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Abstract. XBadges is a research project based on the hypothesis that 

commercial video games (nonserious games) can train soft skills. We measure 

persistence, spatial reasoning and risk taking before and after subjects 

participate in controlled game playing sessions. In addition, we have developed 

an automatic facial expression recognition system capable of inferring their 

emotions while playing, allowing us to study the role of emotions in soft skills 

acquisition. We have used Flappy Bird, Pacman and Tetris for assessing 

changes in persistence, risk taking and spatial reasoning respectively. Results 

show how playing Tetris significantly improves spatial reasoning and how 

playing Pacman significantly improves prudence in certain areas of behavior. 

As for emotions, they reveal that being concentrated helps to improve 

performance and skills acquisition. Frustration is also shown as a key element. 

With the results obtained we are able to glimpse multiple applications in areas 

which need soft skills development. 

Keywords: Video Games, Soft Skills, Training, Skilling Development, 

Emotions, Cognitive Abilities, Flappy Bird, Pacman, Tetris.  

1 Introduction 

There is no consensus about what soft skills are and an absolute description or 

classification is missing. Among the various perspectives taken by different authors, 

one of the most useful is defining soft skills in relation to the workplace. In this sense, 

soft skills can be seen as interpersonal, human, people or behavioral skills necessary 

for applying technical skills and knowledge in the workplace [1] or as a new way to 

describe a set of abilities or talents that an individual can bring to the workplace [2].  

Additionally, soft skills can be categorised as: (1) intrapersonal and interpersonal 

skills; (2) personal and social skills; and (3) cognitive skills [3] and can also be 

attributed intensity levels [4, 5]. 

In this context, it is very important to measure and boost soft skills. Some authors 



think that [6, 7, 8] as organizations become increasingly diverse, the ability to exhibit 

some soft skills like critical thinking or decision making with confidence can provide 

greater opportunities for employment. Unfortunately, even though communication 

and soft skills are noted by employers as important skills in the workforce, they are 

highly lacked by recent graduates applying for employment [9, 10, 11]. 

Employers are looking for methods to reduce the costs of identifying soft skills 

through behavioral interviews. Unfortunately, such procedures are subjective, 

expensive and time-consuming. Furthermore, they cannot be used to filter out large 

amounts of CVs in the initial stages of the hiring process [12]. 

In the world of formal education the landscape of identification and evaluation of 

transversal competences is perhaps even more complex than in the labor market since 

these skills are hardly being evaluated and trained. In most cases, there is no standard 

and quantitative system available for teachers. Transversal competencies hardly get 

evaluated and trained. As a consequence, it is difficult to add soft skills related 

training as this would overload the teaching agenda and would entail additional costs.  

In this context, video games are very useful identification and training tools. 

Nowadays, they are a very popular element, in fact they have become the most used 

artifact in the entertainment industry. In addition their presence begins to influence 

other aspects or areas a priori non-ludic. 

This study was born from a research project called XBadges, cofunded by the 

Ministry of Industry, Energy and Tourism, Government of Spain, 8th in the AEESD 

call, forming a consortium led by the company COMPARTIA, which subcontracted 

both GECON.es foundation (gamification experts) and the University of Barcelona 

(for the creation of an artificial vision system). 

The objective of XBadges is to facilitate, with the use of software, the training and 

evaluation of soft skills of the users through the use of commercial video games and, 

if required, to grant certifications of the acquisition. Thus, with XBagdes both the 

business and education sector would have a tool to meet their current and future needs 

related to the identification and training of soft skills. Much of the current literature is 

already investigating the effects of video games on human cognition [13, 14, 15], but 

very few studies [16, 17, 18, 6] relate these to soft skills. 

Specifically, and following an initial review of commercial video games in open 

source and preliminary soft skills (commented below), the following games and soft 

skills were chosen as hypotheses for the research: Pacman (Risk Taking), Tetris 

(Spatial reasoning) and Flappy Bird (Persistence). These soft skills were chosen based 

on a review of the competencies most valued by various organizations and institutions 

[19, 20]. 

