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ABSTRACT

The production of video games is a complex process, which
involves several disciplines, spanning from art to computer
science. The final goal is to keep entertained the players, by
continuously providing them novel and challenging contents.
However, the availability of a large variety of pre-produced
material is often not possible. A similar problem can be
found in many single-player game genres, where the simu-
lated behaviour generated by the Artificial Intelligence algo-
rithms must be coherent, believable, but also adequately var-
iegate to maintain a satisfactory user experience. To this aim,
there is a growing interest in the introduction of automatic or
semi-automatic techniques to produce and manage the video
game contents. In this paper, we present an example of strate-
gic card battle video game based on the applications of Ar-
tificial Intelligence and Genetic Algorithms, where the game
contents are dynamically adapted and produced during the
game sessions.
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INTRODUCTION

The production of video games is a complex process, which
involves several disciplines, spanning from art to computer
science. Regardless of the specific game genre, the design
and development processes must have as final goal the pro-
duction of a video game able to propose an enjoyable gaming
experience even after long periods of time.
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The analysis and design of the overall user experience in a
video game is not a straightforward task, because several fac-
tors can play a role. Recently, there has been a growing inter-
est in the analysis of a number of features that, even if consid-
ered apparently of minor importance, could, nonetheless, im-
pact deeply on players’ user experience with the game [2, 4,
14, 15]. In particular, in some video game genres, one of the
problematic features is that after spending a certain amount of
time playing, players become well aware of the overall char-
acteristics of the game and of its contents, and consequently
they begin to lose interest [13]. The solution would be to
continuously provide novel and challenging contents, and to
dynamically adapt the game behaviour, in order to maintain
the game enjoyable and fun. To this aim, a larger number of
video games are introducing Procedural Content Generation
(PCG) techniques, together with Artificial Intelligence (AI)
methods specifically developed to dynamically change and
adapt the game contents and behaviour.

Procedural Content Generation (PCG) is an approach with
long and established history in different fields of Computer
Graphics, aimed at creating data algorithmically. Examples
of procedurally generated contents are textures [5] , buildings
and cities [27, 28]. In the context of video games, PCG can
be exploited to increase randomness of content and/or game-
play, with also the positive effects of reducing development
time. For example, it can be used to automatically create a
game level for platform games to achieve a desired level of
complexity [26]. In other works, the application on PCG and
AI techniques has been applied to several specific aspects of
game optimization, such as: impact of Non Player Characters
(NPCs) ( [1, 18, 25, 31, 33]), and adaptive or personalized
content generation ( [10, 32]). Finally, there is a large litera-
ture related to the applications of Genetic Algorithms (GAs)
in video games. The proposed techniques are mainly used to
generate or evolve the game environment [3, 7, 24, 29], or
for the evolution of the game agents behaviour, in order to
produce more challenging opponents to the players [6, 11,
12, 21, 22, 23].

Differently from the other works on GAs in video games,
the recently proposed GOLEM (Generator Of Life Embedded
into MMOs) algorithm [9] addresses explicitely the need to
introduce more variety and unpredictability in the monsters
inside MMOs, in order to avoid that the players consider the
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game repetitive and less enjoyable after a long period of time
spent playing. The main idea in GOLEM is to characterize
each monster specie present in the game through its genome,
and to generate new species by recombining their chromo-
somes, which represent a set of physical characteristics and
skills. Each monster in GOLEM is represented by a chromo-
some composed by 53 genes, and the recombination process
evaluates also the probability for the new monster to actually
survive in the habitat in which it is born (e.g., a marine-like
animal will unlikely survive in a desert). Moreover, other pa-
rameters are included in order to manage and, if needed, limit
the population growth.

The concept of evolution of a population of creatures have
been addressed also in a small number of commercial video
games [8, 30], even if in a very different way than the ap-
proach proposed in GOLEM.

In this paper, we present a strategic card battle video game
called Monsters of Darwin (MOD). The game applies the GA
approach of GOLEM, but to a different game genre: in this
case, the monsters are depicted on virtual cards, and at each
turn, a new card with a new monster may be generated by the
combination of the monsters on the cards currently played.
Moreover, being MOD a single-player video game, an AI
component has been implemented, to manage the game dy-
namics and to act as Non Playable Character (NPC).

