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Abstract. A comparison between co-training and self-training method
for single-target regression based on multiples learners is performed. Data
streaming systems can create a significant amount of unlabeled data
which is caused by label assignment impossibility, high cost of labeling or
labeling long duration tasks. In supervised learning, this data is wasted.
In order to take advantaged from unlabeled data, semi-supervised ap-
proaches such as Co-training and Self-training have been created to ben-
efit from input information that is contained in unlabeled data. However,
these approaches have been applied to classification and batch training
scenarios.
Due to these facts, this paper presents a comparison between Co-training
and Self-learning methods for single-target regression in data streams.
Rules learning is used in this context since this methodology enables to
explore the input information.
The experimental evaluation consisted of a comparison between the real
standard scenario where all unlabeled data is rejected and scenarios
where unlabeled data is used to improve the regression model.
Results show evidences of better performance in terms of error reduction
and in high level of unlabeled examples in the stream. Despite this fact,
the improvements are not expressive.

1 Introduction

Prediction represents an essential task in data streams contexts that depend on
accurate predictions for decision making or planning [1]. In these contexts, large
quantities of data is not labeled due to label assignment impossibility, high cost
of label assignment or long time tasks. Frequently, sensitive data requires label
omission [4].

The main areas where unlabeled data occurs are Engineering Systems ( video
object detection ) [7], Physics (weather forecasting and ecological models) [8],
Biology (model of cellular processes) [9] and Economy/Finance (stock price fore-
casting) [1]. In most of these areas, data from streams are obtained and processed
in real time [4].



Semi-supervised Learning (SSL) methodology have been suggested to use
input information from unlabeled data for more accurate predictions [4]. Only
in unlabeled examples abundance cases, this methodology may be useful [11].
In fact, the unlabeled examples convey information related to the variety or to
the range of the inputs values. These values ranges may create constrains to
the models and them more precise. As negative characteristic, this methodology
may introduce errors and lead to less accurate predictions [11, 12].

More formally, X = {X1, ..., Xj , ..., XJ} ∈ RJ represents a vector of input
random variables and Y represents a scalar random variable, with a joint proba-
bility distribution P (X,Y). The vectors xi = (xi,1, ..., xi,j , ..., xi,J) ∈ RJ and yi,
where i ∈ {0, 1, 2, ...}, represent realizations of X and Y, respectively. A stream
is defined as the sequence of examples ei = (xi, yi) represented as S = {(x0, y0),
(x1, y1), ..., (xi, yi), ...}. Label absence is represented by yi = ∅. The objective of
SSL is to use examples (xi, ∅) to enhance the regression model yi ← f(xi) and
reduce the error of prediction for both labeled and unlabeled examples.

SSL methods work on batch mode and are applied to classification. The ime-
diate adaption to regression is not possible [11]. Co-training is a SSL approach
that uses more than one different models. The model diversity is created by
through different inputs, different regression methods or different parametriza-
tion [4].

The training stage produces an artificial label for the unlabeled example from
the regressors predictions of the same example, according to a criterion (e.g.,
mean of all predictions) [11]. Posteriorly, this artificially labeled example is used
in the training of the regressors. The prediction stage yield a final prediction
from the regressors predictions of the example, according to a similar criterion
as in training.

Self-training can be seen as a particular case of Co-training where just one
model is trained. This method uses its own predictions to artificially label the
unlabeled examples and use this examples in the respective training.

It worths to say that the active learning can also be easily introduced in these
methods. However, once used in the training, the example contribution cannot
be removed from the model.

This work focus on the comparison between Self-training method and Co-
training method which uses several models that learn with each other for online,
single-target regression. Despite expecting better prediction results from Co-
training, it is important to find how much the results are superior to Self-training.
In fact, Co-training is more computationaly expensive then Self-training. This
work also may pave the way for the extension to online multi-target regression
using the Random Adaptive Model Rules (Random AMRules) algorithm in fu-
ture works [15, 16].

This document is structured as follows. In Section 2, the fundamentals of
SSL for Self-training and Co-training are briefly revised. Section 3 describes the
modifications of the Co-training to online learning and regression using ensem-
bles of rule models. Section 4 describes the evaluation method. The results are
discussed in Section 5 and the main conclusions are remarked in Section 6.



2 Related Work

This section explains some concepts used in the development of Co-training and
Self-training methods. As general pattern, Co-training involves the training of
two or more different models in some aspects ( e.g., different inputs, different re-
gressors, different parametrization, different examples ...). The labeled examples
are processed as a supervised processure. The unlabeled examples are artificially
labeled and processed as a supervised procedure. The artificial label is essentially
a prediction (Self-training) or a processed prediction derived from a combina-
tion of predictions of complementary learners (Co-training). The learners are
considered to predict reliably (confidence driven method).

Co-training methods follow these assumptions: consensus, complementary,
sufficiency, compatibility and conditional independence. Self-training only con-
siders sufficiency and compatibility. Note that these assumptions can be applied
for both batch and online(incremental) methods.

– Consensus assumption states that the more similar the learner predictions
are, the more reliable the artificial label is [18].

– Complementarity assumption states the learners contain different infor-
mation and can learn from each other [18].

– Sufficiency assumption states that each regressor should be sufficiently con-
sistent (e.g., by enough number of attributes) to build a model.

– Compatibility assumption implies that the predictions of different models
present the same probabilistic distribution.

– Conditional independence assumption gives the chance of at least one
learner can produce a more accurate prediction.This prediction can be used
to teach the other learners. [19].

