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Abstract
This paper presents a hybrid dynamic data-driven
approach to achieve simple and multiple drift like
fault detection of pitch system sensors. This
approach considers the system evolving in non-
stationary environments and switching between
several control modes. This switching is entailed
by changes in the system environments. In each
control mode, the system has a different dynam-
ical behavior. The latter is described in a feature
space sensitive to normal operating conditions in
the corresponding control mode. These operating
conditions are represented by restricted zones in
the feature space called classes. The latter are
characterized by a set of parameters represent-
ing their statistical properties, e.g. gravity center
and variance-covariance matrix. The occurrence
of an incipient fault entails a drift in the system
operating conditions until the failure takes over
completely. This drift manifests as a progressive
change in the classes parameters in each control
mode over time. The proposed approach moni-
tors normal classes parameters in order to detect
a drift in their characteristics. This drift detection
allows achieving the fault in its early stages. It
uses two drift indicators. The first indicator de-
tects the drift and the second indicator confirms
it. Both indicators are based on the observation of
changes in the normal operating conditions char-
acteristics over time. A wind turbine simulator is
used to validate the performance of the proposed
approach.

1 INTRODUCTION
The search for alternative clean energy is undoubtedly be-
coming more and more important in modern societies. The
growing interest in wind energy production has led to the
design of sophisticated wind turbines (WTs). Like every
other complex and heterogeneous system, WTs are faced to
the occurrence of faults that can impact their performance
as well as their security. Therefore, it is crucial to design
a reliable automated diagnostic system in order to achieve
fault detection and isolation in early stage.

Fault diagnosis of WTs is a challenging task because of
the high variability of the wind speed and the confusion be-
tween faults and noises as well as outliers. However, the
fault diagnosis of pitch system is particularly a challenging

task because of (i) the occurrence of pitch system faults in
power optimization zone in which the fault consequences
are hidden and (ii) the actions of the control feedback which
compensate the fault effects. The role of the pitch system
is to adjust the pitch of a blade by rotating it depending on
the pitch angle position reference provided by the controller.
The latter decides the pitch angle position reference accord-
ing to the wind speed in order to allow an optimum energy
production.

In the literature, there are several methods
[6],[9],[11],[12],[1],[4],[15] that are used to achieve
fault diagnosis in WTs. They achieve the fault diagnosis
by reasoning over differences between desired or expected
behavior, defined by a model, and observed behavior
provided by sensors. They can be classified into two main
categories of methods: internal and external methods.
The internal methods [17],[18],[20] use a mathematical
or structural model to represent the relationships between
measurable variables by exploiting the physical knowledge
or/and experimental data about the system dynamics. These
variables represent the internal parts of the wind turbine.
The response of the mathematical model is compared to the
observed values of variables in order to generate indicators
used as a basis for the fault diagnosis. Generally, the model
is used to estimate the system state, its output or its param-
eters. The difference between the system and the model
responses is monitored. Then, the trend analysis of this
difference can be used to detect changing characteristics of
the system resulting from a fault occurrence. The internal
methods used to achieve the fault diagnosis of wind turbines
are divided into three main categories: parameter estimation
[8],[19], observer and state estimation based [3],[23] and
signal analysis or feature based [7],[21] approaches. These
methods were applied successfully to achieve the diagnosis
of faults impacting the pitch system [19],[3],[16], the
generator [16],[14], the converter [25],[14], and the gearbox
[26],[16].

The major advantages of these methods are their ability
to detect both the abrupt and progressive failures via trend
analysis, and they give a precise decision or isolation of a
failure. However, they suffer from the necessity to depth in-
formation about system behavior and failures which is hard
to obtain for complex and strong non-stationary systems as
wind turbines.

An alternative to overcome this problem is the external
methods [17],[22],[9]. The external methods consider the
system as a black box, in other words, they do not need
any mathematical model to describe the system dynami-



cal behaviours. They use exclusively a set of measure-
ments or/and heuristic knowledge about system dynamics to
build a mapping from the measurement space into a decision
space. They include expert systems and machine learning
and data mining techniques. These methods are suitable for
systems that are difficult to model, they are simple to imple-
ment and require short processing time. However, since the
obtained models are not transparent, the obtained results are
hard to be interpreted and demonstrated. There are several
machine learning and data mining methods used to achieve
the fault diagnosis of wind turbines. Such methods are de-
scribed and successfully applied in [24],[2].

Few approaches have been proposed to achieve early fault
diagnosis of WTs, in particular pitch sensors. This is due
to the fact that modeling component degradation in strong
non-linear and complex non-stationary environments is very
hard task. Examples of these methods, we can cite genetic
algorithm [10], neural network, the boosting tree algorithm,
and support vector machine [9]. These methods do not in-
tegrate a mechanism to detect a drift by analyzing the char-
acteristics of incoming data and to update the model param-
eters and structure in response to this drift. Therefore, they
do not achieve a reliable early diagnosis. Consequently, the
diagnosis performance (diagnosis delay) is decreased sig-
nificantly for faults occurring in WT critical subsystems as
pitch systems ones.

This paper presents a new data-driven based approach in
order to achieve a reliable drift monitoring and diagnosis of
simple and multiple drift-like faults that can affect wind tur-
bine pitch sensors. This approach takes into account the dif-
ferent dynamical behaviors of WTs according to the wind
speed. The goal is to detect a drift from normal operating
conditions using only the recent and useful data. Initial off-
line modeling allows constructing initial classes based on
the historical data set. These classes characterize the op-
erating conditions of the pitch system (normal/faulty) and
are represented by restricted zones in the feature space. The
latter is formed by sensitive features to pitch sensor oper-
ating conditions in order to distinguish any drift from nor-
mal to fault operating conditions. The modeling tool is an
algorithm called AuDyC (Auto-Adaptive Dynamical Clus-
tering) used to initialize the classes that will be dynamically
updated.

In this work, two-dimensional feature space is con-
structed, for the sensor faults. The faulty classes, represent-
ing the failure operating conditions of pitch sensor, are con-
sidered to be a priori unknown. There is one known class in
advance.The class represents the pitch sensor normal oper-
ating conditions. It considers gradual degradations in pitch
sensor operating condition as a drift in the characteristics of
normal class over time. Detecting and following this drift
can help to predict the occurrence of pitch sensor failure.

