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ABSTRACT 
The adoption of a meta-design approach to system 
development opens up opportunities for transforming 
consumer cultures to cultures of participation. To this end, 
meta-design must create the conditions for such 
participation by supporting end users to appropriate the 
design skills necessary for system evolution, especially 
those related to Computational Thinking (CT), in new and 
engaging modalities. In this paper, we propose a novel 
approach to fostering CT skills that combines Game-Play 
learning with Tangible User Interfaces and Virtual Reality 
(VR). In the resulting system, called TAPASPlay, two 
players act as alchemists forging swords and shields to fight 
each other. They build them through a puzzle-based 
interaction with a tabletop interface, using smartphones as 
tangible objects. Finally, the players can enjoy the battle in 
VR using Google Cardboards. In this way, players can 
develop analysis, abstraction and problem solving abilities, 
i.e. suitable CT skills for meta-design and supporting 
cultures of participation. 
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thinking; game-based learning; tangible interaction.  
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INTRODUCTION 
User-centered design and participatory design are usually 
advocated as successful approaches to designing systems 
that properly fit with users' work practices, preferences and 
needs. Both approaches foresee user involvement at design 
time to inform designers about system functional and non-
functional requirements. Such an involvement may be 
regarded as a one-way communication (from users to 
designers) in case of user-centered design, where users are 

for example observed or interviewed; or may become a 
two-way communication in participatory design, where 
users are given a voice and can actively participate with 
their ideas in design decisions. In addition, nowadays there 
is a growing request of hardware and software systems that 
can be easily tailored and extended by end users at the use 
time. This is not only true for traditional information 
systems [7] or spreadsheet-based applications [2], but also 
personal devices [6][11] and environments (the so-called 
"smart home") [3][5].  

Meta-design has been proposed as a novel approach to 
designing open systems that can progressively evolve in the 
hands of end users, by means of end-user development 
(EUD) methods and techniques [10]. In this way, meta-
design aims at sustaining a cultural transformation, by 
supporting end users to become co-designers and end-user 
developers [9]. On the one hand, such a progressive 
transformation from consumer cultures to cultures of 
participation [8] is facilitated by current technological 
innovations, from Web 2.0, to the Internet of Things, to 
tangible interactive spaces [1][21]; on the other hand, 
however, not all end users are ready today for such a 
transformation or willing to acquire the new skills 
necessary for an effective participation. To this end, meta-
design is also concerned with the creation of the social 
conditions for end-user participation at design and use time, 
by sustaining end users to appropriate the design culture 
and the technical notions necessary for system evolution 
[4]. To create such social conditions, meta-design should 
transfer to the end users those Computational Thinking 
(CT) skills [22] that can be useful to sustain cultures of 
participation. 

CT skills are typical of programmers and software 
designers and, even though a unique definition does not yet 
exist, we can sum up most of literature attempts to define 
CT skills in a set comprising abstraction, algorithmic 
thinking, decomposition, and problem solving. Mastering 
those skills lowers the learning barrier when approaching a 
programming activity. For this reason, traditional 
approaches to teaching CT skills involve visual 
programming languages, such as Scratch [18], or game 
design activities, such as AgentSheets [16], properly 
oriented to teach the concepts underlying imperative 
programming (symbolic representation, conditionals, loops, 
operators, etc.). These “making” activities [14] encourage 
to cohesively combine multiple ideas into an organized 

 
 
 
 
 
 
 
 
 
GHITALY17: 1st Workshop on Games-Human Interaction, April 18th, 2017, 
Cagliari, Italy.  
Copyright © 2017 for the individual papers by the papers' authors. Copying 
permitted for private and academic purposes. This volume is published and 
copyrighted by its editors. 

.  



process to produce an artifact that solves problems. Indeed, 
CT skills go beyond programming constructs 
("conceptualizing, not programming" [22]): in her original 
definition, Wing assumes a higher-level perspective, 
arguing that CT skills create a new mindset oriented 
towards problem solving, thanks to the ability of thinking at 
different levels of abstraction and at decomposing problems 
into sub-problems [22]. This can bring several benefits in 
everyday life, including, in our opinion, a more effective 
participation by end users in the design and development of 
their systems both at design time and use time. 