The paper is organized as follows: in the following sections
we will recall the fundamental concepts related to AI and GA
in video games, and then we will describe MOD design and
implementation choices. Finally, we will draw conclusions
and discuss major future developments.

ARTIFICIAL INTELLIGENCE IN VIDEO GAMES
Contemporary video games are often characterized by the use
of advanced AI techniques. AI solutions for video games
[17] are quite different from those typical of classic AI, be-
cause while the latter are usually aimed at optimizing solu-
tions for specific problems under no time or resources lim-
its, the former must provide a believable solution to complex
decisional processes in (nearly) real-time with limited com-
putational resources. AI in video games has a huge amount
of possible usages, mostly depending on the specific game
genre. One example is represented by Non-Playing Charac-
ters (NPCs) in First Person Shooter (FPS) games, where the
AI is responsible of the simulation of a believable behaviours
for a group of enemies [16, 25].

In this paper, we consider a strategic video game. The video
games in this genre are characterized mainly by actions based
on tactics and planning, in order to achieve victory. Player’s
decisions have a key role in the game, while chance is less
relevant than players’ ability. There are two sub-genres, turn-
based or real-time, and the role of AI can vary relevantly de-
pending on the nature of the strategic video game. Real-time
strategic games have usually a simpler AI, which is mainly
used as a strategic layer. On the contrary, turn-based games
may have very sophisticated and complex AI, which may
even run on dedicated hardware, like in case of simulated
complex board games (e.g., Chess) [17].

The characterization of an AI algorithm for strategic video
game shares its terminology with the game theory. A game
is classified according to the number of players (usually two,
even if it can be extended to a higher number of players), the
goal of the game, and the information each player has about
the game. With respect to the goal, two subclasses of strategic
games exist:

• Zero-sum game: a player wins only if the other opponent
lose.

• Non zero-sum game: the focus of the player is on the win-
ning, which may happen even without the opponent’s loss.

Moreover, we can identify two cases also for the level of in-
formation the players have regarding the game:

• Perfect information: the player knows everything about the
state of the game, and about the possible options the oppo-
nent has for the next move.

• Imperfect information: there is some random element in
the game that make uncertain the possible evolution of state
of the game.

The most popular strategic video game AI technique is the
minimax algorithm. The main concept is that, during a turn-
based game, a player tries to play the best move possible to
achieve victory, while the opponent tries to use the best strat-
egy to avoid this, by minimizing the player’s score. The mini-
max algorithm is a recursive algorithm, which works on a tree
data structure (the game tree) where each node represents a
board position, and each branch represents one possible move,
leading from one board position to another. At each iteration,
the AI algorithm evaluates the current state, considers each
possible move and corresponding new board positions, and
recursively calculates the score for each new possible situa-
tion, in order to choose the most appropriate one. The choice
is performed using a heuristic called static evaluation func-
tion [17].

GENETIC ALGORITHMS IN VIDEO GAMES

GAs are a particular class of algorithms, mainly belonging to
the AI field. They are applied to solve many classes of prob-
lems but, more in general, they are useful in heuristic search
processes and in optimization problems. They have been in-
spired by Darwin’s evolution theory: a population is repre-
sented by the chromosomes of a set of individuals, and a new
generation in the population is produced by recombining the
genetic material according to specific rules. For each genera-
tion, a fitness function selects the most “suitable” parents and
iterates the reproduction process on them. To produce “chil-
dren”, the algorithm applies crossover (a genetic recombina-
tion technique) and mutations on chromosomes, represented
by bit sequences. The algorithm then evaluates, once the new
generation has been created, if the population registers any
improvement in any relevant feature: if this is the case, par-
ents will be discarded and the new children will substitute
them in the reproduction process. Generally, these steps are
iterated until some optimal solution is reached [19, 20].

Crossover is used by GAs to mix the genes of two elements
of the population. Some different approaches can be applied:



1. Single point crossover: the chromosomes of the parents
are split into two parts in a randomly selected point. Two
new chromosomes are generated, by combining the first
and second parts of the original parents.