The drift-like fault is monitored using two drift indica-
tors: one to detect a drift and the second one to confirm it.
When the drift is detected by the first indicator, a warning is
emitted to human operators. Then, the second drift indicator
confirms this drift in order to inform human operators of the
necessity to react by taking the adequate correction actions.

The proposed data-driven approach is composed of five
main steps: processing and data analysis, clustering and
classification, drift monitoring, updating and interpretation
steps.

Figure 1: Wind turbine components.

Figure 2: Reference power curve for the WT depending on
the wind speed.

2 Pitch system within wind turbines
The wind turbine model under study is composed of five
principal parts: the blades, the drive train, the generator with
the converter, and the controller (see Figure 1). It can be
seen that the blades are fixed to the main axis, which in turn
is connected to the generator through the drive train. The
generator is electrically connected to the converter, which
in turn is connected to a transformer. The blades are pitched
by the pitch actuators.

Figure 3: Controller operating zones modeled by a finite
state automaton.

The controller operates in four zones (see Figure 2). Zone
1 is the start-up of the turbines, zone 2 is power optimiza-
tion, zone 3 is constant power production and zone 4 is no
power production due to a too high wind speed.

In order to handle transitions between the control modes,



the controller checks the operating zone in which the WT
is by observing the wind speed. The transitions between
the control modes change the dynamics of the pitch system.
Each control mode is active in one zone thus it is modeled
by a finite state automaton. Each zone is represented by a
state in which a specific control mode or strategy is defined.
According to the wind speed, the control mode changes
by switching from one mode or state to another mode or
state. This switching between control modes is achieved
by discrete events. As an example, if the WT was initially
in control mode related to the zone 1, as long as the wind
speed is less than a predefined threshold (5 m/s in Figure 2)
E11 will be generated. E11 keeps the WT in control mode
1. If the wind speed is greater than the predefined threshold
for zone 1 (5 m/s in Figure 2), The event E12 is generated
leading to switch the WT from the control mode related to
zone 1 to the control mode related to zone 2 (see Figure 3).
Same reasoning can be applied for the other events.

The focus of this benchmark model is on the operation of
WT in zones 2 and 3. Two control strategies are applied to
optimize the energy production and keep it constant at its
optimal value: the converter torque control in zone 2 and
the blades angle control in zone 3 (see Figure 4). In zone
2, the WT is controlled so that it produces as much energy
as possible. To do so, the blades angle is maintained equal
to 0◦ and the tip speed ratio is kept constant at its optimal
value. The latter is regulated by the rotating speed control
by tuning the converter torque. Once the optimal power pro-
duction is achieved, the blades angle control maintains the
converter torque constant and adjusts the rotating speed by
controlling the blades angle. The latter modifies the trans-
fer of the aerodynamic power of the wind on the blades. In
this work, the controller modes are modeled by a finite state
automaton containing two states (see Figure 4). In the fol-
lowing, zones 2 and 3, respectively, correspond to control
modes 1 and 2:

Control Mode 1 In this control mode, the power opti-
mum value is achieved by setting the pitch reference to zero
β[t] = 0 and the reference torque to the converter τg,r as
follows:

τg,r = Kopt ×
(
ωg [t]

Ng

)2

(1)

Ng is the gear ratio and n is the sampling time.
Where

Kopt =
1

2
ρAR3CPmax

λ3
opt

(2)

with ρ the air density, A the area swept by the turbine
blades, CPmax the maximum value of power coefficient, and
λopt the optimal value of λ is found as the optimum point
in the power coefficient CP mapping of the WT. The power
coefficient mapping characterizes the efficiency of energy
and it depend on λ and β.

Control Mode 2 In this mode, the major control actions
are handled by the pitch system using a Proportional Integral
(PI) controller trying to keep ωg[t] at ωg .

βr (t) = βr (t− 1) + kp.e (t) + (ki.Ts.kp) .e (t− 1) (3)

When e(t) = ωr(t) − ωnom. In this case the converter ref-
erence is used to suppress fast disturbances:

τg,r (t) =
Pr (t)

ωt (t)
(4)

The control mode should switch from mode 1 to mode 2 if
the following condition is satisfied:

E23 : ωg (t) ≥ ωnom (5)

The satisfaction of this condition generates a discrete
event, E23, allowing the switching from control mode 1 to
control mode 2. The goal to obtain Pg equal to Pr. This
condition is satisfied when the wind speed is greater than
predefined threshold for zone 2 (12.5 m/s in Figure 2). Like-
wise, the control mode should switch from control mode 2
to control mode 1 if the following condition is satisfied:

E32 : ωg(t) < ωnom − ω∆ (6)
Where ωnom is the nominal generator speed and ω∆ is a

small offset subtracted from the nominal generator speed to
introduce some hysteresis in the switching scheme, thereby
avoiding that the control modes are switching all the time
[15]. The satisfaction of this condition generates a discrete
event, E32, allowing the switching from control mode 2 to
control mode 1. This condition is satisfied when the wind
speed is less than the wind speed threshold defined for zone
3 (12.5 m/s in Figure 2).

Figure 4: Controller modes modeled by a finite state au-
tomaton

As we said before, the benchmark model allows simulat-
ing the WT behavior in two power zones: 1) zone 2 (power
optimization) where τg is controlled and βr is equal to zero
and; 2) zone 3 (optimal energy production) where τg is kept
βr constant and is controlled. In this paper, we focus on
pitch sensor faults as it is discussed in subsection 2.

3 Pitch system description
The considered WT is horizontal-axis based with three
blades. Each blade is equipped with an actuator. The role
of the pitch actuator is to adjust the pitch of a blade by ro-
tating it; Each actuator is provided by the same pitch angle
reference βr. The pitch angle of a blade is measured on
the cylinder of the pitch actuator, each pitch position (an-
gle) βmi

where i ∈ {1, 2, 3} is measured with two sensors
where index mi represents the ith sensor of the correspond-
ing variable (see Figure 5). The pitch system feedback βf
is an internal variable used to model the pitch position error
caused by sensor faults:

βf = βr −
1

2
(βk,m1 + βk,m2) (7)

The controller is fed by the mean value of the readings of the
two sensors. Hence, this sensor fault is modeled as a change



in the pitch references, meaning that a sensor fault resulting
in changed mean value should also change the pitch refer-
ence accordingly [15].