As for the video games, open source video games were needed to embed internal 

indicators within the code and measure the skills with our telemetry algorithm 

(actions done by the player). That telemetry was created thanks to a literature review 

specific to each skill, as we show next. These review was also another reason why we 



have chosen the mentioned games, since they have the necessary elements to 

stimulate the skills but they are still technically simpler than most of the current 

commercial video games (so we can link a specific behavior and embed the code to 

track skill acquisition into the game). 

For tracking persistence with Flappy Bird, as [21, 22] said: "A subject is persistent 

when, faced with a situation in which it has to emit responses to reach a given 

solution (reach a score of 20 in Flappy Bird, for example), it maintains a high 

response rate (the user keeps trying) despite the low frequency of reinforcement (the 

user keeps dying)". So, in this case, the telemetry was tracking the tries over the time 

and how far the subjects reach. 

In Pacman the telemetry tracks the behaviors that are risky, like being near a ghost, 

eliminate them when they are vulnerable but the player knows there is only a little 

time of invulnerability left, etc. So following [23, 24] we can infer that the behavior 

behind these tracked actions is Risk Taking (derived from decision making). 

Finally in the case of Tetris, we decided to replicate -as control measure- some 

hypothesis [25] since there are already a lot of research about how Tetris can change 

our minds [26, 27, 28] and study [25] specifically measure Spatial Reasoning. The 

telemetry in this game tracked completed lines and the time between pieces 

placement, based on the premise that repeated exposure to changing visual patterns in 

a 2D virtual space (manipulable under rotation and translation) with progressive 

difficulty increase curve will decrease the time required for information processing, 

when processing speed being faster and rotation and translation more effective (set of 

skills that combine spatial reasoning) as the previous authors argued. 

The software also captured the emotions thanks to the system of artificial vision. 

Once a face is detected, emotion recognition is performed in the corresponding 

bounding box/area of interest. For the recognition of emotions in images, we based on 

deep learning, in particular we took benefit of the pre-trained VGG convolutional 

neural network to be fine-tuned on emotions considering annotating public emotion 

datasets. As a result, a deep learning model was trained, able to recognize face 

textures representative of the presence of a particular emotion. Thus allow us to see 

the effect of the emotions of the users in the data and in the competences acquisition. 

The emotions we have captured are of Joy, Frustration, Concentration and Boredom. 

The selection of these emotions has been made taking into account the most studied 

emotions and the research behind the recognition of emotions [29, 30]. 

The objective of the research is to contrast the following hypotheses: 

1. Commercial video games as a pedagogical differentiator elements (nonserious 

games), improve soft skills. 

2. The percentage of emotions generated at a general level correlates with the 

percentages of improvement of the users. 



3. Emotions generated by users at specific times vary according to the scores 

obtained from some indicators (completing a line in Tetris and eliminating 

ghosts in vulnerability mode A or B in Pacman). 

2 Methods 

2.1 Participants 

The sample consists of 15 subjects (12 males and 3 females), randomly divided into 3 

groups of 5 people each (group 1 to FlappyBird, group 2 to Tetris and group 3 to 

Pacman). We have chosen 5 as minimum number of people for statistical analyzes to 

be reliable and valid, as indicated in [31] and taking as reference other studies that 

also have a reduced sample size [32, 33]. The inclusion criteria applied in the 

sampling is: 

- Age between 18 and 50 years. 

- Not accustomed to playing the video games of the research or similar 

(minimum 1 year without previous experience). 

The participants were searched through the social networks, personal contacts and 

also thanks to a collaboration with Yuzz Sant Feliu (center of innovation and co-

working). 

2.2 Materials 

On one hand, one of the materials we have is the XBadges software platform. This 

software has integrated the three video games previously commented with the added 

telemetry. It also has the aforementioned system of facial and emotional recognition 

that allows the recording of the emotions of the players while playing, as we will 

explain next. 