2. Two points crossover: the chromosomes of the parents are
split into three parts. The chromosome of one child is com-
posed by the first and third part of the first parent, merged
with the second part of the second parent. Another chromo-
some is created using the remaining parts.

3. Uniform crossover: this approach provides a higher genetic
variation, since each gene of the child is copied randomly
from one of the corresponding genes belonging to one of
the parents. The genes not chosen for the first child are
used for the second one

4. Arithmetic crossover: the offspring chromosomes are the
results of some arithmetic operation on the parents’ genes.

Finally, genetic mutations can be useful for inserting into the
new generation’s chromosomes some characteristics not in-
heritable from parents, since not present in their genetic her-
itage. Similarly to what happens in nature, mutations can
introduce a new characteristic or modify/destroy an existing
one.

MONSTERS OF DARWIN (MOD)
Monsters of Darwin has been developed in order to investi-
gate novel approaches aimed at maximizing the user experi-
ence in a particular game genre that, after long periods, may
suffer because of the repetition of game contents.

MOD is a zero-sum, imperfect information, turn-based single-
player strategic card battle video game. The player plays
against an AI opponent in order to collect the highest possible
number of Monster Cards.

The game dynamics of MOD are quite simple. At each turn,
two cards are played, one from the player on turn (the “real”
player or the AI component) and one from the opponent.
Then, the player on turn must choose between two different
actions among the two cards: Monster Duel or Monster Cou-
pling. Monster Duel follows rules similar to other card battle
games, while Monster Coupling represents a procedural ap-
proach aimed at lower the game contents repetitivity, by the
automatic generation of new Monster Cards depicting new
monsters. Monster Coupling is based on the application of a
GA, derived from the GOLEM algorithm [9]. A game ses-
sion ends when a player defeats all the cards of the opponent.
The final winner is the first player winning 3 game sessions.

In the following subsections, we provide further details on the
features and contents of MOD.

Monster Cards
The main contents of MOD are the Monster Cards, depict-
ing different kinds of monsters, using a graphic style inspired
by grimoires and medieval manuscripts. Figure 1 shows an
example of Monster Card. Each card is composed by three
areas: in the bottom area it is indicated the natural element of
the monster; in the central area it is depicted the monster, and,

Figure 1. An example of Monster Card. In the bottom area it is indicated
the natural element of the monster. The attack, defense and vital forces of
the monster are shown in the top area.

finally, the attack, defense and vital forces of the monster are
shown in the top area.

The four natural elements (air, earth, water and fire) are used
to create a hierarchy between the Monster Cards, used during
the Monster Duel or Monster Coupling stages. In particular:

• air rules over earth

• earth rules over water

• water rules over fire

• fire rules over air

To allow the graphical representation of the new monsters
generated by the GA, each monster is composed by a set of
2D patches, each having a texture of a different physical part
(head, body, legs, etc). With a similar approach, a new mon-
ster can be simply represented by assembling patches from
different sets. Figure 2 shows a monster, and the patches com-
posing its graphical representation.

At the beginning of the game, the player has a card deck com-
posed by 8 Monster Cards (2 for each natural element). In the
following turns, the player will choose 8 cards among those
available in her deck. The AI module creates its deck choos-
ing the Monster Cards randomly, even if balancing among the
number of cards belonging to the different natural elements.

Monster Duel

During a Monster Duel, the damage a Monster Card can in-
flict to the vital force of the opponent’s card is established by
the difference between the corresponding attack and defense
force values (e.g., a card with an attack force of 8 will inflict
a damage of 2 to a card with defense force 6). The damage
can be modified on the basis of their relation in the natural
elements hierarchy: the damage is raised of 1 unit in case the
element of the attacking card rules over the element of the
other card, otherwise it is lowered of 1 unit. All the Monster
Cards have an initial vital force equal to 6. When the value
reaches 0, the Monster Card is removed by the current game
session, and it will become available only in the following
games.



Figure 2. A monster of MOD, and the patches composing its graphical
representation

Monster Coupling and Genetic Algorithm in MOD
The GA implemented in MOD is applied during the Mon-
ster Coupling stage. As in GOLEM [9], each monster is
described by a chromosome, which maps its characteristics
and skills. The characteristics are related to the physical as-
pect (e.g., number of legs, wings, etc.), to the force (i.e., the
attack, defense and vital forces), and to the natural element,
as illustrated in Table 1.

