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Abstract. The ever increasing number of sensor-equipped devices comes
along with a growing need for data analysis techniques that are able to
process time series streams in an online fashion. Although many sensor-
equipped devices produce never-ending data streams, most real-world
applications merely require high-level information about the presence or
absence of certain events that correspond to temporal patterns. Since
online event detection is usually computational demanding, we propose
a sliding window filter that decreases the time/space complexity and,
therefore, allows edge computing on devices with only few resources.
Our evaluation for online gesture recognition shows that the developed
filtering approach does not only reduce the number of expensive dis-
similarity comparison, but also maintains high precision.
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1 Introduction

As time goes by things change, and those who understand change can adapt
accordingly. This basic principle is also reflected in today’s digital society, where
sensor-equipped devices measure our environment and online algorithms process
the generated data streams in quasi real-time to inform humans or cognitive
systems about relevant trends and events that impact decision making.

Depending on the domain researchers either speak about events, patterns,
or scenes that they aim to detect or recognize in time series, sensor, or data
streams. Applications range from event detection for smart home control [17]
over frequent pattern mining for engine optimization [16] to scene detection for
video content [1] and gesture recognition for human-computer interaction [11].

Commonly online algorithms for data streams employ the popular sliding
window technique [8], which observes the most recent sensor measurements and
moves along the time axis as new measurements arrive. Usually each window is
examined for a set of predefined events, which requires the comparison of the
current time series segment and all preliminary learned instances of the relevant
temporal patterns. In general, the pairwise dissimilarity comparisons of temporal
patterns are performed by time series distance measures [18].



The time and space complexity of the sliding window technique increases
with decreasing step size as well as growing window size, measurement frequency,
and number of preliminary learned instances. High computational demand and
memory usage is especially problematic for embedded systems with only few
resources [9,19], which applies to the greatest part of sensor-equipped devices
within the typical Internet of Things (IoT) scenario.

Our aim is to reduce the number of computational expensive dissimilarity
comparisons that are required by the sliding window technique. To this end
we propose a sliding window filter [10], which is able to decide whether the
current window should be passed to a time series classifier or not. Although the
filter could be considered as a binary classifier itself, it merely employs statistical
measures with linear complexity and, thereby, avoids using computationally more
expensive dissimilarity comparisons in many cases. Our approach to mitigate
the computational complexity of event detection in data streams is different
from other techniques in that we refrain from accelerating time series distance
measures [13,15] or reducing dataset numerosity [20].

We demonstrate the practical use of our proposed sliding window filter for
gesture recognition in continuous streams of accelleration data [10,11], where a
great amount of the necessary but expensive Dynamic Time Warping (DTW)
distance calculations [7] is replaced by less demanding statistical measures, such
as the complexity estimate [2] or sample variance [3]. Our experimental results
show that the number of DTW distance calculations can be cut in half, while
still maintaining the same high gesture recognition performance.

The rest of the paper is structured as follows. Chapter 2 introduces back-
ground and notation. Chapter 3 and 4 introduce and evaluate our proposed
sliding window filter. We conclude with future work in Chapter 5.

2 Background and Notation

This section gives more background on the sliding window technique [8], DTW
distance measure [7], and time series normalization [4], which are fundamental
building blocks of our conducted online gesture recognition study [10]. Table 1
introduces the notation that we use for formal problem description.

Symbol Description

Q a time series of size n with Q = (q1, q2, . . . , qi, . . . , qn)
Q[i, j] a subsequence time series of Q with Q[i, j] = (qi, qi+1, . . . , qj)
t the current time
µ the mean of a time series Q
σ the standard deviation of a time series Q
η, z two different time series normalizations

Table 1. Notation used for formal problem description.



2.1 Sliding Window Technique

Given a continuous time series stream Q, the sliding window technique examines
the w most recent data points and moves s steps along the time axis as new
measurements arrive, where w and s are referred to as window and step size.
This technique has the advantage that it does not need to store the never-ending
stream of data, but it also implies that measurements can only be considered for
further data analysis as long as they are located within the current window.

In most applications, each window is passed to a data processing unit, which
performs some kind of time series classification, clustering, or anomaly detection.
For example in online gesture recognition [10], one can employ a nearest neighbor
classifier, which compares each window to a training set of preliminary learned
time series instances. In case that the current window Q[t−w, t] is similar to one
of the known gestures, where similar means that the time series distance falls
below a certain threshold, a corresponding action can be triggered. A popular
distance measure for gestures [11] and other warped time series is described in
the following subsection.