Figure 5: Block diagram of pitch system for the blade k,
(k = 1, 2, 3)

4 Pitch system modeling
The hydraulic pitch system is modeled in the benchmark as
a closed loop of dynamic system. The state representation
of the nominal pitch system dynamics is defined as follows
[15]:

·
x
p

= Apxp +Bp (βr + βf )

yp = Cpxp

Ap =

[
0 1
−ω2

n −2ζωn

]

Bp =

[
0
ω2
n

]
Cp = [ 0 1 ]

(8)

The state vector xp =
[ .

βk βk

]T
is composed of pitch

angular speed
.

βk, and position βi for each blade k : (k =
1, 2, 3). yp is the measured pitch position, βr is the pitch
angle position reference provided by the controller, and βr
is the feedback pitch system (see Figure 5). ωn, ζ are the pa-
rameters of the pitch system where ωn represent the natural
frequencies and ζ is the damping ratio.

The pitch system represent a hybrid dynamic system and
especially it belongs to the class of Discretely Controlled
Jumping Systems (DCJS), In these systems, the continuous
state variables change discontinuously under the influence
of an external action (e.g., a command) as the case for elec-
tromagnetic systems with pulse inputs [?]. The pitch system

state variable xp =
[ .

βk βk

]T
changes discontinuously

under the influence of an external action defined by Equa-
tion 5 and 6.

5 Pitch system drift-like fault scenarios
generation

In this paper the types of fault which are considered in this
work are simple and multiple drift-like fault in pitch sensors.
The following subsections detail the generation of several
scenarios representing drift-like faults with three different

speeds in pitch sensor βm1 and pitch sensor βm2, and in
both pitch sensors βm1 and βm2.

5.1 Sensor drift-like fault
Each blade is equipped with an actuator. Each actuator is
provided by the same pitch angle reference βr. In addi-
tion, each pitch position, (angle) βmi is measured with two
sensors where index i represents the ith sensor of the cor-
responding variable. The fault scenarios related to simple
drift-like fault in pitch sensor n◦1 and sensor n◦2 and mul-
tiple drift-like fault in both pitch position sensor n◦1 and
sensor n◦2 in blade n◦3 are summarized respectively in Ta-
ble 1, Table 2 and Table 3. The state representation of the
pitch system after the integration of a fault in sensor βmi,
i ∈ {1, 2} is defined as follow:

.
xp = Axp +Bu
yp = Cxp + f (t)
f (t) = λi. (tb − te)

(9)

Therefore the parameter λi, i ∈ {1, 2} is used in the sim-
ulation to generate a fault in sensor βmi during the time pe-
riod (tb− te) where tb is the start time and te is the end time
of sensor drift-like fault.

Simple drift-like fault in sensor βm1

In this paper the simple drift-like fault scenarios in pitch
sensor 1 (βm1) scenarios are modeled as a gradual change
in the coefficient λ1 of pitch sensor n◦1 in blade n◦3 where
tb is the beginning of the drift and te is the end of the drift.
Nine scenarios for simple sensor drift-like fault are gener-
ated in order to simulate slow, moderate and high degra-
dation speeds represented by slow, moderate and high drift
speeds (see Figure 6). Each drift speed scenario is gener-
ated at three different time instances. Thus, parameter λ1 is
changed linearly from λ1N to λ1F in a period of 30s, 60s
and 90s, corresponding respectively to high, moderate and
slow drift speeds. Then, the fault remains active for 200s.
Finally the parameter λ1 decreases again to return to its ini-
tial value λ1N (see Figure 6 for the case of high drift speed
in sensor 1 (βm1)).

Figure 6: Simple drift-like fault scenarios in pitch sensor 1
(βm1), corresponding to high drift speed in 3 different time
instances tb is the beginning time of the drift and te is the
end of the drift.

Simple drift-like fault in sensor βm2

The simple drift-like fault scenarios in pitch sensor 2 (βm2)
scenarios are modeled as a gradual change in the coefficient



Fault N◦ Drift speed Simple drift-like fault Period
in pitch sensor βm1

F4h 30s λ1N → λ1F 2500s
(High) -2730s

F4m 60s λ1N → λ1F 2500s
(Medium) -2760s

F4s 90s λ1N → λ1F 2500s
(Slow) -2790s

F5h 30s λ1N → λ1F 2600s
-2830s

F5m 60s λ1N → λ1F 2600s
-2830s

F5s 90s λ1N → λ1F 2600s
-2890s

F6h 30s λ1N → λ1F 2700s
-2930s

F6m 60s λ1N → λ1F 2700s
-2960s

F6s 90s λ1N → λ1F 2700s
-2990s

Table 1: Simple drift-like fault scenarios in pitch sensor 1
(βm1).

λ2 of pitch sensor n◦2 in blade n◦3 where tb is the begin-
ning of the drift and te is the end of the drift. As for the
case of simple drift-like fault in pitch sensor βm1 scenarios,
nine scenarios for simple sensor drift-like fault are gener-
ated in order to simulate slow, moderate and high degra-
dation speeds represented by slow, moderate and high drift
speeds (see Figure 7). Each drift speed scenario is gener-
ated at three different time instances. Thus, parameter λ2 is
changed linearly from λ2N to λ2F in a period of 30s, 60s
and 90s, corresponding respectively to high, moderate and
slow drift speeds. Then, the fault remains active for 200s.
Finally the parameter λ2 decreases again to return to its ini-
tial value λ2N (see Figure 7 for the case of high drift speed
in sensor 2, (βm2)).

Fault N◦ Drift speed Simple drift-like fault Period
in pitch sensor βm2

F7h 30s λ2N → λ2F 2800s
(High) -3030s

F7m 60s λ2N → λ2F 2800s
(Medium) 3060s

F7s 90s λ2N → λ2F 2800s-
(Slow) -3090s

F8h 30s λ2N → λ2F 2900s
-3130s

F8m 60s λ2N → λ2F 2900s
-3130s

F8s 90s λ2N → λ2F 2900s
-3190s

F9h 30s λ2N → λ2F 3000s
30s -3230s

F9m 60s λ2N → λ2F 3000s
-3260s

F9s 90s λ2N → λ2F 3000s
-3290s

Table 2: Simple drift-like fault scenarios in pitch sensor 2
(βm2).

Figure 7: Simple drift-like fault scenarios in pitch sensor 2
(βm2), corresponding to high drift speed in 3 different time
instances.