Each characteristic can assume a value in a certain range. For
the physical features, the range from 1 to 8 indicates one Mon-
ster Card from the initial deck: therefore, a value of 2 for the
Head means that the new monster will be created using the
head patch from the monster of the second card selected in
the deck, etc. For the force features, the value changes de-
pending on the subcategories: attack force can have values
from 4 to 7, defense force can have values from 1 to 3, vital
force can have values from 0 to 6. These values have been
chosen after a tuning and testing stage of the game.

The Monster Coupling stage begins evaluating the compati-
bility between the two Monster Cards currently played. Two
monsters are evaluated as compatible for the coupling if the
natural element of the card of the player on turn rules over
the element of the opponent’s card, and if the difference in
vital force between the two monsters is equal of higher of 2.
If these constraints are not valid, then the Monster Card of the
player on turn (i.e., the one who has tried the Monster Cou-
pling) will be inflicted a damage following the rules of the
Monster Duel stage. Otherwise, the Crossover function of
the GA algorithm is applied to the chromosomes of the two
monsters. To obtain the broadest diversity among the gener-
ated monsters, we have opted for the uniform crossover ap-
proach: for each characteristic in the chromosome, one value
from the two parents is randomly selected and assigned to the
new monster. Even if the crossover creates two new monsters,
only the first is considered, and it is added to the player’s per-
sonal deck, while the two original cards subject to the cou-
pling are discarded from the game session.

Artificial Intelligence in MOD

The main operations of the AI component in MOD are: the
selection of the Monster Card to play, and the choice between
Monster Duel or Monster Coupling actions. In both cases, the
AI component uses the minimax algorithm for the evaluation.

Characteristic Type Range

Head physical 8
Eyes physical 8
Arms physical 8
Body physical 8
Legs physical 8
Tail physical 8
Wings physical 8
Attack force 3
Defense force 3
Vital force 3
Element natural element 4

Table 1. Characteristics and skills in a chromosome of a monster.

During the selection of the Monster Card to play, if the AI is
the player on turn, the choice of the card is completely ran-
dom. If, otherwise, the AI is responding to the player’s card
choice, than the algorithm evaluates the played card, and per-
forms a selection of a “stronger” card among the available
ones in the deck. A card is “stronger” if its natural element
rules over the element of the first card, and/or its attack force
is higher. During the choice between Monster Duel or Mon-
ster Coupling, the AI algorithm evaluation is based on the
number of remaining Monster Cards in the deck, and on the
difference of vital force and compatibility between the two
Monster Cards.

MOD implementation details

MOD has been implemented using the Unity 3D game en-
gine. For its characteristics, Unity 3D represents a powerful
and flexible solution well suited for fast implementation of
different game genres, allowing the integration of different
techniques and material, and the development for different
gaming platforms.

Figure 3 shows some screenshots of the Monster Duel and
Monster Coupling stages.

CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a strategic card battle video
game called Monsters of Darwin (MOD). The game uses a
combination of AI and GAs in order to generate new Monster
Cards, by combining the characteristics of the cards played in
each turn.

The approach we are proposing with MOD is a preliminary
attempt to address one of the features that can impact on play-
ers’ user experience. In fact, repetition of contents and me-
chanics in some game genres can lead to a loss of interest in
the game after some time. One possible solution to avoid this
issue is to introduce procedural and dynamic techniques to
continuously generate novel contents and to adapt the game
behaviour to the players’ actions, in order to maintain the
game enjoyable and fun.

From the preliminary evaluation tests, the performances of
MOD are promising: the GA in MOD is able to produce a



Figure 3. Screenshots of the Monster Duel and Monster Coupling stages in MOD.

high number of new monsters even from a limited set of ba-
sic Monster Cards, while the evaluation made by the AI algo-
rithm is performed smoothly, limiting the waiting time to the
minimum.

Future developments will consider the extension of the char-
acteristics of the monsters chromosomes, and of the database
of available monsters among which the players can choose
the initial deck. Moreover, we aim at extending the AI com-
ponent, by introducing new possible actions during the game
turns, like e.g., a defense action to oppose the attack from the
opponent player.
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