On the other hand, we list below the standardized tests that have been used as a 

reference measure to test whether or not there is a real acquisition of the mentioned 

soft skills and thus to verify the validity of the indicators as measuring instruments: 

 

- Risk Taking - Domain-Specific Risk-Taking (Pacman) 

Domain-Specific Risk-Taking (DOSPERT) [34] is a psychometric scale that assesses 

risk taking in 5 different domains: financial decisions, health/safety, recreation, ethics, 

and social decisions. The subjects rate the likelihood of specific risk activities for 

each domain. A second and third part of the questionnaire assesses the perception of 

the risk magnitude of the expected benefits of the activities of the 1st part. The 

reduced and revised spanish version of 30 items [35] is used. 



- Persistence - Big Five subscale (Flappy Bird) 

As a personality test, the Big Five Questionnaire allows us to observe patterns and 

profiles of behavior in users. It has multiple questions grouped in different 

dimensions. Specifically, the dimension "Conscientiousness", which bifurcates in two 

sub-dimensions: "Scrupulousness" and "Perseverance". Given the purpose of the 

experiment, we are interested only in the subscale that measures Perseverance 

(Persistence). Again a spanish version is used [36]. 

- Spatial Reasoning – Fibonicci’s Test (Tetris) 

We have used the web test [37] that was used in the study [25] to measure spatial 

reasoning ability. This test consists of a series of items showing a series of 3D figures 

displayed and the subject has to choose one option (between 4) of the same figure, but 

folded. 

2.2.1 Automatic Facial Expression Recognition 

Facial expressions are strong predictors of affective states. In order to automatically 

infer the affective state of subjects while playing video games we have built an 

Artificial Vision System (AVS) capable of recognizing a set of predefined 

expressions from facial images. 

Using human annotators to manually label facial images with one of the predefined 

expressions is a cumbersome process, prone to subjectivity and human errors. Being 

able to train an automatic prediction model, it opens the way to detecting facial 

expressions in large amounts of data in an objective way allowing extended statistical 

analysis. 

In order to detect the four predefined emotions on the face (Joy, Concentration, 

Frustration and Boredom) we have mapped each emotion into a corresponding 

universal facial expression. In this sense we use Neutral faces as marker of 

Concentration, Happy faces as marker of Joy, Sad faces as marker of Boredom and 

both Angry and Disgusted faces as markers of Frustration. 

Model. We have train a deep neural network architecture in order to classify a face 

into one of the targeted facial expressions. The network follows GoogleNet [38], a 

well known architecture in the machine learning community which has been 

successfully used for many visual pattern recognition tasks. The network is based in 

the repetition of the same module (called Inception) in a stacked manner, following 

the idea of network in network. This module is repeated nine times inside GoogleNet 

and is composed by a first level of 1x1 convolutions and a 3x3 max pooling and a 

second level of 1x1, 3x3, 5x5  convolutions. After each Inception module, there is a 

filter concatenation step that joins all previous results. The width of Inception 

modules ranges from 256 filters (in early modules) to 1024 in top Inception modules. 

Given the depth, propagating gradients back through the network is problematic. In 

order to alleviate the vanishing gradient problem 2 auxiliary classifiers are connected 

to intermediate layers of the network. At inference time, these auxiliary networks are 



discarded.  

Pretraining. Due to its large number of parameters, training GoogleNet from scratch 

would have required large amounts of data. As our facial expression dataset is 

relatively small we use transfer learning for initializing the network’s weights. The 

initial network weights were found by training the network for Age/Gender facial 

classification using hundreds of thousands of images, coming from a filtered mix of 

Imdb-Wiki [39] and Adience [40] datasets. This previous network is specialized to 

detect details in faces and was a good initial point for facial expression classification.  

Training. Public data containing universal facial expressions of emotion is widely 

available, making possible the training of complex models capable of learning 

statistical relations between the morphology of the face and target classes. In "Fig. 1", 

a selected set of examples used to train our model are depicted.  

 
Fig. 1. Examples of targeted facial expressions during training. From left to right: Neutral, 

Happy, Sad and Angry. The training samples were collected from 3 different datasets. On 

top row Radboud [41], middle row KDEF [42] and on the bottom CK+ [43]. 

