
On topologies for (hyper)properties

Michele Pasqua and Isabella Mastroeni

University of Verona - Dipartimento di Informatica
Strada le Grazie 15, 37134, Verona, Italy

(michele.pasqua|isabella.mastroeni)@univr.it

Abstract. Usually, systems properties are defined in terms of the infi-
nite executions which satisfy it. In this work we explore what happens if
we allow finite executions in properties definitions. In particular, we give
a topological interpretation of the safety/liveness classification in the do-
mains of: only finite, only infinite and mixed executions. Then we extend
our reasoning to hyperproperties, namely sets of sets of executions (or
sets of properties). Also in this case we give a topological interpretation
of the hypersafety/hyperliveness classification in the three domains.

1 Introduction

In the field of security, with verification is intended the general process of check-
ing whether a system complies with a policy, i.e., a formal description of what
systems are allowed and are not allowed to do (with respect to the policy). Ver-
ification can only figure out whether a system performs not allowed behaviors.
When the security mechanism has the power also to affect the system execu-
tion in order to guarantee a policy, then we say that the mechanism enforce it.
Hence, enforcement guarantees that the system under control behaves like a safe
system.

In order to perform verification/enforcing, it is necessary to have a model of
the system and a way for formalizing the policy we need to check. Usually, sys-
tems are modeled by means of the set of their execution traces, namely histories
of states, for a given formalization of systems states, reached during computa-
tion. This system model induces a corresponding policy formalization in terms
of set of execution traces satisfying the policy, i.e., in terms of trace properties.
A trace property is a system property that can be checked on each trace, for in-
stance a system is deadlock free if each execution is deadlock free. Unfortunately
not all policies fall in this category (e.g., information flows), hence hyperprop-
erties [3] were introduced. An hyperproperty is a set of sets of execution traces
and it allows us to specify relations between executions, modeling in this way
properties of sets of executions, as it happens in information flow when we can
detect a flow only by comparing different executions.

Another aspect to take in consideration is how to represent systems histories.
Despite the fact that, in general, systems at some point in time may stop their
execution, in the literature the majority of works represent histories as infinite
sequences of states. This is justified by the fact that systems are supposed to



potentially run forever, and by the fact that a terminating computation can be
represented as an infinite one repeating the last state infinitely many times.

The verification/enforcing of trace properties over infinite sequences is well
founded and it has a strong background, theoretical and practical. In particular
it relies on the well known classification of trace properties: safety and liveness.
Informally, the first model the fact that “nothing bad will happen” and the
second model the fact that “something good will eventually happen”. Despite
its simplicity, this classification allows us to describe, by using topological ar-
guments, a generic trace property as the disjunction of a safety property and a
liveness property [1]. This is very appealing since, in order to check a generic
trace property, it is sufficient to check its safety and its liveness parts.

When introducing hyperproperties in [3], the authors also give a topological
characterization of hypersafety and hyperliveness, namely the sets of sets coun-
terparts of safety and liveness, which allow to decompose a generic hyperproperty
in its hypersafety and hyperliveness parts.

In this work, we explore what happens if we consider finite executions in
properties definitions, namely if we take in consideration also the cases where
histories are only finite sequences, only infinite sequences and mixed sequences
(finite and infinite). We noted, for example, that the notion of “safety” is slightly
different in these three cases. For doing so we propose a topological interpretation
to the safety/liveness classification, parametric on the type of admitted histories.
Furthermore, we extend this reasoning to hyperproperties, giving a topological
interpretation also to the hypersafety/hyperliveness classification.

2 Background and notations

Given an alphabet (a set of symbols) Σ, we denote with Σn the set of sequences

of symbols in Σ of length n ∈ N and with ε the empty sequence. Then Σ∗+
def
=⋃

n>0Σ
n is the set of non-empty finite sequences, Σω+ is the set of non-empty

infinite sequences and Σ∞+ def
= Σ∗+ ∪Σω+ is the set of all non-empty sequences.

We write Σ∗, Σω and Σ∞ to indicate the finite Σ?+ ∪ {ε}, infinite Σω+ ∪ {ε}
and all Σ∞+ ∪ {ε} sequences, respectively.

The concatenation of sequences σ ∈ Σ∗ and σ′ ∈ Σ∞ is the sequence σσ′ ∈
Σ∞. Sequence σ ∈ Σ∗ is a prefix of σ′′ ∈ Σ∞, in symbols σ � σ′′, if exists
σ′ ∈ Σ∞ such that σσ′ = σ′′. When we deal with sets of sequences, we can
extend the definition of prefix to sets as follows. A set of sequences X ⊆ Σ∗ is
a prefixset of Y ⊆ Σ∞, in symbols X E Y , if for all σ ∈ X exists σ′ ∈ Y such
that σ � σ′ [3]. A set of infinite sequences {σ0, σ1, . . . } converges to the limit
sequence σ if the length of the maximal prefix common to each σk and to σ goes
to infinity as k goes to infinity [2]. For example, {anbω | n ≥ 0} converges to aω,
in fact the sequence of longest prefixes common to aω and to σk = akbω (i.e.,
ak) gets increasingly longer with k.