Multiple sensor drift-like fault
In this chapter the generated scenarios of the multiple drift-
like fault in pitch sensor 1 (βm1) and sensor 2 (βm2) are
modeled as a gradual change at the same time in the drift
coefficient (λ1 and λ2) of both pitch sensors n◦1 and pitch
sensors n◦2 in blade n◦3. As for the case of simple drift-
like fault in pitch sensor scenarios, nine scenarios for multi-
ple sensor drift-like fault are generated in order to simulate
slow, moderate and high degradation speeds representing by
slow, moderate and high drift speeds (see Table 3). Each
drift speed scenario is generated at three different time in-
stances. Thus, parameters λ1 and λ2 are changed linearly
from λ1N and λ2N to λ1F and λ2F in a period of 30s, 60s
and 90s, corresponding respectively to high, moderate and
slow drift speeds. Then, the fault remains active for 200s.
Finally the parameter decreases again to return to their ini-
tial values (see Figure 8 for the case of high drift (degrada-
tion) speed in both sensor 1 (βm1) and sensor 2 (βm2)).

Figure 8: Multiple sensor drift-like fault scenarios in sen-
sors (βm1) and (βm2) corresponding to high drift speed in 3
different time instances.



Fault N◦ Drift speed Multiple drift-like fault in Period
in pitch sensors βm2 and βm2

F10h 30s (High) λ1N → λ1F and λ2N → λ2F 3100s-
3330s

F10m 60s (Medium) λ1N → λ1F and λ2N → λ2F 3100s-
3360s

F10s 90s (Slow) λ1N → λ1F and λ2N → λ2F 3100s-
3390s

F11h 30s λ1N → λ1F and λ2N → λ2F 3200s-
3430s

F11m 60s λ1N → λ1F and λ2N → λ2F 3200s-
3460s

F11s 90s λ1N → λ1F and λ2N → λ2F 3200s-
3490s

F12h 30s λ1N → λ1F and λ2N → λ2F 3300s-
3530s

F12m 60s λ1N → λ1F and λ2N → λ2F 3300s-
3560s

F12s 90s λ1N → λ1F and λ2N → λ2F 3300s-
3590s

Table 3: Multiple drift-like fault scenarios in pitch sensors (βm1) and (βm2).

6 Proposed approach
In this section, hybrid dynamic data-driven approach is de-
veloped in order to achieve condition monitoring and drift
like fault detection of pitch sensor. It performs predictive
diagnosis by detecting a drift of the system operating condi-
tions from normal to faulty modes. The proposed approach
is based on 5 steps developed in the following subsections
(see Figure 9).

6.1 Processing and data analysis
This step aims at finding the features that are sensitive to the
system operating conditions in order to construct the feature
space. A feature space representing the operating conditions
of each assembly of WT is defined, this feature space will be
responsible of the detection and isolation of faults impacting
this components. The research of sensitive features is based
on the signals provided by the pitch sensors as well as the
prior knowledge about the system dynamics. These features
are chosen in order to maximize the discrimination between
operating conditions in the feature space. In this paper, two-
dimension feature space is constructed for the sensor fault.
The goal of the feature space use, at the level of component,
is to facilitate the drift-like fault isolation and to enhance the
diagnosis robustness.

The position of the pitch actuators is measured by two re-
dundant sensors for each of the three pitch positions βk,mi,
k = 1, 2, 3, i = 1, 2, with the same reference angle βr pro-
vided to each of them. In order to enhance the robustness
against noise, the measurements are filtered by a first order
filter using time constant τ = 0.06.

For the drift like fault detection and isolation of the sen-
sor faults, we propose to explore the physical redundancy in
order to generate residuals as follows:

∆βs1 = |βr + βf − βm1| (10)
∆βs2 = |βr + βf − βm2| (11)

To do so, the residual ∆βsn, n = 1, 2, is generated by the
comparison between the pitch angle measurement βmi, i =
1, 2, m = 1, 2, 3 and the command computed by the sum

of the desired value of the pitch angle βr and the feedback
pitch system βf (see Figure 5). The residual is computed
within a time window which is tuned to be several times the
actuator time response.

The evolution of these residuals with respect to each of
the two sensors is considered as meaningful features. In-
deed, the residual ∆βs1 respectively ∆βs2, is equal to zero
when the corresponding sensor βm1 respectively βm2, is in
normal operating conditions. When, the sensor βm1 respec-
tively βm2, is in faulty operating conditions, the residual
∆βs1, ∆βs2 will be different of zero because this sensor
will not measure the new value of command (βr + βf ) (see
Figure 5). Indeed, the command (βr + βf ) will change in
order to compensate the difference between the two sensors
due to the fault of sensor βm1 respectively βm2.

6.2 Classifier learning and updating
The clustering looks to determine the number of classes con-
tained in the learning set and to initialize their parameters.
The classification aims at designing a classifier able to as-
sign a new pattern to one of the learnt classes in the feature
space. A new pattern characterizes the actual operating con-
ditions (normal or faulty in response to the occurrence of a
certain fault) of the system. Examples of these approaches
are present in [5] as well as in the references of this paper.

Auto-adaptive Dynamical Clustering Algorithm (Au-
DyC) [13] is selected in this work in order to achieve both
clustering and classification. AuDyC computes the param-
eters of initial classes based on the statistical properties of
data which are the mean and the variance-covariance matrix.
These classes characterize the normal operating conditions
of pitch sensors. AuDyC was chosen because it is unsu-
pervised classification method and is able to model streams
of patterns since it always reflects the final distribution of
patterns in the features space. It uses a technique that is in-
spired from the Gaussian mixture model [13]. Let Ed be a
d-dimensional feature space. Each feature vector x ∈ Ed

is called a pattern. The patterns are used to model Gaus-
sian prototypes P j characterized by a center µP j ∈ Rd×1

and a covariance matrix
∑

P j ∈ Rd×d. Each Gaussian pro-



Figure 9: Proposed on-line adaptive scheme steps.

totype characterizes a class. A minimum number of Nwin

patterns are necessary to define one prototype, where Nwin

is a user-defined threshold. A class models operating condi-
tions and gathers patterns that are similar one to each other.
The similarity criterion that is used is the Gaussian member-
ship degree. Faults will affect directly this distribution and
this will be seen through the continuously updated parame-
ters. More details about AuDyC related to merging classes,
splitting classes, rules of recursive adaptation, similarity cri-
teria, etc., can be found in [13].