 

The data used is a compilation of three facial expression datasets, totalling 6562 

images. About 55% is from the Cohn-Kanade dataset [43], 15% from the Radboud 

dataset [41] and approx. 8% from KDEF dataset [42]. In order to keep class balance, 

additional 1461 images (about 22% of the total data corpus) were collected from 

queries on the web.   

During fine-tuning, 75% of the dataset is used for training and the rest of 25% for 

validation. The learning rate has been set to 0.01 with an automatic decrease of 1/10 

every 33% of the training phase. The Stochastic Gradient Descent (SGD) 

optimization method was used with a batch size of 32 images. We have stopped the 

fine tuning after 100 epochs, at this stage the network performance begin saturated. 

2.3 Procedure 

In the first place, the subjects completed the questionnaires corresponding to each 

video game (as a pre-test phase), explained in the previous section. Then each 

participant played the video game that corresponds to his group for 3 sessions of 40 

minutes each, sessions distributed at the convenience of the subjects in a maximum 

period of 1 week, with no possibility of doing two or three sessions in one day. The 



design of temporality is based on a similar study [28]. In the Flappy Bird group the 

subjects were able to stop playing whenever they wanted after the 20th minute. When 

measuring Persistence, we had to leave a margin of time in which the subject decided 

to play or not, since otherwise we would have been skewing the persistence scores. 

Finally, at the end of the 3rd session, the subjects had to re-complete the 

questionnaires (as a post-test phase) so we were able to compare the questionnaire 

results before and after the game training. 

3 Results 

After the analysis of the data obtained, the following results are presented, grouped by 

hypotheses: 

3.1 1º Hypothesis: Video games & soft skills. 
 

The data are shown in table form, assembled by indicators / telemetry and 

standardized tests, by videogame: 

- Flappy Bird 

Sessions data have been modified by removing the high end values (40 minutes) for 

the “ceiling effect”. Some of the data (about 30%) have been provoked by the end of 

session time, so we cannot infer that these are the times users would adjust if they had 

more time to play. The final table after clustering and descriptive analysis of the data 

is as follows "Table 1": 

 

Table 1. Total time indicator data of Flappy Bird. 

 1º Session 2º Session 

Average 31’ 38’ 

Standard error 2,415’ 0,913’ 

 

Statistical significance of Student's t-test for paired samples accepted (t= -2,818, p= 

0,033). Below are the data obtained through telemetry in video games "Table 2". This 

data have been cleaned of registry errors: 

Table 2. Telemetry data of Flappy Bird. 

 50' 60' 70' 80' 

Average 0,082 0,092 0,111 0,116 

Standard error 0,045 0,049 0,059 0,058 

90' 100' 110' 120' 130' 

0,120 0,124 0,130 0,138 0,147 

0,056 0,057 0,060 0,062 0,062 

 



Statistical significance of repeated measures ANOVA accepted with epsilon GG 

adjustment (Epsilon GG= 0,17; F= 10,003, p= 0,025). The results of the standardized 

test Persistence Big Five subscale "Table 3" are presented, with statistical significance 

of Student's t-test for paired samples not accepted (t= -1,176, p= 0,152): 

Table 3. Data of Perseverance Subscale of Big five. 

 Pre phase Post phase 

Average 47 48,8 

Standard 

error 
1,923 1,827 

 

 

- Tetris 

Data obtained from the Tetris telemetry "Table 4": 

Table 4. Telemetry data of Tetris. 

 10' 70' 80' 

Average 681,200 798,836 789,279 

Standard error 122,486 96,582 113,516 

90' 110' 120' 130' 

755,369 773,241 779,983 792,213 

90,746 107,316 115,917 113,825 

 

Statistical significance of repeated measures ANOVA accepted with epsilon GG 

adjustment (Epsilon GG= 0,35, F= 6,614, p= 0,020). The results of the standardized 

test that measures spatial reasoning are shown below "Table 5" with statistical 

significance of Student's t-test for paired samples accepted (t= -2,449, p= 0,035): 

Table 5. Spatial reasoning test results. 