2.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a widely used and robust distance measure
for time series, allowing similar shapes to match even if they are out of phase
in the time axis [7]. Traditionally DTW computes a full distance matrix to find
an optimal warping path, where possible nonlinear alignments between a pair
of time series include matches of early time points of the first sequence with
late time points of the second sequence. To prevent pathological alignments, the
size of the warping window can be constraint, for instance, by the Sakoe-Chiba
band [12] or the Itakura parallelogram [6]. Figure 1 illustrates the DTW distance
measure using a Sakoe-Chiba band of 10%, where the percentage of the warping
window refers to the length of the compared time series.
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Fig. 1. Time series Q and C compared by DTW with a Sakoe-Chiba band of 10%
time series length. The left plot illustrates the nonlinear alignment between the two
sequences and the right plot shows the optimal warping path within the specified band.



2.3 Time Series Normalization

Literature on time series mining [5,18] suggests to normalize all (sub-)sequences
before measuring their pair-wise dissimilarity by means of a distance measure.
There are multiple ways to normalize time series, where two common techniques
[4] are compared in this study.

Given is a time series Q = (q1, . . . , qn) of length n, we can compute its mean
µ and standard deviation σ as followed:

µ =
1

n

n∑
i=1

qi σ =
1

n

n∑
i=1

(qi − µ)2

Having defined the mean µ and standard deviation σ, we can normalize each
data point qi (with 1 ≤ i ≤ n) of a time series Q = (q1, . . . , qn) in one of the two
following ways [4]:

η(qi) = qi − µ (1)

z(qi) =
qi − µ

σ
(2)

Equation 2 is commonly known as the Z-score. For the sake of simplicity we
refer to η and z normalization [4] for the rest of the paper.

3 Filtering Approach

This section does not only explain the concept of our proposed filtering approach,
but also describes how to integrate our filter into the well-known and widely-used
sliding window technique, as shown in Figure 2.

In general, the sliding window filter considers the most recent measurements
in a data stream. The considered measurements are usually passed to a classifier,
which aims at categorizing the current time series subsequence. In case that the
current subsequence was assigned to a known category or class, a corresponding
action is triggered and the next non-overlapping window, w steps along the time
axis, is examined. If the current subsequence just contains noise and no category
was assigned, the next overlapping window, s steps along the arrow of time, is
processed. The main limitation of this traditional sliding window technique is its
computational complexity, which increases with growing window size, shrinking
step size, higher sample rate, and larger training set.

For instance, given a data stream of length l=10090, a window size of w=100,
and a step size of s=10, we need to classify (l − (w − s))/s = 1000 windows.
Moreover, assuming 20 training time series, classifying 1000 windows by means
of the nearest neighbor approach requires exactly 20 ∗ 1000 = 20K dissimilarity
comparisons. In case that we employ unconstrained DTW as time series distance
measure, we need to compute 20K full warping matrices, each of them containing
w ∗ w = 10K cells, resulting in a total amount of 200M distance operations.
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Fig. 2. Flowchart of sliding window technique with filter, highlighted in blue. The
current time is denoted by t. Window and step size are denoted by w and s respectively.

In order to reduce the large number of computational expensive dissimilarity
comparisons, we propose to employ a sliding window filter, which is capable of
separating signal from noise, only passing promising time series subsequences
to the classifier. In that sense, the proposed filter can also be considered as a
binary classifier, which prunes windows that are likely to be noise and forwards
subsequences that exhibit similar features as the training time series. Extracting
characteristic time series features that can be used as a filter criterion should
ideally exhibit linear complexity, because we aim at replacing more expensive
dissimilarity comparisons. Suitable filter candidates include statistical measures,
such as the sample variance [3] and length normalized complexity estimate [2],
explained in more detail below.

Given is a time series Q = (q1, . . . , qn) with length n, we can define the
sample variance (V AR) and length normalized complexity estimate (LNCE) as
follows:

V AR(Q) =
1

n

n∑
i=1

(qi − µ)2

LNCE(Q) =
1

n− 1
2

√√√√n−1∑
i=1

(qi − qi+1)2

Having defined the above statistical measures, we are able to compute the
V AR and LNCE for all training time series and, subsequently, use the resulting
range of statistical values to learn an appropriate filter interval. During testing,
each window that exhibits a measured value within the learned interval is passed
to the classifier or pruned otherwise. In order to avoid excessive pruning of
relevant windows, we further more introduce a multiplication factor, which allows
us to expend the interval boundaries by a certain percentage.

In general, we aim at designing a filter with high precision and recall. In our
case, precision is the ratio between the number of relevant windows that were



passed to the classifier (true positives) and the number of all windows that were
passed to the classifier (true positives and false positives). Consequently, recall
is the ratio between the number of relevant windows that were passed to the
classifier (true positives) and the number of all relevant windows (true positives
and false negatives). An exhaustive evaluation of our proposed sliding window
filter in dependence of all model parameters is presented in the next section.