Given a set X, we denote with |X| its cardinality, i.e., its size, and with
℘(X) its powerset, i.e., the set of all its subsets. Given a function f : X −→ X

and Y ⊆ X, we denote with f [Y ]
def
= {f(x) | x ∈ Y } the direct image of f on Y



and with f↑
def
= λY .

⋃
{f(x) | x ∈ Y } the image-lift to sets of f . In the following,

we use uppercase letters X,Y, Z, . . . to denote sets of sequences and we use
uppercase calligraphic letters X ,Y,Z, . . . to denote sets of sets of sequences.

Topologies

A topology over a set X consists in a family of subsets of X which defines its
open sets. OX ⊆ ℘(X) is a family of open sets iff it is closed under union (i.e.,
∀Y ⊆ OX .

⋃
Y ∈ OX), it is closed under binary intersection (i.e., Y1, Y2 ∈

OX ⇒ Y1 ∩ Y2 ∈ OX) and it includes X (i.e.,
⋃

OX = X). The dual of an open
set is a closed set, so a family of open sets defines automatically a family of
closed sets, namely CX = {X \O | O ∈ OX}. Given Y ⊆ X:

– the interior of Y , written ι(Y ), is the largest open set contained in Y , i.e.,

ι(Y ) =
⋃
{O ∈ OX | O ⊆ Y }

– the closure of Y , written ρ(Y ), is the smallest closed set containing Y , i.e.,

ρ(Y ) =
⋂
{C ∈ CX | Y ⊆ C}

A set D ⊆ X is said dense iff ρ(D) = X, so in a topology there is also a family
of dense sets, i.e., DX = {D ⊆ X | ρ(D) = X}. Every element of ℘(X) can be
specified as the intersection of a closed set and a dense set. We have not found
any explicit proof in the literature, so we give a simple one here. Note that the
proof also provides a way for retrieving the closed and the dense sets whose
intersection is the given element of ℘(X).

Theorem 1 (Decomposition). ∀Y ∈ ℘(X) (∃C ∈ CX , D ∈ DX . Y = C ∩D).

Proof. Y = ρ(Y ) ∩ Y = (ρ(Y ) ∩ Y ) ∪ ∅ = (ρ(Y ) ∩ Y ) ∪ (ρ(Y ) ∩ (X \ ρ(Y ))) =
ρ(Y ) ∩ (Y ∪ (X \ ρ(Y ))). But ρ(Y ) ∈ CX and Y ∪ (X \ ρ(Y )) ∈ DX . In fact
ρ(Y ∪ (X \ ρ(Y ))) ⊇ ρ(Y ) ∪ ρ(X \ ρ(Y )) ⊇ ρ(Y ) ∪ (X \ ρ(Y )) = X. ut

A function κ : ℘(X) −→ ℘(X) is a Kuratowski Closure Operator (KCO) iff all
the following hold:

1. κ(∅) = ∅
2. ∀Y ⊆ X .Y ⊆ κ(Y )

3. ∀Y1, Y2 ⊆ X .κ(Y1∪Y2) = κ(Y1)∪κ(Y2) [this implies Y1 ⊆ Y2 ⇒ κ(Y1) ⊆ κ(Y2)]

4. ∀Y ⊆ X .κ(κ(Y )) = κ(Y )

A KCO over ℘(X) induces a topology on X where the KCO is the closure of X
[6]. So, in order to define a topology on X, it is sufficient to specify its closed
sets, namely a closure (or a KCO) over ℘(X).



2.1 Properties vs hyperpropertis

If systems are modeled with execution traces, the evolution of a system is de-
scribed in terms of some objects ς ∈ Σ, called states. So a system behavior is
represented by a non-empty set of sequences over Σ (i.e., its execution traces).
A trace property is a set of sequences and a traceset property, also called hyper-
property [3], is a set of sets of sequences or, equivalently, a set of trace properties.
A set of sequences X satisfies a property P iff X ⊆ P . A set of sequences X
satisfies an hyperproperty HP iff X ∈ HP. The trace property ∅, or false, is
the one which cannot be satisfied, by any system, i.e., @X .X ( false (∅ is not
a system). Dually, the trace property which contains all the possible sequences,
called true, is the one which is satisfied by every system, i.e., ∀X .X ⊆ true.
Analogously, we can define falseh and trueh for hyperproperties as {false} and
℘(true), respectively [3].

In the security context, a policy is a boolean predicate over systems, i.e., it
checks if systems exhibit allowed or a not allowed behaviors. Some policies can
be expressed as trace properties, like access control, and others cannot, like non-
interference. In this latter case it is necessary to specify it as an hyperproperty.
Intuitively, a property is defined exclusively in terms of individual executions
and, in general, do not specify a relation between different executions of the
system. Instead, an hyperproperty specifies the set of systems allowed by the
policy, and so it has the power to express relations between executions. In [3] it
is stated that in order to formalize policies, it is sufficient to consider hyperprop-
erties. This means that hyperproperties are able to define every possible security
policy (for systems modeled as set of states sequences).