In the sensor feature space, four classes are considered:
the fault of sensor 1, βm1 , the fault of sensor 2, βm2, the
fault of both sensor 1,βm1 and sensor 2 βm2, and the nor-
mal functioning. Figure 10 shows the classes representing
normal and failure operating conditions of pitch sensor in
the feature space constituted by the two residuals defined by

Equation 10 and 11. In zone 2, the effects of this fault are
hidden because the actuators are not operated. Moreover, it
is strongly difficult to distinguish the fault occurrence to the
noise in the case of small angles. Therefore an overlapping
region is created between the normal and failure classes (see
Figure 10 and Figure 15).

In order to answer the challenges inherent to the system
operation, the normal and failure classes are split into five
classes and the pitch actuator dynamics are represented by
two different control modes. The first one corresponds to
the case of zone 2 low wind speed; while the second control
mode represents the case of zone 3 high wind speed (see
Figure 16). Class 1 is the ambiguity class. It gathers the
patterns representing pitch sensor normal or faulty operat-
ing conditions. This class represents the control mode 1.
Class 2 represents the normal operating conditions class in



Figure 10: Large view of overlapping region for the pitch
sensor normal and failure operating conditions in case of
simple fault in pitch sensor 1, (βm1).

Figure 11: Feature space of the pitch sensor normal and fail-
ure operating conditions in case of simple fault in pitch sen-
sor 1, (βm1).

Figure 12: Large view of overlapping region for the pitch
sensor normal and failure operating conditions in case of
simple fault in pitch sensor 2, (βm2).

control mode 2. Class 3 represents failure class caused by
simple drift-like fault in pitch sensor 1, βm1 in control mode
2, class 4 represents failure class caused by simple drift-like
fault in pitch sensor 2, βm2 in control mode 2 and class 5
represents failure class caused by multiple drift-like fault in
pitch sensor 1, βm1 and sensor 2, βm2 in control mode 2.

The updating step aims at reacting to the changes in
classes characteristics in the feature space. AuDyC continu-
ously updates the classes parameters by using the recursive
adaptation Rules 12 and 13. In such a way, its validity and

Figure 13: Feature space of the pitch sensor normal and fail-
ure operating conditions in case of simple fault in pitch sen-
sor 2, (βm2).

Figure 14: Large view of overlapping region for the pitch
sensor normal and failure operating conditions in case of
multiple fault in pitch sensor 1, (βm1) and pitch sensor 2,
βm2.

Figure 15: Feature space of the pitch sensor normal and fail-
ure operating conditions in case of multiple fault in sensor
βm1 and βm2.

performance over time is preserved.

µe(t) = µe(t− 1) + f(µe(t− 1), xnew, xold, Nwin) (12)∑
e

(t) =
∑
e

(t−1)+g(
∑
e

(t−1), µe(t−1), xnew, xold, Nwin)

(13)



Figure 16: (a) Sensor decision space. (b) Control modes 1
and 2 modeled by a finite state automaton.

where xnew and xold are respectively, the newest and the
oldest arrived pattern in the time window Nwin .

Initial off-line modeling allows the construction of ini-
tial classes that characterize knowledge from historical data.
The historical data are usually sensor data that are saved.
AuDyC is used to initialize the parameters of classes that
will be dynamically updated. Knowledge of failure modes
given from (labeled) historical data can help building a clas-
sification scheme for fault diagnosis. However, in reality,
these data are hard to obtain.

In this work, we suppose that only data corresponding to
normal operating conditions (normal classes) are known in
advance. The training of the process by applying AuDyC
is made based on features that are extracted from historical
sensor data once finished; the class corresponding to normal
operating conditions is retained. We denote this class by
CN = (µN ,ΣN ).

In on-line functioning, the parameters of CN are dynam-
ically updated by AuDyC for each new pattern arrived in
control mode 2. This yields changes in the class parameters
which continuously reflect the distribution of the newest ar-
riving patterns. We denote by Ce = (µe,Σe) the evolving
classes in feature space. We have Ce(t = 0) = (µe,Σe) =
CN .

In control mode 1 of pitch system, pitch sensor nor-
mal and faulty behaviors cannot be distinguished. Thus, in
the proposed approach, the decisions about the status (nor-
mal/faulty) of patterns located in this region are delayed.
Therefore in this case, the classifier will not be updated in
order to avoid integrating in the drift time window useless
patterns. In order to detect the drift as soon as possible, Au-
DyC updates the classes parameters by using a window that
contains only the patterns belonging to control mode 2. Au-
DyC is dynamic by nature in the sense that it continuously
updates the parameters of the classes as new patterns arrive.

6.3 Pattern decision analysis
When a new pattern is classified in the ambiguity class (A),
in sensor feature space, assigning it to normal or failure

operating conditions is a risky decision since normal and
failure classes are overlapped in this region of the feature
space. In order to reduce this risk, the decision about the
status (normal or faulty) of any pattern classified in this re-
gion is delayed by assigning the label (A) (ambiguity deci-
sion). Then, this ambiguity can be removed by analyzing
the past and future decisions of this pattern. The analysis
of the pattern decision sequence is achieved by using a set
of decision rules allowing assigning to ambiguity patterns
label (N) or label (F) (normal or faulty) as follows. Let us
suppose thatXA = {xt, xt+1, . . . , xt+n} is a set of patterns
associated with decision (A). Let xt−1 be the previous pat-
tern arrived just before xt. Let D (xt−1) ∈ {A,N, Fi} be
the decision of this pattern. Let xt+n+1 the pattern arrived
just after xt+n. Let D (xt+n+1) ∈ {A,N, Fi} be the deci-
sion for this pattern. Then, the decision can be updated as
follows:

D (xt−1) = N∧D (xt+n+1) = N ⇒ D (x) = N, ∀x ∈ XA

(14)
D (xt−1) = F ∧D (xt+n+1) = F ⇒ D (x) = F,∀x ∈ XA

(15)
D (xt−1) = N∧D (xt+n+1) = F ⇒ D (x) = A,∀x ∈ XA

(16)
D (xt−1) = F∧D (xt+n+1) = N ⇒ D (x) = A,∀x ∈ XA

(17)
Where ∧ refers to And logical operation.

Rule 16 signifies that the fault has occurred somewhere
in control mode 1 where its consequences on the pitch sys-
tem dynamical behavior can be observed. Rule 17 indicates
that the failure has disappeared in the control mode 1 either
because of maintenance actions or because the fault is inter-
mittent.