4 Evaluation

This chapter describes the data aggregation in Section 4.1, data preparation in
Section 4.2, experimental setup in Section Section 4.3, and used performance
measures in Section 4.4, before presenting our results in Section 4.5.

4.1 Data Aggregation

We employed a Wii RemoteTM Plus controller to record different gestures for
multiple users. Each user performed 8 gestures, first in a controlled environment
to record clean training samples and afterwards in noisy environment to record
a test time series stream, which includes all predetermined gestures as well as
acceleration data that corresponds to other physical activities. All records are
available for download on our project website [10]. A sample record containing
both training and test gestures is illustrated in Figure 3.

Fig. 3. An sample record of 98 seconds length, containing 8 training gestures at the
very beginning, directly followed by a test time series stream that comprises the same
8 gestures mixed with acceleration data of various physical activities. Gestures are
highlighted by blue rectangles and are also marked in the recorded data. Note that the
length of gestures can vary for training and test set as well as for different records.

4.2 Data Preparation

All of our data records are resampled and quantized before further analysis. In
general, dimensionality and cardinality reduction of time series is performed to
ease and accelerate data processing by providing a more compact representation
of equidistant measurements [11].

Resampling: The recorded acceleration data was resampled by means of the
moving average technique, using a window size of 50 ms and step size of 30 ms.



Acceleration data (a) in dm
s2

Converted value

a > 200 16
100 < a < 200 11 to 15 (five levels linearly)
0 < a < 100 1 to 10 (ten levels linearly)
a = 0 0
−100 < a < 0 -1 to - 10 (ten levels linearly)
−200 < a < −100 -11 to - 15 (five levels linearly)
a < −200 -16

Table 2. Conversion of recorded acceleration data from dm
s2

scale to integer values.

Quantization: The resampled records were then converted into time series with
integer values between -16 and 16, such as suggested in related work [11] and
summarized in table 2.

4.3 Experiment

The proposed sliding window filter has several model parameters that need to
be carefully tuned in order to achieve optimal performance. Depending on the
application domain we need to select an appropriate window and step size, time
series normalization, dissimilarity threshold, and filter criterion. In the following
we describe all parameter settings that were assessed in our empirical study:

– The window size determines the number of most recent measurements
contained in the examined time series subsequences. We tested four different
sizes that were learned from the training gesture, including min, max, and
avg length as well as the mid-point of the range.

– The step size defines the gap between consecutive time series windows. As
default setting we use one tenth of the window size.

– For online gesture recognition we employ the nearest neighbor classifier in
combination with the DTW distance, where we evaluate 34 different Sakoe-
Chiba band sizes, ranging from 1 % to 100 %. Prior to pair-wise comparing
sliding windows and training gestures, the corresponding time series should
be normalized. We evaluate η, z, and no normalization.

– The dissimilarity threshold defines the time series distance at which a slid-
ing window and a training gesture are considered to belong to the same
class. We determine the threshold for an individual class by measuring the
distances between all samples of that particular class and all instances of
other classes. In our empirical study we evaluate the threshold influence for:
(i) one half of the minimum distance - HMinD, (ii) one half of the aver-
age distance - HAvgD, and (iii) one half of the midpoint distance - HMidD.



– The filter criterion is an essential part of our proposed approach. In our
empirical study we evaluate the performance of the two filter criteria, namely
the sample variance VAR and the length normalized complexity estimate
LNCE of a time series. Both filters are tested with different factors that
increase the size of the filter interval from 100 % to 300 %.

Figure 4 visualizes the online gesture recognition results for a sample time
series stream processed by our proposed sliding window filter, after selecting the
above described model parameters with help of the recorded training gestures.

Fig. 4. Visualized results of online gesture recognition for a sample time series stream.
We highlight true positives in green, false positives in red, false negatives in blue, and
true negatives in transparent. Although we see short false detection intervals before or
after true positives, seven out of eight gestures were assigned to the correct class label.

4.4 Performance Measures

Since our proposed sliding window filter is tested on time series streams that
contain various different gestures, we need to treat the described online gesture
recognition challenge as multi-class problem. Common performance measures for
multi-class problems are Precisionµ, Recallµ and Fβscoreµ [14]:

Precisionµ =

l∑
i=1

tpi

/ l∑
i=1

(tpi + fpi)

Recallµ =

l∑
i=1

tpi

/ l∑
i=1

(tpi + fni)

Fβscoreµ = (β2 + 1)PrecisionµRecallµ

/
β2Precisionµ +Recallµ

where β is usually set to one and l denotes the number of classes that require
separate computation of true positives (tp), false positives (fp), and false neg-
atives (fn). These multi-class performance measures allow us to compare and
rank the results for different parameter settings. For our evaluation we employ
the F1scoreµ, which weights Precisionµ and Recallµ equally.