It is worth noting that in order to disprove whether a system fulfills a trace
property it is necessary to show one trace, which is the counterexample. Analo-
gously, in order to disprove that a system fulfills an hyperproperty is necessary
to show a set of traces (potentially all system traces).

3 (Hyper)safety and (hyper)liveness dichotomy

In the literature, among all, there are two particular kinds of trace properties:
the safety and the liveness. Informally, the first model the fact that “nothing
bad will happen” and the second model the fact that “something good will
eventually happen”. In other words, a system violates a safety property if it
eventually performs the “bad thing” and a system violates a liveness property
if it never performs the “good thing”. It is clear that, if a system do not satisfy
a safety property, the violation must occur during its execution and hence the
violation must arise in a finite amount of time. Due to this fact, safety properties
are identified as the ones which can be monitored, i.e., checked at runtime. For
liveness properties things are more complicated because the checker must observe
the system execution entirely, hence it needs a, possibly infinite, amount of time.

Finite executions can be seen as particular cases of infinite ones: we can
repeat infinitely many times the final state of a finite execution in order to



obtain an infinite execution equivalent to the finite one. This has led researchers
to model system executions and trace properties as set of infinite sequences of
(systems) states. This choice has also two other important motivations: reasoning
about properties can be done with well studied formalisms modeling semantics by
considering infinite sequences (like linear temporal logics and Büchi automata),
and it allows us to give a topological characterization of trace properties. It
turns out that safety properties corresponds to the closed sets in the Cantor
topology over infinite sequences and liveness properties corresponds to the dense
sets. Hence, by using the decomposition theorem (Thm. 1), we can specify an
arbitrary property as the intersection of a safety and a liveness one. This means
that we can reduce the check of a generic trace property to the check of its safety
and liveness parts.

While properties over finite traces can be easily expressed as infinite se-
quences, in practice we deal with systems which exhibit finite behaviors. So it
is natural to wonder what happens if we allow finite sequences in properties
definition. Something in this direction was already done [8], but only for safety
properties. In this section, we give a properties characterization on the following
execution domains: only finite ℘(Σ∗), only infinite ℘(Σω) and mixed ℘(Σ∞).

3.1 Safety

Let us start with safety first and denote by Safety∗, Safetyω and Safety∞ the
safety properties over finite, infinite and mixed executions, respectively. In [1],
Alpern and Schneider define safety properties S on ℘(Σω) in a refutational way:
if σ /∈ S then there is a finite sequence σ′ � σ such that σ′σ′′ /∈ S for every
σ′′ ∈ Σω. This means that, if an infinite execution violates the property, then
the bad thing must have been occurred in one of its finite prefixes and the
violation cannot ever be recovered in the future. An alternative, and equivalent,
definition due to Roşu [8] is the following: for a safety property S ∈ ℘(Σω),
σ ∈ S iff pref(σ) ⊆ pref↑(S), where pref : Σ∞ −→ ℘(Σ∗) is the function
λσ . {σ′ | ∃σ′′ ∈ Σ∞ . σ′σ′′ = σ} returning the set of prefixes of a given sequence.
Furthermore, Roşu in [8] discusses the known definitions of safety properties over
finite, infinite and mixed executions, and their equivalence with the following:

– Safety∗
def
= {S ∈ ℘(Σ∗) | S = pref↑(S)}

– Safetyω
def
= {S ∈ ℘(Σω) | σ ∈ S ⇔ pref(σ) ⊆ pref↑(S)}

– Safety∞
def
= {S ∈ ℘(Σ∞) | σ ∈ S ⇔ pref(σ) ⊆ S}

Although safety properties essentially capture the fact that, in order to disprove
the property, it is sufficient to show a finite counterexample, the definitions of
safety on finite, infinite and mixed sequences are different. For finite sequences it
is sufficient the prefix-closure, namely a safety on Σ∗ must contain all the prefixes
of its sequences. The same definition cannot be applied to Σω, indeed none of
its prefixes are in the property. In this case we have to reason “at the limit”
and say that a safety on Σω contains all its limit sequences, namely the infinite
sequences which approximate the prefixes. Finally, as expected, the safety on
Σ∞ combine both aspects of finite and infinite sequences.



3.2 Liveness

To the best of our knowledge, there are no works reasoning about liveness prop-
erties over finite and mixed executions. One can think that it is not meaningful
to define liveness on finite executions, but we believe it is not the case. Take as
example termination, i.e., the set of systems executions which do not run forever.
Clearly this properties is liveness, where the good thing is exactly termination.
We can model this property on finite sequences only, as the set Σ∗. So, let us
denote with Liveness∗, Livenessω and Liveness∞ the liveness properties over fi-
nite, infinite and mixed executions, respectively. The original definition of Alpern
and Schneider [1] involves infinite sequences only, and it states that a property
L ∈ ℘(Σω) is a liveness property iff for every finite sequence σ ∈ Σ∗ there exists
an infinite sequence σ′ ∈ Σω such that σσ′ is in L. This means that every finite
execution can be extended to an infinite one satisfying the property. We believe
that this intuition can be easily adapted to finite and mixed sequences as well.