6.4 Drift monitoring and interpretation
The key problem of drift monitoring is to distinguish be-
tween variations due to stochastic perturbations and varia-
tions caused by unexpected changes in a system’s state. If
the sequence of observations is noisy, it may contain some
inconsistent observations or measurements errors (outliers)
that are random and may never appear again. Therefore, it
is reasonable to monitor a system and to process observa-
tions within time windows in order to average and reduce
the noise influence. Moreover, the information about pos-
sible structural changes within time windows can be inter-
preted and processed more easily. As a result, a more reli-
able classifier update can be achieved by monitoring within
time windows. The latter must include enough of patterns
representing the drift.

To distinguish the useful patterns, the pitch sensor dy-
namics are represented by two different control modes. In
the control mode 2, the degradation consequences of pitch
sensor can be observed. Therefore, all patterns in this mode
are useful to be analyzed and to be included in the drift
time window. In the control mode 1, the degradation conse-
quences are masked. Patterns representing normal operating
conditions cannot be distinguished from patterns represent-
ing pitch sensor degradations. Therefore in this case, no
decision (normal/drift) will be taken in order to avoid inte-
grating in the drift time window useless patterns.

The proposed scheme makes use of classes parameters
(Mean, Variance-covariance matrix) which are dynamically



updated at each time but only with the patterns belonging to
control mode 2. Drift indicators are defined based on these
parameters and the detection of faults inception will be
made based on their values. We define two drift indicators
Ih1 (x) , Ih2 (x) as follows:

Ih1
(x) = dMah (CN , µe) (18)

Ih2
(x) = dE (µN , µe) (19)

Where dMah and dE are, respectively, the Mahalanobis and
Euclidean metrics.

Euclidean metric computes the distance between the cen-
ter µn of the normal class CN and the center µe of evolving
class Ce; on the other side Mahalanobis metric computes
the distance between the normal class CN and the evolving
class center µe. Therefore, these two distances are calcu-
lated as follows:

dMah (CN , µe) =
√

(µN − µe) Σ−1
N (µN − µe)

T

(20)

dE (µN , µe) =
√

(µN − µe)× (µN − µe)T (21)

The drift is detected when the Mahalanobis indicator
Ih1

(x), defined by Equation 18, exceeds a certain thresh-
old thd:

Ih1 (x) > thd ⇒ drift is detected (22)
After the drift detection, the drift is confirmed when Eu-

clidean indicator Ih2 (x) defined by Equation 19, exceeds
thd as follows:

Ih2 (x) > thd ⇒ drift is confirmed (23)
The selection of thd is motivated statically by taking three

σ (standard deviations) of the data in the normal operating
conditions.

In the case of pitch sensor faults, three scenarios may ap-
pear in the sensor feature space: fault impacting sensor 1
(βm1), fault impacting sensor 2 (βm2) or fault impacting
both sensors (βm1 and βm2) at the same time. The direction
of the evolving class in the sensor feature space depends on
which of these scenarios happened. Therefore, for sensor
fault isolation, we use a drift direction indicator in order to
monitor the direction of the evolving class. This will allow
to determine which of these three scenarios happened and
hence to isolate the abnormal drift source. When drift oc-
curs, the evolving class will migrate from normal operating
condition to failure. The direction indicator Dr and direc-
tion isolationDI are used to isolate the sensor which caused
the drift-like fault. The idea is to consider the angle θ1 re-
spectively θ2, between the vector µe relating the center of
the evolving class and the origin of the feature space, and
the vector µe1 respectively µe2 relating the origin with the
projection of the center of the evolving class according to
feature 1 respectively feature 2, of the feature space. These
angles define the movement direction of the evolving class.

In order to calculate θ1 and θ2, the scalar products be-
tween −→µe1 and −→µe and between −→µe2 and −→µe are calculated as
follows:

−→µ
e
(x) · −→µ

e1
(x) = ‖µe(x)‖ · ‖µe1(x)‖ · cos θ1 (24)

−→µ
e
(x) · −→µ

e2
(x) = ‖µe(x)‖ · ‖µe2(x)‖ · cos θ2 (25)

If the drift is detected and confirmed by the two drift in-
dicators Ih1 (x) and Ih2 (x), then the drift isolation (to de-
termine if sensor 1 or sensor 2 or both is the source of this
drift) is achieved as follows:

If Dr = θ1 − θ2 > tha and θ1 > θ2 ⇒ DI = 1 :

fault in sensor 1 (βm1)(26)

If Dr = θ1 − θ2 > tha and θ2 < θ1 ⇒ DI = 2 :

fault in sensor 2 (βm2) (27)

If Dr = θ1 − θ2 < tha ⇒ DI = 3 :

fault in both sensors (βm1andβm2) (28)

where tha is the angle threshold. tha is defined accord-
ing to the variation of patterns within the normal class CN .
Therefore, tha is determined experimentally using the pat-
terns belonging to CN .

The interpretation step aims at interpreting the detected
changes within the classifier parameters and structure. This
interpretation is then used as a prediction about the tendency
of the future development of the WT current situation. This
prediction is useful to formulate a control or maintenance
action.

7 Experimentation and obtained results
The failures of pitch sensors are caused by a continuous
degradation of its performance over time. This degradation
can be seen as a continuous drift of the normal operating
conditions characteristics (normal class) of the pitch sensor.
Detecting and following this drift can help to predict the oc-
currence of the pitch sensor failures. The two monitoring
indicators defined by Equation 18 and Equation 19 are used
to detect and to confirm this drift for the twenty-seven sce-
narios of simple and multiple drift-like fault in pitch sensors
are defined in section 2.

7.1 Simple drift-like fault in sensor βm1

Figure 18 and Figure 19 represent, respectively, first and
second residuals used in the pitch sensor feature space in
presence of an abnormal drift in pitch sensor 1, βm1. We
can see in the case of an abnormal drift in pitch sensor 1,
βm1, that only residual ∆βs1 is impacted, while residual
∆βs2 has similar behavior as the one without abnormal drift
in βm1.

Table 4 show the values of the drift indicators Ih1
(x) and

Ih2
(x) for the nine defined drift-like fault scenarios. These

values represent the required time (starting from the drift
beginning) to detect and confirm the drift occurrence. Thus,
they can be used as an evaluation criterion to measure the
time delay to detect a drift before its end.