4.5 Results

In order to evaluate the influence of all model parameters that were described
in Section 4.3, we performed a total number of 28152 experiments. Figure 5(a)



illustrates the Precisionµ and Recallµ values for all test runs. A top performance
of around 0.7384 F1scoreµ was achieved by parameter configurations that used
η time series normalization, DTW with a Sakoe-Chiba band of about 18 % time
series length, mid window size, and HAvgD for threshold determination.

Given the best parameter configuration, we investigated the influence of the
individual parameters by changing only one at a time and fixing the others, see
Figure 5(b,c,d). As shown in Figure 5(e), we also evaluated the performance
with V AR, LNCE, and no filter. The best results for each individual gesture
is shown in Figure Figure 5(f). Further tests on the applicability of the sliding
window filter as well as our interpretation of the results are presented below.

Normalization: The influence of the time series normalization is illustrated in
Figure 5(b). We compare η, z, and no normalization, with mid window size and
HAvgD dissimilarity threshold. The best F1scoreµ was achieved by means of the
η normalization, which corresponds to the data points shown in the magnifying
glass. The point cloud in the lower left corner of plot 5(b) are parameter settings
with rather small warping band.

Warping Band: The influence of the Sakoe-Chiba band in combination with the
DTW distance is shown below in Figure 6. For this experiment we selected only
the dominating parameter settings, with η normalization, mid window size, and
and HAvgD dissimilarity threshold. The best F1scoreµ was achieved with a band
with of 18 % time series length.

Dissimilarity Threshold: We evaluate three different ways of determining a dis-
similarity threshold, namely HMinD, HAvgD, and HMidD. For our comparison
in Figure 5(c), we used η normalization, mid window size, and a warping band
of 18 % time series length. The best F1scoreµ was achieved by means of HAvgD,
shortly followed by the HMidD approach. Comparatively high Precisionµ values
were given by HMinD threshold.

Window Size: The influence of the window size determination approach is shown
in Figure 5(d). We compare min, max, avg, and mid window size, with η normal-
ization, HAvgD dissimilarity threshold, and a warping and of 18 % time series
length. The highest Precisionµ, Recallµ and F1scoreµ was achieved by the mid
window size, shortly followed by the avg window size. Figure 5(d) furthermore
suggests to refrain from using max and min window size determination.

Filtering Approach: Given the optimal parameter setting that was determined in
the previous experiments, we are now in the position to assess the influence of the
filtering approach. Figure 5(e) shows the performance with V AR, LNCE, and no
filter. Twenty simulations are reaching a F1scoreµ value greater or equal to 0.7.
Interestingly, top performance was achieved with and without filter. This lead
is to the question of computational complexity, which is answered in following
paragraph.
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Fig. 5. Precisionµ and Recallµ plots illustrating the performance influence of the
individual model parameters. The magnifying glass is focusing on the results with the
highest F1scoreµ. Gray lines indicate the F1scoreµ distribution in 1

10
steps.
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Filter Interval: The filter interval does not only influence the resulting F1scoreµ,
but also the amount of time series dissimilarity comparisons. Figure 7 illustrates
the influence of the interval size in respect to performance and computational
demand. With an appropriate filter interval of about 200 % we are able to
reduce the number of dissimilarity comparisons by one half, while still achieving
relatively high performance values.

100 150 200 250 300
0.6

0.65

0.7

0.75

size of filter interval in %

F
1
sc
or
e µ

LNCE

VAR

No Filter

100 150 200 250 300
0

2,000

4,000

size of filter interval in %

#
1
N

N
-D

T
W

ca
ll

s

LNCE

VAR

No Filter

Fig. 7. Influence of filter interval on the F1scoreµ (left) and the amount of 1NN-
DTW dissimilarity comparisons (right). An optimal tradeoff between performance and
computational demand is achieved at approximately 150 % to 200 % filter interval.

Individual Gestures Finally, we have tested the performance for each of the
examined gestures separately. Figure 5(e) shows the best Precision and Recall
values that were achieved for each gesture. The results demonstrate that some
gestures are easier to recognize than others.

5 Conclusion and Future Work

In this work we have proposed a novel sliding window filter for more efficient
event detection in time series streams, which replaces computational expensive
dissimilarity comparisons by less demanding statistical measures. Furthermore,
we have demonstrated that the developed filter is able to recognize gestures in
continuous streams of acceleration data with high accuracy, while cutting the
number of distance calculations in half.



Possible applications do not only include event detection on mobile device
with few hardware resources, but also distributed sensor networks with limited
bandwidth that communicate high level information instead of transferring raw
data. In future work we plan to investigate a larger variety of statistical measures
that exhibit favorable filtering properties for online gesture recognition as well
as data streams found in other domains.
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