Definition 1. Given y ∈ {∗, ω,∞}:

Livenessy
def
= {L ∈ ℘(Σy) | ∀σ ∈ Σ∗ ∃σ′ ∈ L . σ � σ′}

Liveness properties capture the fact that in order to disprove the property is nec-
essary to show an infinite counterexample. It is worth noting that our definition
of liveness on infinite executions is indeed equivalent to the one of Alpern and
Schneider. Moreover, ∀σ ∈ Σ∗ ∃σ′ ∈ L . σ � σ′ is equivalent to Σ∗ ⊆ pref↑(L).

Finally, we can note that, as usual, the trace property false is a safety
property for ℘(Σ∗), ℘(Σω) and ℘(Σ∞) but it is a liveness one for none of
them. Analogously, Σ∗ ∈ Safety∗ ∩ Liveness∗, Σω ∈ Safetyω ∩ Livenessω and
Σ∞ ∈ Safety∞ ∩ Liveness∞ (here Σ∗, Σω and Σ∞ are the true trace property).

3.3 Hypersafety

In their seminal paper [3], Clarkson and Schneider introduce hyperproperties
and they extend the safety/liveness dichotomy on sets of sets of sequences. Their
work, as well as all other works about hyperproperties, deals with infinite exe-
cutions only. In this section, we mimic what we have done for properties in the
hyper case.

Let us denote by HyperSafety∗, HyperSafetyω and HyperSafety∞ the safety
hyperproperties over finite, infinite and mixed executions, respectively. In [3]
the authors define hypersafety in a refutational way: if X /∈ HS then there is
a finite set of finite sequences O E X such that every possible X ′ ∈ ℘(Σω)
which extends O (i.e., O E X ′) is not in HS. This is basically the concept of
safety lifted to sets, where the “bad thing” is exactly the set O. Here we define
hypersafety for finite, infinite and mixed executions, lifting to sets the definitions
of safety, where spref : ℘(Σ∞) −→ ℘(℘(Σ∗)) is the function λX . {Y | Y E X} =
{Y | ∀σ ∈ Y ∃σ′ ∈ X .σ � σ′} returning the set of prefixsets of X. Note that
spref do not constrain prefixsets to have finite size, indeed in our definitions we
allow the “bad thing” set to be infinite.



– HyperSafety∗
def
= {HS ∈ ℘(℘(Σ∗)) | HS = spref↑(HS)}

– HyperSafetyω
def
= {HS ∈ ℘(℘(Σω)) | X ∈ HS ⇔ spref(X) ⊆ spref↑(HS)}

– HyperSafety∞
def
= {HS ∈ ℘(℘(Σ∞)) | X ∈ HS ⇔ spref(X) ⊆ HS}

Hypersafety essentially capture the fact that, in order to disprove the property,
it is sufficient to show a counterexample-set of finite traces. Hence, also in the
hyper level, we have the link between safety properties and the concept of mon-
itorability. In fact, as a safety property can be disproved at runtime observing
one execution until the “bad thing” happens, an hypersafety can be disproved
at runtime observing a set of executions until the “bad thing” happens. Note
that, this set can have an unbounded (or infinite) number of elements hence, in
general, the monitorability of an hypersafety is unfeasible. But there are some
exceptions. For k-hypersafety, i.e., safety hyperproperties for which the bad thing
never involves more than k traces (see [3] for details), the set of traces which
need to be monitored can be restricted to k (i.e., a finite number of) elements.

In order to characterize hypersafety for finite sequences, it is sufficient the
prefixset-closure, namely an hypersafety on Σ∗ must contain all the prefixsets
of its sequences. The same definition cannot be applied to Σω, indeed none of
its prefixsets are in the property. In this case, again, we have to reason “at the
limit” and say that an hypersafety on Σω contains all its sets of limit sequences,
namely the sets of infinite sequences which approximate the prefixsets. Finally,
as expected, the hypersafety on Σ∞ combine both aspects of finite and infinite
sequences. Furthermore, it is worth noting that our definition of hypersafety on
infinite executions is indeed equivalent to the one of Clarkson and Schneider, if
we constrain spref to collect only finite prefixsets.

3.4 Hyperliveness

Let us now denote by HyperLiveness∗, HyperLivenessω and HyperLiveness∞ the
liveness hyperproperties over finite, infinite and mixed executions, respectively.
In [3], the original definition states that an hyperproperty HL ∈ ℘(℘(Σω)) is
hyperliveness iff for every finite set of finite sequences O ∈ ℘(Σ∗) it exists a
set of infinite sequences X ∈ ℘(Σω), which extends O (i.e., O E X), such
that X is in HL. Also in this case, the definition is basically the concept of
liveness lifted to sets. Here we give an alternative definition, which turns out to
be parameterizable on finite, infinite and mixed executions, has it happens for
properties case. As we have done for hypersafety, in our definitions we relax the
constraint that the observable O needs to be a finite set.