Figures 20 and 21 show the obtained results using the
two drift detection indicators Ih1 (x) and Ih2 (x), for sim-
ple drift-like fault in pitch sensor βm1. The degradation is
observed when the pitch actuator operate in control mode 2,
the drift like fault in pitch sensor is successfully detected by



Figure 17: Drift direction angles in the pitch sensor feature space in the case of (a) simple drift-like fault in pitch sensor 1
(βm1), (b) simple drift-like fault in pitch sensor 2 (βm2), (c) multiple drift-like fault in both pitch sensors (βm1) and (βm2).

Fault N Drift speed Ih1 Ih2 Period
F4h 30s(High) 5.25s 11.00s 2500s

(High) -2730s
F4m 60s(Medium) 8.60s 18.70s -2760s

(Medium) -2760s
F4s 90s 14s 26.30s 2500s

(Slow) -2790s
F5h 30s 6.90s 13.30s 2600s

-2830s
F5m 60s 11.50s 20.20s 2600s

-2860s
F5s 90s 14.25s 27.10s 2600s

-2890s
F6h 30s 6.05s 11.90s 2700s

-2930s
F6m 60s 12.60s 23.50s 2700s

-2960s
F6s 90s 15.10s 29.40s 2700s

-2990s

Table 4: Results of simple drift-like fault detection and con-
firmation in pitch sensor 1 (βm1), for the nine drift scenar-
ios.

Figure 18: First residual used in the pitch sensor feature
space in the case of the simple drift-like fault in pitch sensor
1 (βm1).

Figure 19: Second residual used in the pitch sensor feature
space in the case of the simple drift-like fault in pitch sensor
1 (βm1).

Figure 20: Drift indicator Ih1 (x) based on Mahalanobis dis-
tance of the simple drift-like fault in pitch sensor 1 (βm1).

both indicator Ih1 (x) and Ih2 (x), for all drift speeds (see
Figure 20 and Figure 21).

The drift-like fault in pitch sensor 1 (βm1), is detected in
early stage before the end of this drift (arriving to the fail-
ure mode due to drift fault in pitch sensor). As an example,
in the case of a drift of slow speed (F6s) (see Table 4), the



Figure 21: Drift indicator Ih2
(x) based on Euclidean dis-

tance of the simple drift-like fault in pitch sensor 1 (βm1).

pitch sensor reaches the failure mode resulting from a drift-
like fault in λ1 (degradation in λ1) after 90 seconds of the
beginning of the drift. In the proposed approach, this drift is
detected 15.10 seconds and confirmed 29.40 seconds after
its beginning. Therefore, the drift like fault in pitch sen-
sor is confirmed 60 seconds before its end. This enables
to achieve an early fault diagnosis and therefore helps the
human operators of supervision to take efficiently the right
actions.

Figure 22 and Figure 23 represent, respectively, evolving
class angle and the direction indicator of the pitch sensor
fault. These figures show the obtained results in presence of
simple drift-like fault in pitch sensor 1, based on Figure 22
and Figure 23 the sensor 1 (βm1), fault is successfully iso-
lated by the direction indicator. Indeed, the direction angle
shows that the evolving class exceeds the angle threshold
(see Figure 17.a). Based on Equation 26, the drift-like fault
in sensor 1 (βm1), is isolated (see Figure 29).

Figure 22: Direction indicator Dr of the evolving class an-
gle of the simple drift-like fault in pitch sensor 1 (βm1).

7.2 Simple drift-like fault in sensor βm2

Figure 24 and Figure 25 represent, respectively, first and
second residuals used in the pitch sensor feature space in
presence of an abnormal drift in pitch sensor sensor 2, βm2.
We can see in the case of an abnormal drift in pitch sensor
2, βm2, that only residual ∆βs2 is impacted, while residual
∆βs1 has similar behavior as the one without abnormal drift
in βm2.

Figure 23: Direction isolation DI of the simple drift-like
fault in pitch sensor 1 (βm1).

Table 5 show the values of the drift indicators Ih1
(x) and

Ih2
(x) for the nine defined drift-like fault scenarios. These

values represent the required time (starting from the drift
beginning) to detect and confirm the drift occurrence. Thus,
they can be used as an evaluation criterion to measure the
time delay to detect a drift before its end.

Fault N Drift speed Ih1 Ih2 Period
F7h 30s 6.07s 12.15s 2800s

(High) -3030s
F7m 60s 8.90s 19.05s 2800s

(Medium) -3060s
F7s 90s 14.20s 27s 2800s

(Slow) -3090s
F8h 30s 5.70s 11.80s 2900s

-3130s
F8m 60s 8.25s 18.40s 2900s

-3160s
F8s 90s 13.70s 26.18s 2900s

-3190s
F9h 30s 6.90s 12.70s 3000s

-3230s
F9m 60s 9s 20.30s 3000s

3260s
F9s 90s 14.90s 28.10s 3000s

3290s

Table 5: Results of simple drift-like fault detection and con-
firmation in pitch sensor 2(βm2), for the nine drift scenarios.

Figures 26 and 27 show the obtained results using the
two drift detection indicators Ih1

(x) and Ih2
(x), for simple

drift-like fault in pitch sensor 2 (βm2). The degradation is
observed when the pitch actuator operate in control mode 2,
the drift-like fault in pitch sensor 2 is successfully detected
by both indicators Ih1

(x) and Ih2
(x) for all drift speeds

(see Figure 26 and Figure 27).
The drift-like fault in pitch sensor 2 (βm2), is detected in

early stage before the end of this drift (arriving to the fail-
ure mode due to drift fault in pitch sensor). As an example,
in the case of a drift of slow speed (F9s) (see Table 5), the
pitch sensor reaches the failure mode resulting from a drift-
like fault in λ2 (degradation in λ2) after 90 seconds of the
beginning of the drift. In the proposed approach, this drift is
detected 14.90 seconds and confirmed 28.10 seconds after



Figure 24: First residual used in the pitch sensor feature
space in the case of the simple drift-like fault in pitch sensor
2 (βm2).

Figure 25: Second residual used in the pitch sensor feature
space in the case of the simple drift-like fault in pitch sensor
2 (βm2).

Figure 26: Drift indicator Ih1
(x) based on Mahalanobis dis-

tance of the simple drift-like fault in pitch sensor 2 (βm2).

its beginning. Therefore, the drift like fault in pitch sen-
sor is confirmed 60 seconds before its end. This enables
to achieve an early fault diagnosis and therefore helps the
human operators of supervision to take efficiently the right
actions.