 Pre phase Post phase 

Average 12,4 14,2 

Standard 

error 
1,631 1,772 

 

 

- Pacman 

Data obtained from the Pacman telemetry "Table 6 ": 



Table 6. Telemetry data of Pacman. 

 10' 20' 30' 50' 

Average 48,930 49,008 54,733 53,199 

Standard error 9,350 10,094 9,551 10,128 

90' 110' 120' 130' 

755,369 773,241 779,983 792,213 

90,746 107,316 115,917 113,825 

 

Statistical significance test of repeated measures ANOVA not accepted with epsilon 

GG adjustment (Epsilon GG= 0,22; F= 2,499, p= 0,170). 

Regarding the results of DOSPERT (test that measures Risk Taking), no statistically 

significant differences were found in general or in any of the subscales except for 

Safety and Health (only in the part of the test that measures probability of behavior), 

where a significant difference of means was found through the Student's t-test for 

paired samples (mean pre= 22,6 & mean post= 19; t= 2,882, p= 0,022). 

 

3.2 2º Hypothesis: Emotions & improvement percentage. 
 

The correlations between the four emotions (J= Joy, C= Concentration, F= Frustration 

and B= Boredom) and the percentage of improvement of the three video game 

indicators (FB= Flappy Bird, T= Tetris and P= Pacman) are shown “Table 7”: 

Table 7. Pearson’s correlations (r) and Spearman’s (rho) between emotions and improvement 

percentage. *Statistically significant correlation (p= 0,02). 

 J  C  F B 

FB r= -0,86 r= -0,85 rho= 0 r= 0,49 

T rho= 0,3 r= 0,66 r= -0,53 rho= 0,5 

P r= 0,16 r= 0,93* r= -0,77 r= -0,41 

 

3.3 3º Hypothesis: Emotions & video game indicators. 
 

Next, the averages of the percentages of emotions present in the moments in which 

the indicated criteria were fulfilled are presented "Table 8", following the 

abbreviations of the previous hypothesis. The indicators are: completing a line in 

Tetris (reflected in the table as Tetris) and eliminating a ghost in vulnerability mode A 

and B in Pacman (reflected as Pacman 1 and Pacman 2 in the table): 

Table 8. Average of emotions percentages present in each indicator. 

Indicators J % C % F % B % 

Tetris 7,56% 50,32% 34,21% 7,85% 



Pacman 1 5,65% 25,36% 63,61% 5,37% 

Pacman 2 4,29% 25,23% 65,46% 5,07% 

4 Discussion 

Interpreting the results, we can affirm the following premises, again by each 

hypothesis: 

 

4.1 1º Hypothesis: Video games & soft skills. 
 

- Flappy Bird 

Significant differences were detected in the data obtained through the Flappy Bird 

indicators, with a total time of 130 minutes of training (F= 10,003; p= 0,025). 

However, we cannot say that these changes reflect an improvement in persistence 

capacity outside Flappy Bird, given the nonsignificance changes in the Big Five 

subscale measures (t= -1,1766; p= 0,152). 

In spite of this we can establish new lines of investigation guiding the video game 

Flappy Bird as a measure of persistence more sensitive than the standardized test 

itself, since although the change in the questionnaire is not significant, the average of 

the scores of the same one rises (47 vs 48,8). Under this line we would face a 

nonsignificance caused by a small sample size, memory bias when repeating the same 

test in just 1 week, little training time or any other variable outside the game. 

Supporting this new hypothesis, one of the indicators that theoretically relates more to 

Persistence, “playing time, number of tries” (response frequency), did show 

significant changes (t= -2,818; p= 0,033) indicating that players spent more time in 

the game the longer they played. 

- Pacman 

As can be seen previously, significant changes have been detected in one of the 

DOSPERT subscales. In particular, against the approach of the initial hypothesis, 

there is a decrease in the probability of risky behavior in the area of Health and Safety 

(t= 2,882; p= 0,022), so we can say that playing Pacman with a training time of at 

least 90 minutes, increases the prudence in the mentioned area.  