Definition 2. Given y ∈ {∗, ω,∞}:

HyperLivenessy = {HL ∈ ℘(℘(Σy)) | ∀O ∈ ℘(Σ∗)∃X ∈ HL . O E X}

Hyperliveness captures the fact that, in order to disprove the property, it is
necessary to show a set of infinite counterexamples. It is worth noting that our
definition of hyperliveness on infinite executions is indeed equivalent to the one



of Clarkson and Schneider if we constrain every O to be finite. Furthermore, the
condition ∀O ∈ ℘(Σ∗)∃X ∈ HL . O E X is equivalent to: ℘(Σ∗) ⊆ spref↑(HL).

Finally, we can note that, as expected, the hyperproperty falseh is hy-
persafety for ℘(℘(Σ∗)), ℘(℘(Σω)) and ℘(℘(Σ∞)) but it is hyperliveness for
none of them. Analogously, ℘(Σ∗) ∈ HyperSafety∗ ∩ HyperLiveness∗, ℘(Σω) ∈
HyperSafetyω ∩ HyperLivenessω and ℘(Σ∞) ∈ HyperSafety∞ ∩ HyperLiveness∞

(here ℘(Σ∗), ℘(Σω) and ℘(Σ∞) are the trueh hyperproperty).

4 Topologies for properties and hyperproperties

When dealing with infinite computations there is a topological interpretation
of safety and liveness, also for the hyper case (see [3]). In this section, we give
topological characterizations of safety/liveness properties and hyperproperties
which take in consideration finite and mixed computations other than infinite
ones. For doing so, we define a KCO for each domain (finite, infinite, mixed
for properties and finite, infinite, mixed for hyperproperties) and then we prove
that safety and liveness are closed and dense sets, respectively, in the topology
induced by the KCO.

4.1 Properties

The function PrefCl : ℘(Σ∗) −→ ℘(Σ∗), defined as PrefCl
def
= λX . pref↑(X), is a

closure on ℘(Σ∗) (indeed it is a KCO). So we have a topology on Σ∗, where:

– CΣ∗ = PrefCl↑(℘(Σ∗)) = {X ⊆ Σ∗ | X = PrefCl(X)} are the closed sets
– DΣ∗ = {X ⊆ Σ∗ | PrefCl(X) = Σ∗} are the dense sets

Proposition 1. Safety∗ = CΣ∗ and Liveness∗ = DΣ∗ .

Proof. Since elements X ∈ Safety∗ are prefix-closed, i.e., X = pref↑(X), Safety∗

is equal to CΣ∗ by definition. As we already noted, ∀σ ∈ Σ∗ ∃σ′ ∈ X .σ � σ′

is equivalent to Σ∗ ⊆ pref↑(X). But pref↑(X) ⊆ Σ∗, for every X ∈ ℘(Σ∗).
Hence PrefCl(X) = Σ∗, i.e., X ∈ DΣ∗ , iff X ∈ Liveness∗. ut

Hence, exploiting the decomposition theorem (Thm. 1) we have that:

∀P ∈ ℘(Σ∗) . (∃S ∈ Safety∗, L ∈ Liveness∗ . P = S ∩ L)

Let lim
ω : ℘(Σω) −→ ℘(Σω) the function λX . {σ ∈ Σω | ∀σ′ ∈ Σ∗ . (σ′ � σ ⇒

σ′ ∈ pref↑(X))} returning the set of limit sequences of X. The function LimCl :

℘(Σω) −→ ℘(Σω), defined as LimCl
def
= λX . limω (X), is a closure on ℘(Σω) (indeed

it is a KCO). So we have a topology on Σω, where:

– CΣω = LimCl↑(℘(Σω)) = {X ⊆ Σω | X = LimCl(X)} are the closed sets
– DΣω = {X ⊆ Σω | LimCl(X) = Σω} are the dense sets



Proposition 2. Safetyω = CΣω and Livenessω = DΣω .

Proof. Our definitions of safety and liveness (on Σω) are equivalent to the one
of [1] and LimCl is the limit operator of [5], so our characterization is equivalent
to the usual topological definition of safety and liveness properties over Σω. ut

Hence, exploiting the decomposition theorem (Thm. 1) we have that:

∀P ∈ ℘(Σω) . (∃S ∈ Safetyω, L ∈ Livenessω . P = S ∩ L)

Let lim∞ : ℘(Σ∞) −→ ℘(Σ∞), defined as λX .X∪{σ ∈ Σω | ∀σ′ ∈ Σ∗ . (σ′ � σ ⇒
σ′ ∈ X)}1, the version on mixed sequences of lim

ω
. The function LimPrefCl :

℘(Σ∞) −→ ℘(Σ∞), defined as LimPrefCl
def
= λX . lim

∞ ◦ pref↑(X), is a closure on
℘(Σ∞) (indeed it is a KCO). So we can define a topology on Σ∞, where:

– CΣ∞ = LimPrefCl↑(℘(Σ∞)) = {X ⊆ Σ∞ | X = LimPrefCl(X)}
are the closed sets

– DΣ∞ = {X ⊆ Σ∞ | LimPrefCl(X) = Σ∞} are the dense sets

Proposition 3. Safety∞ = CΣ∞ and Liveness∞ = DΣ∞ .