For the drift isolation, Figure 28 and Figure 29 are used.
They represent, respectively, evolving class angle and the
direction indicator of the pitch sensor fault. These figures

Figure 27: Drift indicator Ih2
(x) based on Euclidean dis-

tance of the simple drift-like fault in pitch sensor 2 (βm2).

show the obtained results in presence of simple drift-like
fault in pitch sensor 2, based on Figure 28 and Figure 29
the sensor 2 (βm2), fault is successfully isolated by the di-
rection indicator. Indeed, the direction angle shows that the
evolving class exceeds the angle threshold (see Figure 17.b).
Based on Equation 27, the drift-like fault in sensor 2 (βm2),
is isolated (see Figure 29).

Figure 28: Direction indicator Dr of the evolving class an-
gle of the simple drift-like fault in pitch sensor 2 (βm2).

Figure 29: Direction isolation DI of the simple drift-like
fault in pitch sensor 2 (βm2).



7.3 Multiple drift-like fault in sensors βm1 and
βm2

Figure 30 and Figure 31 represent, respectively, first and
second residuals used in the pitch sensor feature space in
presence of an abnormal drift in both pitch sensor βm1 and
βm2 at the same time. We can see that both residual ∆βs1

and ∆βs2 are impacted by the occurrence of the abnormal
drift in βm1 and βm2.

Table 6 show the values of the drift indicators Ih1
(x) and

Ih2
(x) for the nine defined drift-like fault scenarios. These

values represent the required time (starting from the drift
beginning) to detect and confirm the drift occurrence. Thus,
they can be used as an evaluation criterion to measure the
time delay to detect a drift before its end.

Fault N Drift speed Ih1 Ih2 Period
F10h 30s 5.04s 10.9s 3100s

(High) -3330s
F10m 60s 9s 19.04s 3100s

(Medium) -3360s
F10s 90s 13.68s 26.23s 3100s

(Slow) -3390s
F11h 30s 6.55s 15.50s 3200s

-3430s
F11m 60s 10.05s 19.30s 3200s

-3460s
F11s 90s 13.80s 27.50s 3200s

-3490s
F12h 30s 7.10s 16.10s 3300s

-3530s
F12m 60s 9.55s 22.80s 3300s

-3560s
F12s 90s 14.70s 28.25s 3300s

-3590s

Table 6: Results of multiple drift-like fault detection and
confirmation in pitch sensor 1 (βm1), and pitch sensor 2
(βm2), for the nine drift scenarios.

Figure 30: First residual used in the pitch sensor feature
space in the case of the multiple drift-like fault in pitch sen-
sor 1 (βm1), and sensor 2 (βm2).

Figures 32 and 33 show the obtained results using the
two drift detection indicators Ih1 (x) and Ih2 (x), for mul-
tiple pitch sensor fault. The degradation is observed when
the pitch actuator operate in control mode 2. The drift like

Figure 31: Second residual used in the pitch sensor feature
space in the case of the multiple drift-like fault in pitch sen-
sor 1 (βm1), and sensor 2 (βm2).

fault in pitch sensor is successfully detected by both indi-
cator Ih1

(x) and Ih2
(x) for all drift speeds in both sensors

(see Figure 32 and Figure 33).

Figure 32: Drift indicator Ih1
(x) based on Mahalanobis dis-

tance of the multiple drift-like fault in both pitch sensor 1
(βm1), and sensor 2 (βm2).

Figure 33: Drift indicator Ih2
(x) based on Euclidean dis-

tance of the multiple drift-like fault in both pitch sensor 1
(βm1), and sensor 2 (βm2).

The multiple drift-like faults in pitch sensors are detected
in early stage before the end of these drifts (arriving to the
failure mode due to drift fault in both pitch sensors). As an



example, in the case of a drift of slow speed (F12s) (see Ta-
ble 6), the pitch sensors reache the failure mode resulting
from a drift-like fault in λ1 and λ2 (degradation in λ1 and
λ2) after 90 seconds of the beginning of the drift. In the
proposed approach, this drift is detected 14.70 seconds and
confirmed 28.25 seconds after its beginning. Therefore, the
multiple drift-like fault in pitch sensor is confirmed 60 sec-
onds before its end. This enables to achieve an early fault
diagnosis and therefore helps the human operators of super-
vision to take efficiently the right actions.

For the drift isolation, Figure 34 and Figure 35 are used.
They represent, respectively, evolving class angle and the
direction indicator of the pitch sensor fault. These figures
show the obtained results in presence of a multiple drift-like
fault in both pitch sensors βm1 and βm2, as we can see in
Figure 34 and Figure 35 the fault is successfully isolated by
the direction indicator. Indeed, the direction angle shows
that the evolving class evolve within the axe of the normal
class (see Figure 17.c). Based on Equation 27, the multi-
ple drift-like isolation in both pitch sensors is isolated (see
Figure 35).

Figure 34: Direction indicator Dr of the evolving class an-
gle of the multiple drift-like fault in both pitch sensor 1
(βm1), and pitch sensor 2 (βm2).

Figure 35: Direction isolation DI of the multiple drift-like
fault in both pitch sensor 1 (βm1), and sensor 2 (βm2).

8 CONCLUSIONS
In this paper, an approach of condition monitoring and drift-
like fault detection was developed. It is based on the use of

a classifier able to achieve a reliable drift monitoring and
early diagnosis of simple and multiple pitch sensors faults.
This approach considers the system switching between sev-
eral control modes. This approach based on the monitoring
of the drift of the characteristics of classes representing the
normal operating conditions of pitch system in each con-
trol mode. These characteristics are described by the mean
and variance covariance matrix of these classes. They are
monitored using two indicators in order to monitor and fol-
low the drift. Both are defined based on the computation
of the distance between the class representing normal oper-
ating conditions and the evolving class. The first indicator
is based on the Mahalanobis distance and is used to detect
the drift; while the second indicator is based on Euclidean
distance and is used to confirm the drift. The drift indica-
tors have detected successfully all drift scenarios of three
speeds in early stage before the end of this drift for the case
of simple and multiple drift-like faults in pitch system.

Future work will focus on the drift like fault of other wind
turbine critical components as the generator and drive train
as well as the use of other indicators to detect drifts of other
types or natures.
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