Starting from Wing’s ideas, Repenning and colleagues 
modeled computational thinking as an iterative process 
structured in three stages [17]: 1) problem formulation, 
namely a verbal or diagrammatic conceptualization of the 
problem, where abstraction plays a fundamental role; 2) 
solution expression, when the solution is formulated in a 
way that can be understood by a computer (the most 
common, but not unique, tool used in this stage is 
programming); 3) execution and evaluation, i.e. those 
activities allowing one to visualize and assess the outcome 
of the other two stages. 

In this paper, we describe TAPASPlay, an extension of 
TAPAS (TAngible Programmable Augmented Surface) 
[20][21], specifically designed to foster CT skills through a 
game-based learning approach, by favoring the CT iterative 
process described in [17]. TAPASPlay is based on the 
alchemist’ metaphor: two players compete to be the best 
alchemist and, by applying transformations on metals, they 
forge swords and shields to fight each other. Like TAPAS, 
TAPASPlay adopts a puzzle-based interaction with a 
tabletop surface, where a smartphone plays the role of 
tangible object used for dragging and dropping digital 
objects that will make up the swords. The final battle is 
eventually enjoyed in Virtual Reality (VR) by wearing 
Google cardboards. 

TAPASPlay has been designed to help bridging the gap 
between the end user and the designer roles. Ideally, in the 
meta-design discourse, the user would be able to grasp 
different aspects of the system (from features, to standards, 
to usability issues) and actively contribute to the design 
itself. Unfortunately, there are some language and 
conceptual barriers that prevent the end-user 
communication with technologists (i.e. software engineers). 
Understanding an algorithmic solution to a problem and 
thus being able to participate in the selection of the right 
solution by helping modeling the problem is a very relevant 
activity in a meta-design approach, but in our opinion 
requires exactly those CT skills mentioned above. 

Furthermore, our everyday life depends more and more on 
algorithms [19]: think about how many times a day we 
interact with algorithms, from automatic checkouts in 
supermarkets and e-banking to booking a flight online (and 
during that same flight as well: in fact, 95% of the whole 
journey is flown by an autopilot running an algorithm). By 

acquiring CT skills the end user would be able to 
understand, participate and trust algorithmic solutions and 
thus play a much relevant active role in the meta-design 
discourse. 

The paper is organized as follows: the following section 
contextualizes and compares the approach presented here 
with recent literature work; then we describe TAPASPlay 
and the phases of the gameplay; finally, the last section 
discusses the main features of the system and draws some 
conclusions. 

GAME-BASED LEARNING 
Digital games proved attractive and engaging for all groups 
of people and therefore, Game-Based Learning (GBL) has 
been proposed as one pedagogical framework for 
developing CT skills [12]. In order to help acquiring CT 
skills two main approaches have been introduced in GBL: 
learning through designing games and learning through 
game-play. Whilst learning by designing games has been 
studied quite extensively (e.g. Scratch, Alice and 
AgentSheets), the game-play approach is relatively new, 
especially in light of employing it to improve CT skills.  

As an example, Program Your Robot [13] is a recent game 
prototype developed to support players in practicing the 
five core skills that the authors identified as fundamental 
for computational thinking, namely problem solving, 
building algorithms, debugging, simulation and socializing. 
It is a puzzle solving game in which the player has to assist 
a robot to reach a certain point on a grid. The robot will 
follow very simple instructions given in the form of an 
algorithm, while the score depends on conditions, for 
example if two functions have been declared before being 
called in the algorithm. It differs from the software 
applications for game design mentioned before, since those 
ones can be deemed programming languages to all effects, 
while Program Your Robot is conceived as a serious game. 
But above all, tools like Scratch were designed in order to 
teach the basics of programming and to show how fun it 
can be. Instead, Kazimoglu and his colleagues [13] were 
moved by the goal of creating a game that could explicitly 
foster CT skills. 

