline{V}), x \models_{\mathsf{MLF}^*} [\mathsf{T}]tr(\beta)$ for every $x \in C_2$. Clearly, $tr(\beta)$ is also valid in C_2 . Finally, Proposition 7.1 implies that $(C, V) \models \beta$ in S4F.

Corollary 4. For $\alpha \in \mathcal{L}_{S4F}$, α has a minimal model if and only if $[T](tr(\alpha) \land [S] \neg tr(\alpha))$ is satisfiable in **MLF**^{*}. (hint: take $\beta = \bot$ in Theorem 2.)

4 Relation to other nonmonotonic formalisms

In this section, we briefly discuss a general strategy, unifying some major nonmonotonic reasonings among which are autoepistemic logic (**AEL**) [31], reflexive autoepistemic logic (**RAEL**) [23], equilibrium logic (and so **ASP**), and nonmonotonic **S4F**. The emphasis is on the 2-floor semantics; the second floor charaterises the minimal model of a formula, and the first floor checks the minimality criterion. This approach can be generalised to other formalisms such as default logic [32] and **MBNF** [33] as there exists a good amount of research in the literature, studying such relations [34,35,36,15]. In particular, nonmonotonic **S4F** and default logic has a strong connection as it is explained and analysed in [14,15]. So, the **MLF**^{*} encoding of nonmonotonic **S4F** leads the potential encoding of default logic.

AEL and *RAEL* [21,23] are the nonmonotonic variants [22] of respectively the modal logics **KD45** and **SW5** [9,29]. We have recently proposed two new monotonic modal logics called **MAE**^{*} and **MRAE**^{*}, respectively capturing **AEL** and **RAEL**. They are obtained from **MLF**^{*} by replacing only the axioms characterising **S4F** (i.e., S, 4, F) by ones, characterising respectively **KD45** and **SW5** (i.e., groups of axioms D, 4, 5 and T, 4, W5). The models of **MAE**^{*}, **MRAE**^{*}, and **MLF**^{*} are all composed of a union of 2-floor structures: in each, the second floor is a maximal cluster which is a final cone of the 2-floor part of the model; where they differ is the structure of the first floor. While a first floor in **MLF**^{*} is a maximal cluster, that of **MAE**^{*} contains irreflexive and isolated worlds w.r.t. the T-relation (in a sense that, any two different worlds of the

first floor are not related to each other by the accessibility relation \mathcal{T}). Moreover, the **MRAE**^{*} models are nothing, but the reflexive closures of the **MAE**^{*} models w.r.t. the relation \mathcal{T} . Interestingly, the same mechanism applied to **S4F** performs successfully for **KD45** and **SW5** as well when everything else remains the same: the implication $[T](tr(\alpha) \wedge [S] \neg tr(\alpha)) \rightarrow [T]tr(\beta)$, capturing nonmonotonic consequence of **S4F**, and the formula $\langle T \rangle [T](tr(\alpha) \wedge [S] \neg tr(\alpha))$ characterising minimal model semantics in **S4F** perfectly work for the nonmonotonic variants of **KD45** and **SW5** as well.

Our research has also a large overlap with [8], embedding equilibrium logic (and so, **ASP**) into a monotonic bimodal logic called **MEM**. The models of **MEM** are roughly described in the introduction. The main result of this paper is also given via a similar implication: the validity of $tr(\alpha) \wedge [S] \neg tr(\alpha)) \rightarrow tr(\beta)$ in **MEM** captures the nonmonotonic consequence, $\alpha \models \beta$, of equilibrium logic. However, it is easy to check that the formula $[T](tr(\alpha) \wedge [S] \neg tr(\alpha)) \rightarrow [T]tr(\beta)$ of this paper also gives the same result. This analogy between all these works enables us to classify **MEM** under the same approach. Still, we need to provide a stronger result that would help reinforce the relations between **MEM** and **MLF**^{*}. For instance, [14] proves that the well-known Gödel's translation into the modal logic **S4** is still valid for translating the logic of here-and-there (a 3-valued monotonic logic on which equilibrium logic is built) [37,25] into the modal logic **S4F**. A natural question that may arise is whether a similar translation can be used to encode **MEM** into **MLF**^{*}, which is the subject of a future work.