Proof. Note that LimPrefCl(X) = pref↑(X) ∪ {σ ∈ Σω | ∀σ′ ∈ Σ∗ . (σ′ � σ ⇒
σ′ ∈ pref↑(X)} = pref↑(X) ∪ {σ ∈ Σω | pref(σ) ⊆ pref↑(X)}.

Safety case. First we prove CΣ∞ ⊆ Safety∞. Let X ∈ CΣ∞ . For all σ ∈ X we

have that σ ∈ pref↑(X) or σ ∈ {σ ∈ Σω | pref(σ) ⊆ pref↑(X)} and, both
cases, imply pref(σ) ⊆ X. In fact:

σ ∈ pref↑(X)⇒ pref(σ) ⊆ pref↑(X) ⊆ X
σ ∈ {σ ∈ Σω | pref(σ) ⊆ pref↑(X)} ⇒ pref(σ) ⊆ pref↑(X) ⊆ X

For all σ /∈ X we have that σ /∈ pref↑(X) and σ /∈ {σ ∈ Σω | pref(σ) ⊆
pref↑(X)}. If σ is finite then σ /∈ pref↑(X) implies pref(σ) 6⊆ pref↑(X), since
σ ∈ pref(σ). Otherwise pref(σ) 6⊆ pref↑(X) is obvious. Note that pref↑(X) =
X ∩ Σ∗ hence, in both cases, we have pref(σ) 6⊆ X. All this means that
X ∈ Safety∞. Now we prove Safety∞ ⊆ CΣ∞ . Let X ∈ Safety∞. For all σ ∈ X
we have that pref(σ) ⊆ X and hence pref(σ) ⊆ pref↑(X). If σ is finite
then σ ∈ pref↑(X) otherwise σ ∈ {σ ∈ Σω | pref(σ) ⊆ pref↑(X)}, so
σ ∈ LimPrefCl(X). So X ∈ CΣ∞ .

Liveness case. First we prove DΣ∞ ⊆ Liveness∞. So let X ∈ DΣ∞ . From the
fact that LimPrefCl(X) = Σ∞ it follows that pref↑(X) = Σ∗. This implies
Σ∗ ⊆ pref↑(X) and hence X ∈ Liveness∞. Now we prove Liveness∞ ⊆ DΣ∞ .
Let X ∈ Liveness∞. We have Σ∗ ⊆ pref↑(X) and hence pref↑(X) = Σ∗. The
set {σ ∈ Σω | ∀σ′ ∈ Σ∗ . (σ′ � σ ⇒ σ′ ∈ pref↑(X)} is equal to Σω since for
every σ ∈ Σω and σ′ ∈ Σ∗ we have that σ′ 6� σ or σ′ ∈ pref↑(X) = Σ∗. So
LimPrefCl(X) = Σ∗ ∪Σω = Σ∞ and hence X ∈ DΣ∞ ut

Hence, exploiting the decomposition theorem (Thm. 1) we have that:

∀P ∈ ℘(Σ∞) . (∃S ∈ Safety∞, L ∈ Liveness∞ . P = S ∩ L)

1 lim
∞

(X) is the Eilenberg-limit [4] of X, i.e., the set {σ ∈ Σω | |pref(σ) ∩X| =∞}.



4.2 Hyperproperties

Function SprefCl : ℘(℘(Σ∗)) −→ ℘(℘(Σ∗)), defined as SprefCl
def
= λX . spref↑(X ),

is a closure on ℘(℘(Σ∗)) (indeed it is a KCO). So we can define a topology on
℘(Σ∗), where:

– C℘(Σ∗) = SprefCl↑(℘(℘(Σ∗))) = {X ⊆ ℘(Σ∗) | X = SprefCl(X )}
are the closed sets

– D℘(Σ∗) = {X ⊆ ℘(Σ∗) | SprefCl(X ) = ℘(Σ∗)} are the dense sets

Proposition 4. HyperSafety∗ = C℘(Σ∗) and HyperLiveness∗ = D℘(Σ∗).