CTArcade [15] is another serious game designed with the 
target of boosting computational thinking in players by 
letting them formalize their tacit knowledge and make a 
step towards abstraction. In CTArcade users have to 
implement a set of rules that are observed by a character 
while playing Tic-Tac-Toe. Making these rules explicit is 
considered a very important process, because people often 
apply them in a natural, perhaps unconscious way and 
normally there is neither occasion nor reason to transform 
this knowledge into abstract instructions. 

These systems use a traditional interaction style based on 
keyboard and mouse; on the contrary, even though 
TAPASPlay shares with them the same goal, that is 
fostering CT skills through a game-play approach, it 



leverages on an interaction style that relies on the use of 
tangible objects and virtual reality. TAPASPlay fits also 
within the realm of Constructionist Video Games [25], 
namely designed computational environments in which 
players construct personally meaningful artifacts to 
overcome artificial conflicts or obstacles resulting in 
quantifiable outcomes. 

TAPASPLAY 
The novelty of TAPASPlay is to combine game-play with 
tangible user interfaces and Virtual Reality to teach CT 
skills. The game is intended for an audience with little or no 
experience in programming, which is trained in such 
computational abilities to become able to participate in 
system design and end-user development activities. 

TAPASPlay has been developed starting from TAPAS [21], 
an End-User Programming (EUP) platform for pervasive 
display repurposing in the wild. Therefore, as for TAPAS 
the interaction with TAPASPlay requires a pervasive 
display or a tabletop surface, an RGB camera and a 
smartphone. The smartphone is used both as a computing 
device and as a tangible object, and its movements on the 
display or surface are tracked by the RGB camera that 
locates the position of a fiducial marker displayed on the 
phone screen and uses it as reference point. TAPASPlay has 
been implemented as a web application that is projected on 
the pervasive display or tabletop surface and is able to 
interact with the players’ smartphones. Differently from 
TAPAS, TAPASPlay can be regarded as a constructionist 
video game aimed at satisfying the following requirements: 

• It must provide both an entertaining and an educational 
experience. The latter has the goal of fostering 
Computational Thinking skills, while the use of Virtual 
Reality should boost the players’ engagement. 

• The game must feature a metaphor suitable to a VR 
representation, which can be visualized by wearing 
affordable goggles (e.g. Cardboards by Google). 

• The interaction with the game should be based on a 
puzzle metaphor, like the original TAPAS system. This 
means that TAPASPlay has to communicate the 
existence of constraints and to support the gameplay 
through puzzle pieces and their shapes, aiding users 
whilst giving constraints in their selection process. 

TAPASPlay is thus a game to be played in a player versus 
player modality. Players compete to be the best alchemist 
forging three swords and three shields, made of three 
different metals. The game features three phases: 

1. defining the offensive strategies, by means of forging 
swords; 

2. defining the defensive strategies, by means of forging 
shields; 

3. visualizing the representation of a battle in a VR 
headset. 

Forging swords 
During the first phase, each half of the tabletop screen is 
available for a player to define three offensive strategies, 
which will be visualized as three swords. In order to 
accomplish that, players have to attach transformations, 
represented as pieces of a puzzle, to a halo surrounding the 
smartphone of the user on the main display. The halo, with 
its three hilts, follows the movement of the dragged 
smartphone and, when a collision with a puzzle piece is 
detected, such piece is attached to the vertically oriented 
hilt under some given conditions. The three swords are 
defined one at a time. For example, in Figure 1, each player 
is creating his/her first sword. 

 
Figure 1. Forging swords through tangible and puzzle-like 

interaction. 

Each strategy is a sequence of transformations taken from a 
randomly generated set shown on the main display (Fig. 2).  

 
Figure 2. Defining an offensive strategy: the set of 

transformations is displayed, as well as the main halo with 
three hilts and the final piece. 

A hilt attached to the main halo surrounding the player’s 
smartphone represents the start of a sequence (Fig. 3(a)), 
while the final piece has a shape that resembles the tip of a 
sword (Fig. 3(b)).  



  
(a) (b) 

Figure 3. (a) An example of initial state of the sword, (b) an 
example of final piece. 