This is an unexpected result since we believed Pacman would increase the risk taking 

behaviour instead of diminish it. We believe that this reduction in risk-taking behavior 

may reflect an adaptation to the game strategy. As the subject plays Pacman, it is 

more aware of the risks that exist within the game and adjusts its strategy to get more 

points and die less, reducing risky behaviors. 

It is also pleasantly surprising that the behaviour change in the video game may 

reflect a change in the actual risk taking behavior. With these results several 

applications could already be seen, for example in the clinical field where impulsivity 



or recklessness are very present in most mental disorders. 

- Tetris 

Tetris training with a minimum of 70 minutes of play has been shown to significantly 

improve spatial reasoning ability (F= 6,61449348; p= 0,02). These results fit the 

replica of the study [25] where they also relate the same video game and spatial 

reasoning, obtaining similar results. In addition this research also specifies the 

improvement effect of Tetris since the sessions have been carried out with a lower 

sample size in regard to the original study. 

We also emphasize in a general way, that not having measured other soft skills, we 

are leaving aside relations that can be significant. A good way to evolve the research 

would be to expand the range of capabilities to measure and relate them to different 

(or the same) video games. 

We also discuss the limitations of the memory effect in the tests complementation of 

the post phase (pre-post test design), the small sample size per group and the short 

temporal design of experimental sessions, so that the results obtained could be 

underestimated (statistical error Type II). 

 

4.2 2º Hypothesis: Emotions & improvement percentage. 

The results obtained regarding the emotions related to the percentage of improvement 

of the indicators, do not follow the initial approach. In fact, only one correlation of the 

12 (4 emotions * 3 games), Concentration & Pacman, is significant (r= 0,93, p= 0,02), 

showing that the more concentrated Pacman is played, more is the improvement 

playing the video game. 

The value of the correlation is very sensitive to the number of data available to 

analyze, so if the study had been carried out with a large number of people and 

therefore, there would be many more data to analyze, the value of the correlations 

would oscillate as well as their statistical significance, confirming perhaps the initial 

hypotheses that to more presence of boredom less percentage of improvement, or 

greater the presence of joy is, greater the percentage of improvement, for example. 

4.3 3º Hypothesis: Emotions & video game indicators. 

To our surprise, joy was not one of the most prevalent emotions when these indicators 

were met. In particular, in Tetris, when completing lines during the games, the 

subjects showed high concentration percentages (50,30%) while the other emotions 

did not have as much presence. An example of what is commented "Fig. 2". In 

Pacman, while reaching and eliminating ghosts in vulnerability mode A and B, the 

prevailing emotion was in both cases frustration (with more than 63% in both cases). 



 

Fig. 2. Artificial vision module inside XBadges platform. Distribution example of emotions of 

a Tetris player. 

Contrary to expectations, concentration and frustration are present in moments where 

the user is positively reinforced by the video game. Perhaps we are facing here an 

implicit relationship between these emotions and the acquisition of skills. 

The analysis and global interpretation of the results suggest that video games can be 

useful tools to enhance or boost certain soft skills, as well as the presence of emotions 

is closely linked to the motivation of the players and their development of soft skills 

within the game. With this findings, the commercial video games (not only serious 

ones) win value as a training tool for soft skills, offering them as a new form of tool 

for markets with possibility of application in multiple sectors. 

In the business world, on one hand, providing employees with a tool for identifying 

and training soft skills required in certain jobs, and on the other hand, to employers, 

offering a more automated CV screening tool. 

As for the academic world, showing the use of video games as a methodology to 

enhance soft skills which remain unrecognized in most academic curriculum and thus 

better prepare students to adapt to the context that awaits them.  

Another sector where XBadges idea could be applied is eHeatlh. There are many 

diseases or pathologies that impair certain soft skills. Although, in particular, more 

research is needed in this field, alleviating certain symptoms or improving 

dysfunctional skills with video games could prove to be an effective method in 

addition to engage to the patient. 

And above all, regardless of the sector of application, XBadges offers information to 

the population about the positive influence of their play habits on their minds and 

behavior, since players will continue to play the same, but knowing that they are 

boosting their abilities. 
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