5 Conclusion and further research

In this paper, we design a novel monotonic modal logic, namely MLF*, that captures nonmonotonic S4F. We demonstrate this embedding by translating the language of S4F into that of MLF*. This way, we see that MLF* is able to characterise the existence of a minimal model as well as logical consequence in nonmonotonic S4F.

Our work provides an alternative to Levesque's monotonic bimodal logic of only knowing [38,4,5,6], by which he captures four kinds of nonmonotonic logic, including autoepistemic logic: his language has two modal operators, namely B and N. B is similar to [T]. N is characterised by the complement of the relation, interpreting B. Levesque's frame constraints on the accessibility relation differ from ours, and he identifies the nonmonotonic consequence ' $\alpha \models \beta$ ' with the implication

$$(\mathsf{B} tr(\alpha) \land \mathsf{N} \neg tr(\alpha)) \to \mathsf{B} tr(\beta).$$

Levesque attacked the same problem with an emphasis on the only knowing notion. However, his reasoning does not attempt to unify, and does not provide a general mechanism either. In particular, he applied his approach to neither **SW5** nor **S4F**.

As a future work, we will implement this general methodology to capture minimal model reasoning, underlying many other nonmonotonic formalisms. This paper, together with other works on **KD45**, **SW5**, and **ASP** [8] stand a very strong initiative by their possible straightforward implementations to different kinds of nonmonotonic formalisms of similar floor-based semantics. Such research will then enable us to compare various forms of nonmonotonic formalisms in a single monotonic modal setting.

References

- Chen, J.: The logic of only knowing as a unified framework for non-monotonic reasoning. Fundamenta Informaticae 21(3) (1994) 205–220
- 2. Chen, J.: Relating only knowing to minimal belief and negation as failure. Journal of Experimental and Theoretical Artificial Intelligence 6(4) (1994) 409–429
- 3. Chen, J.: The generalized logic of only knowing (GOL) that covers the notion of epistemic specifications. Journal of Logic and Computation 7(2) (1997) 159–174
- Lakemeyer, G., Levesque, H.J.: Only-knowing: taking it beyond autoepistemic reasoning. In Veloso, M.M., Kambhampati, S., eds.: Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI Press (2005) 633–638
- Lakemeyer, G., Levesque, H.J.: Towards an axiom system for default logic. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI Press (2006) 263–268
- Lakemeyer, G., Levesque, H.J.: Only-knowing meets nonmonotonic modal logic. In Brewka, G., Eiter, T., McIlraith, S.A., eds.: Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning, AAAI Press (2012) 350–357
- Fariñas del Cerro, L., Herzig, A., Su, E.I.: Combining equilibrium logic and dynamic logic. In Cabalar, P., Son, T.C., eds.: Proceedings of the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning. Volume 8148 of Lecture Notes in Computer Science., Springer (2013) 304–316
- Fariñas del Cerro, L., Herzig, A., Su, E.I.: Capturing equilibrium models in modal logic. Journal of Applied Logic 12(2) (2014) 192–207
- 9. Hughes, G.E., Cresswell, M.J.: A new introduction to modal logic. Psychology Press (1996)
- Segerberg, K.: An essay in classical modal logic. Filosofiska studier. Filosofiska föreningen och Filosofiska institutionen vid Uppsala universitet (1971)
- Truszczyński, M.: Embedding default logic into modal nonmonotonic logics. In: Proceedings of the First International Workshop on Logic Programming and Nonmonotonic Reasoning. (1991) 151–165
- Schwarz, G.F., Truszczyński, M.: Modal logic S4F and the minimal knowledge paradigm. In Moses, Y., ed.: Proceedings of the Fourth Conference on Theoretical Aspects of Reasoning about Knowledge, Morgan Kaufmann Publishers Inc., Morgan Kaufmann (1992) 184–198
- Schwarz, G., Truszczyński, M.: Minimal knowledge problem: a new approach. Artificial Intelligence 67(1) (1994) 113–141
- Cabalar, P., Lorenzo, D.: New insights on the intuitionistic interpretation of default logic. In de Mántaras, R.L., Saitta, L., eds.: Proceedings of the Sixteenth European Conference on Artificial Intelligence, IOS Press (2004) 798–802
- Truszczyński, M.: The modal logic S4F, the default logic, and the logic here-and-there. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence. (2007) 508–514
- Pearce, D., Uridia, L.: A logic related to minimal knowledge. In Esteva, M., Fernndez, A., Giret, A., eds.: Proceedings of the 2nd Workshop on Agreement Technologies (WAT-2009), Sevilla, Spain, November 9, 2009. Volume 635. (2009)
- Pearce, D., Uridia, L.: An approach to minimal belief via objective belief. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Volume 22., AAAI Press (2011) 1045–1050
- Su, E.I.: A monotonic view on reflexive autoepistemic reasoning. In Balduccini, M., Janhunen, T., eds.: Proceedings of the 14th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2017, Espoo, Finland, July 3-6, 2017. Volume 10377 of Lecture Notes in Computer Science., Springer, Springer (2017) 85–100