Each sword is made of a different type of metal, determined 
by the shape of the final puzzle piece (e.g., in Fig. 3(b) the 
shape of the final piece is triangular). Every puzzle piece 
has an input and an output shape. There are three shapes in 
total, round, square and triangular, which in turn 
correspond to three types of metal, namely bronze, iron and 
steel. So, if a puzzle piece has a round input shape and a 
triangular output shape as in Fig. 4(a), it is equivalent to a 
transformation that turns bronze into steel. 

The aim of this first phase is to maximize the force points 
of each sword, which can be earned by attaching 
transformations to the sequence. However, every 
transformation consumes an amount of energy points. More 
precisely, a transformation is a tuple of four values: 1) an 
input shape, 2) an output shape, 3) an amount of energy 
points, displayed on the transformation (left half in Fig. 
4(a)), and 4) the force points gained, displayed on the 
transformation as well (right half in Fig. 4(a)). 

In order to apply a transformation at a certain stage of the 
strategy, two conditions need to be fulfilled: 1) the input 
shape of the transformation is the same as the output shape 
of the last transformation attached to the sequence (or, if the 
transformation applied is the first of the sequence, the input 
shape has to be the same as the output shape of the initial 
state); 2) the alchemist must have an amount of energy 
points greater or equal than the one showed on the 
transformation. Once a transformation is applied (supported 
by a "magnetic effect" on the puzzle piece provided by the 
system), the energy points of the alchemist are decreased by 
the energy points of the transformation, while the force 
points of the strategy can be increased, decreased or 
multiplied, depending on the operation suggested by the 
transformation. 

Players can see a feedback of their operation on their 
smartphone, since force and energy points presented on 
their screen are updated according to the values displayed 
on the transformation. See for example Fig. 4(b), where the 
correspondence between swords and values displayed on 
the smartphone is given by the cue balls matching the gems 
of the hilts showed on the halo. 

The initial state of each sword consists of an output shape 
attached to a hilt on the halo, an amount of force points, and 
an amount of energy points. The final state is reached when 
the player is satisfied with its sequence of transformations 
and decides to – and can – attach the final piece to the 
sword. This is a special transformation that does not modify 
force nor energy points, but only suggests the final 
constraint on the sequence - Fig. 3(b). 
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Figure 4. (a) An example transformation, (b) the energy and 
force points shown on the smartphone. 

Forging shields 
The defensive strategy consists of allocating an amount of 
defense points into three shields, each one corresponding to 
a different metal just like the swords, through an interface 
displayed on the smartphone. The choice should be based 
on a couple of considerations: how the player guesses the 
opponent distributed force points on the different swords 
and the transformations chosen for building her/his own 
swords. For instance, if a player struggled to compose the 
strategy for the bronze sword, then he/she might consider 
allocating most of defense points into the bronze shield, in 
order to counterpoise her/his weak offensive strategy. 

Enjoying the battle in VR 
When both the previous game phases terminate, an Android 
application showing the resulting Virtual Reality video 
becomes available from the server. By receiving the score 
of the game from the web application, the server provides 
each player with a different video to be played. For 
instance, if Player 1, who used the halo with blue hilts, 
managed to reach the highest score, the video will show a 
knight wearing a blue armor defeating the opponent dressed 
in red; otherwise a video with reversed roles will be played. 
In order to correctly visualize the content of the app, both 
players are asked to wear goggles as Google Cardboard. 
The VR video shows two knights armed with sword and 
shield. At the beginning, a button containing the text “Start” 
needs to be selected in order to play the animation. A 
pointer placed at the center of the user’s sight suggests that, 
to push the button, it is required to gaze at it. After having 



pressed the button, the two knights approach the center of 
the scene and, when they are close enough, they start 
dueling. They exchange a few hits for a little while, then the 
knight on the left takes a few steps back, runs toward the 
opponent and launches the decisive blow. The wounded 
knight falls on the ground and, while the winner cheers, a 
text appears on the background, confirming which player 
won (Fig. 5). 