Proof. Elements X ∈ HyperSafety∗ are prefixset-closed, i.e., X = spref↑(X ),
so HyperSafety∗ is equal to C℘(Σ∗) by definition. As we already noted, ∀X ∈
℘(Σ∗)∃X ′ ∈ X . X E X ′ is equivalent to ℘(Σ∗) ⊆ spref↑(X ). But spref↑(X ) ⊆
℘(Σ∗), for all X ∈ ℘(℘(Σ∗)). Hence SprefCl(X ) = ℘(Σ∗), i.e., X ∈ D℘(Σ∗), iff
X ∈ HyperLiveness∗. ut

Hence, exploiting the decomposition theorem (Thm. 1) we have that:

∀HP ∈ ℘(℘(Σ∗)) . (∃HS ∈ HyperSafety∗,HL ∈ HyperLiveness∗ .HP = HS ∩HL)

Let slim
ω : ℘(℘(Σω)) −→ ℘(℘(Σω)) be λX . {Y ∈ ℘(Σω) | ∀Y ′ ∈ ℘(Σ∗) . (Y ′ E

Y ⇒ Y ′ ⊆ spref↑(X ))} returning the sets of limit sequences of X . The function

SlimCl : ℘(℘(Σω)) −→ ℘(℘(Σω)), defined as SlimCl
def
= λX . slimω (X ), is a closure

on ℘(℘(Σω)) (indeed it is a KCO). So we can define a topology on ℘(Σω), where:

– C℘(Σω) = SlimCl↑(℘(℘(Σω))) = {X ⊆ ℘(Σω) | X = SlimCl(X )}
are the closed sets

– D℘(Σω) = {X ⊆ ℘(Σω) | SlimCl(X ) = ℘(Σω)} are the dense sets

Proposition 5. HyperSafetyω = C℘(Σω) and HyperLivenessω = D℘(Σω).

Proof. Note that slimω (X ) = {Y ∈ ℘(Σω) | spref(Y ) ⊆ spref↑(X )}.

Hypersafety case. First we prove C℘(Σω) ⊆ HyperSafetyω. Let X ∈ C℘(Σω). For

all X ∈ X we have spref(X) ⊆ spref↑(X ) and hence X ∈ HyperSafetyω.
For all X /∈ X exists Y ∈ ℘(Σ∗) such that Y E X ∧ Y 6⊆ spref↑(X ), hence
spref(X) 6⊆ spref↑(X ) and so X /∈ HyperSafetyω. Now we prove HyperSafetyω ⊆
C℘(Σω). Let X ∈ HyperSafetyω. For all X ∈ X we have spref(X) ⊆ spref↑(X )

which implies X ⊆ {Y ∈ ℘(Σω) | spref(Y ) ⊆ spref↑(X )}. For all X /∈ X we
have spref(X) 6⊆ spref↑(X ) which implies X /∈ {Y ∈ ℘(Σω) | spref(Y ) ⊆
spref↑(X )}. Hence X = SlimCl(X ) and so X ∈ C℘(Σω).

Hyperliveness case. First we prove D℘(Σω) ⊆ HyperLivenessω. So let X ∈ D℘(Σω).

From SlimCl(X ) = ℘(Σω) it follows that {Y ∈ ℘(Σω) | spref(Y ) ⊆ spref↑(X )}
is equal to ℘(Σω). This means that spref(Σω) ⊆ spref↑(X ), which implies that
℘(Σ∗) ⊆ spref↑(X ). So X ∈ HyperLivenessω. Now we prove HyperLivenessω ⊆
D℘(Σω). Let X ∈ HyperLivenessω, then ℘(Σ∗) ⊆ spref↑(X ). This implies that

∀Y ∈ ℘(Σω) we have spref(Y ) ⊆ spref↑(X ), namely {Y ∈ ℘(Σω) | spref(Y ) ⊆
spref↑(X )} = ℘(Σω). Hence SlimCl(X ) = ℘(Σω) and X ∈ C℘(Σω). ut



Hence, exploiting the decomposition theorem (Thm. 1) we have that:

∀HP ∈ ℘(℘(Σω)) . (∃HS ∈ HyperSafetyω,HL ∈ HyperLivenessω .HP = HS ∩HL)

Let slim
∞

: ℘(℘(Σ∞)) −→ ℘(℘(Σ∞)), defined as λX .X ∪ {Y ∈ ℘(Σ∞) | ∀Y ′ ∈
℘(Σ∗) . (Y ′ E Y ⇒ Y ′ ∈ X )}, the version on mixed sequences of slim

ω . Note
that here Y is a subset of finite and infinite sequences, not only of the infinite
one, so we maintain the power to express mixed sets. The function SlimSprefCl :

℘(℘(Σ∞)) −→ ℘(℘(Σ∞)), defined as SlimSprefCl
def
= λX . slim∞ ◦ spref↑(X ), is a

closure on ℘(℘(Σ∞)) (it is a KCO). We have a topology on ℘(Σ∞), where:

– C℘(Σ∞) = SlimSprefCl↑(℘(℘(Σ∞))) = {X ⊆ ℘(Σ∞) | X = SlimSprefCl(X )}
are the closed sets

– D℘(Σ∞) = {X ⊆ ℘(Σ∞) | SlimSprefCl(X ) = ℘(Σ∞)} are the dense sets

Proposition 6. HyperSafety∞ = C℘(Σ∞) and HyperLiveness∞ = D℘(Σ∞).

Proof. Note: SlimSprefCl(X ) = spref↑(X )∪{Y ∈ ℘(Σ∞) | ∀Y ′ ∈ ℘(Σ∗) . (Y ′ E
Y ⇒ Y ′ ∈ spref↑(X )} = {Y ∈ ℘(Σ∞) | spref(Y ) ⊆ spref↑(X )}, since if X is
in spref↑(X) then all Y E X are in spref↑(X) too.