- Konolige, K.: Autoepistemic logic. In Gabbay, D.M., Hogger, C.J., Robinson, J.A., eds.: Handbook of Logic in Artificial Intelligence and Logic Programming. Volume 3., New York, NY, USA, Oxford University Press, Inc. (1994) 217–295
- Marek, V. Wiktor, T.M.: Reflexive autoepistemic logic and logic programming. In: Proceedings of the Second International Workshop on Logic Programming and Non-Monotonic Reasoning, MIT Press (1993) 115–131
- Schwarz, G.F.: Autoepistemic logic of knowledge. In: Proceedings of the First International Workshop on Logic Programming and Nonmonotonic Reasoning, MIT Press (1991) 260– 274
- Schwarz, G.F.: Minimal model semantics for nonmonotonic modal logics. In: Proceedings of the Seventh Annual Symposium on Logic in Computer Science, IEEE Computer Society Press (1992) 34–43
- Schwarz, G.F.: Reflexive autoepistemic logic. Fundamenta Informaticae 17(1-2) (1992) 157–173
- Pearce, D.: A new logical characterisation of stable models and answer sets. In Dix, J., Pereira, L.M., Przymusinski, T.C., eds.: Non-Monotonic Extensions of Logic Programming, NMELP '96, Bad Honnef, Germany, September 5-6, 1996, Selected Papers. Volume 1216 of Lecture Notes in Computer Science., Springer (1996) 57–70
- 25. Pearce, D.: Equilibrium logic. Annals of Mathematics and Artificial Intelligence **47**(1-2) (2006) 3–41
- Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski, R.A., Bowen, K.A., eds.: Proceedings of the Fifth International Conference on Logic Programming, MIT Press (1988) 1070–1080
- Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4) (1991) 365–386
- Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press, New York, NY, USA (2003)
- Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Volume 53. Cambridge University Press, Cambridge Tracts in Theoretical Computer Science (2002)
- Marek, V.W., Truszczyński, M.: Nonmonotonic logic: context-dependent reasoning. Springer (1993)
- 31. Moore, R.C.: Autoepistemic logic revisited. Artificial Intelligence 59(1-2) (1993) 27-30
- 32. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2) (1980) 81–132
- Lifschitz, V.: Minimal belief and negation as failure. Artificial Intelligence 70(1-2) (1994) 53–72
- Truszczyński, M.: Modal interpretations of default logic. In Mylopoulos, J., Reiter, R., eds.: Proceedings of the 12th International Joint Conference on Artificial Intelligence, Morgan Kaufmann (1991) 393–398
- Lifschitz, V., Schwarz, G.: Extended logic programs as autoepistemic theories. In Pereira, L.M., Nerode, A., eds.: Proceedings of the Second International Workshop on Logic Programming and Non-monotonic Reasoning, MIT Press (1993) 101–114
- Schwarz, G.: On embedding default logic into Moore's autoepistemic logic. Artificial Intelligence 80(1-2) (1996) 349–359
- Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsber. preuss. Akad. Wiss. 42-71 (1930) 158–169
- Levesque, H.J.: All I know: a study in autoepistemic logic. Artificial intelligence 42(2-3) (1990) 263–309