 
Figure 5. Visualizing the outome of the battle in VR: the duel 

has ended with the victory of Player 1. 

DISCUSSION AND CONCLUSION 
The growing interest in Computational Thinking is also 
witnessed by very recent literature [23], which describes 
how CT is becoming more and more important in student 
and teacher education. In this paper, we suggest that CT 
skills are fundamental to sustain cultures of participation and 
allow end users to collaborate to system design and 
evolution at use time. For this reason, contrarily to other 
block-based approaches, in TAPASPlay blocks do not 
represent programming statements (like for example, the "if-
then" block in Scratch) but remain at a higher level of 
abstraction, to promote problem decomposition abilities 
rather then programming ones. 

Like TAPAS, TAPASPlay considers tangible user interfaces 
and physical object manipulation as fundamental tools to 
make user activities more engaging. Indeed, in a study with 
children aged 5-9, it has been demonstrated that tangible 
programming has the potential to help children cultivate 
skills such as abstraction and problem decomposition [24]. 
Similarly, we would like to demonstrate in the future that 
end users can more easily acquire CT skills through tangible 
interaction, and thus become proficient in end-user 
development activities. In addition, TAPASPlay includes 
Game-Based Learning to make the experience engaging and 
social. In particular, we would like to contribute to the recent 
research trend that explores learning through game play 
[13], instead of learning through designing systems, as a 
new pedagogical approach to fostering CT skills. 

In TAPAS a challenge was observed concerning the duality 
of composing and executing workflows, both requiring the 
use of tangible interaction through smartphone assuming 
two different meanings, as tangible object and as source of 
data [21]. On the contrary, TAPASPlay detaches 

composition from execution by offering two different 
interaction styles and tools: puzzle-based interaction with a 
display/surface where a smartphone is used for composing 
the strategy (problem solving); whilst, VR is adopted for 
checking solution execution. This mechanism fosters the 
design-debug-run stages, three key aspects of Computational 
Thinking [13], or in other terms, the process of problem 
formulation-solution expression-execution and evaluation 
[17]. 

Analysis, abstraction, decomposition, and automation all 
come into this game-play. While automation is supported by 
VR, analysis, abstraction and problem decomposition are 
types of reasoning that players are supposed to apply when 
trying to maximize the force points, under the constraints 
represented by shapes and limited energy points. As a matter 
of fact, the choice of displaying all transformations together 
at the start of the game makes deliberately complex for the 
player to formulate a straightforward solution. On the other 
hand, if the player is “lazy” and does not want to apply a 
methodic decomposition process, but merely tries to satisfy 
the constraints, a solution would be reached, but chances 
that it is a good one are quite low, in terms of force points. 
Therefore, the player would try to “fix it” by analyzing it 
and identifying the weakest subsequence of transformations. 
Hence, the solution would be reformulated by replacing the 
poor part with a different sequence of pieces. This process 
might be repeated several times, inducing the player to 
iteratively apply the model of computational thinking 
process proposed in [17].  

Let us notice that all the above skills are indeed crucial for 
the end users to play an active role in the algorithmic 
solution proposed and discussed with technologists, 
therefore ultimately unveiling the end users’ inner model of 
the problem scenario tackled by the meta-design approach. 
Lastly, Kazimoglu et al. [13] add also socialization to CT 
skills fostered by learning through game play. In 
TAPASPlay, it is reasonable to expect that the gaming 
experience could lead users to socialize by sharing thoughts 
about their approaches, thus stimulating cooperative strategy 
development useful in co-design processes. 

TAPASPlay is however a first proposal to fostering CT 
skills in end users. Experiments with domain experts and 
industrial designers will be carried out in the next future to 
demonstrate the validity of the idea. Furthermore, several 
extensions of TAPASPlay have been already planned, in 
order to tailor the system to end users' characteristics and 
introduce different levels of complexity in the game. At the 
moment, only a VR simulation of the battle is available as 
outcome of the game; however, the system could be 
extended adding a more interactive functionality that better 
resembles the debugging activity, in which players can 
compare step-by-step how they built their swords and 
eventually see what was the optimal solution. 
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