Hypersafety case. First we prove C℘(Σ∞) ⊆ HyperSafety∞. Let X ∈ C℘(Σ∞). For

all X ∈ X we have that X ∈ {Y ∈ ℘(Σ∞) | spref(Y ) ⊆ spref↑(X )} and
hence spref(X) ⊆ X . In fact, X ∈ {Y ∈ ℘(Σ∞) | spref(Y ) ⊆ spref↑(X )}
implies spref(X) ⊆ spref↑(X ) ⊆ X . For all X /∈ X we have that X /∈ {Y ∈
℘(Σ∞) | spref(Y ) ⊆ spref↑(X )}. This implies that spref(X) 6⊆ spref↑(X ) =
X ∩ ℘(Σ∗), hence spref(X) 6⊆ X . Hence X ∈ HyperSafety∞. Now we prove
HyperSafety∞ ⊆ C℘(Σ∞). Let X ∈ HyperSafety∞. For all X ∈ X we have

spref(X) ⊆ spref↑(X ) and so X ∈ SlimSprefCl(X ). For all X /∈ X we have
spref(X) 6⊆ spref↑(X ) and so X 6∈ SlimSprefCl(X ). Hence X ∈ C℘(Σ∞).

Hyperliveness case. First we prove D℘(Σ∞) ⊆ HyperLiveness∞. So let X ∈ D℘(Σ∞).

From the fact that SlimSprefCl(X ) = ℘(Σ∞) it follows that spref↑(X ) =
℘(Σ∗). This implies ℘(Σ∗) ⊆ spref↑(X ) and hence X ∈ HyperLiveness∞. Now
we prove HyperLiveness∞ ⊆ D℘(Σ∞). Let X ∈ HyperLiveness∞. Then we have

℘(Σ∗) ⊆ spref↑(X ) and hence spref↑(X ) = ℘(Σ∗). Now we can note that the
set {Y ∈ ℘(Σ∞) | ∀Y ′ ∈ ℘(Σ∗) . (Y ′ E Y ⇒ Y ′ ∈ spref↑(X )} is equal to
℘(Σ∞) since for every Y ∈ ℘(Σ∞) and Y ′ ∈ ℘(Σ∗) we have that Y ′ 6E Y or
Y ′ ∈ spref↑(X ) ⊆ ℘(Σ∗). So SlimSprefCl(X ) = ℘(Σ∞) and X ∈ D℘(Σ∞). ut

Hence, exploiting the decomposition theorem (Thm. 1) we have that:

∀HP ∈ ℘(℘(Σ∞)) . (∃HS ∈ HyperSafety∞,HL ∈ HyperLiveness∞ .HP = HS ∩HL)



5 Conclusions and related works

In this work we have investigated the definition of systems properties in a para-
metric setting. The first parameter distinguishes if the properties are trace prop-
erties or hyperproperties. The first are simpler to check (they can be verified
observing single executions) but they lose the power to express policies which
specify relations between executions. The second parameter concerns what kind
of executions properties are able to express: only finite, only infinite or mixed
(finite and infinite). We have analyzed how the well known safety/liveness clas-
sification of properties changes in relation with the latter two parameters. Some
work in this direction was already done by Roşu [8], but only for the safety part
and only for trace properties.

The beauty of the safety/liveness classification is its topological interpreta-
tion, which allows us to decompose every property in its safety part and its
liveness part. This means that we can decompose the verification process in
two, more simpler, parts as well. To the best of our knowledge, this topologies
were specified only for trace properties on infinite executions [7] and for hyper-
properties on infinite executions [3]. Our work gives a topological interpretation
also for the others combinations: trace properties on finite and on mixed exe-
cutions, hyperproperties on finite and on mixed executions. We proved that in
each combinations the safety/hypersafety are the closed sets in the correspond-
ing topology and the liveness/hyperliveness are the dense sets. This means that
the “decomposition method” can be applied in all six cases, not only in the
infinite executions ones.

As a future work, it would be interesting to extend our work to the safety/
progress classification [2], which is orthogonal to the safety/liveness but it gives
a fine-grained characterization of not-safety properties.

References

1. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, 1985.

2. E. Chang, Z. Manna, and A. Pnueli. The safety-progress classification. Technical
report, Stanford University, Dept. of Computer Science, 1992.

3. Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur.,
18(6):1157–1210, sep 2010.

4. Samuel Eilenberg. Automata, Languages, and Machines. Academic Press, Inc.,
Orlando, FL, USA, 1974.

5. E. Allen Emerson. Alternative semantics for temporal logics. Theoretical Computer
Science, 26(1):121–130, 1983.

6. K. Kuratowski. Topology: Volume I. ZAMM - Journal of Applied Mathematics and
Mechanics, 47(8):560–560, 1967.

7. Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

8. Grigore Roşu. On safety properties and their monitoring. Scientific Annals of
Computer Science, 22(2):327–365, dec 2012.