– Conditional independence assumption considers that the learning pro-
cess of each Despite being very important for Co-training, the independence
assumption is very restrictive. Therefore, related but less restrictive assump-
tions were considered.

– Weak dependence assumption tolerates a small dependence level between
inputs which lead to positive results. This assumption overcomes the restric-
tive characteristic of Conditional independence [20].

– Large diversity assumption considers that using different algorithms or
the same algorithms but with different parametrization lead to independent
models [21].

Concerning the drawbacks, the inaccuracy of the artificially labeled examples
introduce error into the models and it is the main cause of model degradation.
Moreover, the artificially labeled examples may not carry the information to
the regressor leading to unnecessary operations [11]. Different strategies to ar-
tificially label or criteria to discard non-beneficial artificially labeled examples
may be present in some Self-training and Co-training variants. The prediction
stage generally combines the predictions of the models according to a pre-defined
criterion to produce the final prediction [11].



3 Online Co-training and Self-training Regression

This section provides the description of a developed a Co-training method and
also a Self-training method through the presentation of the main adaptations
to the online and regression context. Here, the description was focused in the
Co-training algorithm. A small description of the underlying algorithm regressor
Random AMRules (ensemble rules based method) is also presented.

The new method that is being proposed divides the inputs variables of the
example into two groups randomly which is defined in the initial stage. Here,
weak dependence is assumed since no independence information between pairs of
attributes is available. The complementarity assumption is also used since each
produced model contains information that other does not contain.

The two groups are forced to share a randomly selected inputs by a pre-
defined overlap percentage. Two Random AMRules complementary regressors
are used to produce artificial labels through prediction for the unlabeled example.
The initial models are obtained previously in a training stage using a dataset
portion. The size of dataset portion should be sufficient to produce a consistent
model. Here, the inputs overlapping increase the number of attributes in each
model and contribute for the sufficiency assumption.

A score that reflects the benefit or confidence of artificially labeled example is
calculated for the decision of being accepted for training. The score is the relative
difference (RD) compared to the maximum of absolute values of the output found
in the stream ymax. Here, the consensus assumption is used. Equation 1 defines
de relative difference.

RD =
|ŷ1i − ŷ2i |
ymax

(1)

If the score is lower than a pre-defined threshold, the predictions are used to
train the complementary regressor. Otherwise, the artificially labeled example is
rejected. The consensus assumption is used in this step. If the example is labeled,
this example is used to compute the mean error for each regressor. Next, the
example is used for all regressors training. Here, the compatibility assumption is
used since both models are trained with the same output. Algorithm 1 explains
the training procedure of the proposed method.

Prediction is performed by combining the regressor predictions through pre-
diction weighting. The weights are computed by inverting the values of the re-
spective error produced by labeled examples in the training stage since the higher
the error is, the less the artificial example benefits the model. In other words, this
strategy gives more credit to the regressor that produces less errors. Algorithm
2 shows the steps of label prediction.

The Random AMRules regressor was employed to train the models and to
produce the artificial labels for the unlabeled examples [16]. Random AMRules is
a multi-target algorithm (predicts several outputs for the same example) that is
based on rule learning which can be calibrated to work on single-target mode [3].

In essence, Random Rules is an ensemble based algorithm that uses bag-
ging to create diversity and uses AMRules algorithm as a regressor. AMRules



Algorithm 1 Training algorithm of the proposed method

1: Initialization:
2: α−Overlap percentage
3: s− Score Threshold
4: Random input allocation and overlapping
5: into the two groups using α
6: Input: Example (xi, yi) ∈ S
7: Output: Updated Models
8: Method:
9: Divide xi into x1

i and x2
i

10: if (yi = ∅) then
11: ŷ1i = PredictModel1(x1

i )
12: ŷ2i = PredictModel2(x2

i )
13: if (|ŷ1i − ŷ2i |/ymax < s) then
14: TrainModel1((x1

i , ŷ
2
i ))

15: TrainModel2((x2
i , ŷ

1
i ))

16: else
17: ē1 = Update the mean error of Model1(ŷ1i , yi)
18: ē2 = Update the mean error of Model2(ŷ2i , yi)
19: TrainModel1((x1

i , yi))
20: TrainModel2((x2

i , yi))

Algorithm 2 Prediction algorithm of the proposed method

1: Input: Example (xi, yi) ∈ S
2: Output: Example prediction ŷi
3: Method:
4: Divide xi into x1

i and x2
i

5: ŷ1i = PredictModel1(x1
i )

6: ŷ2i = PredictModel2(x2
i )

7: w1 = ē2/(ē1 + ē2))
8: w2 = ē1/(ē1 + ē2)
9: ŷi = w1 ∗ ŷ1i + w2 ∗ ŷ2i

divides the input space in order to train local model in each partition. AMRules
partionates the input space and creates local models for each partition. The lo-
cal models are trained using a single layer perceptron. Its main advantages are
models simplicity, low computational cost and low error rates [3].

Modularity is one of the main advantages. In fact, this method allows the
train of models for local input sections limited by the rule that are more precise.
This algorithm also resorts to anomaly detection to avoid data outliers damage.
Moreover, change detection on the stream is also employed by this method in
order to avoid the influence of old information on the current predictions. The
ensembles of AMRules can benefit the prediction by creating multiple and di-
verse regressor models by pruning the input partitions. The multiple regressor
predictions create more possibilities to find a more accurate value. The ensembles
also lead to a more stable final prediction and data change resilience.



The Self-training method basically consists of one learner that artificially
labels the incoming example and uses directly in the training (without a rejection
criteria). This method is very simple compared to Co-training, since only one
model is trained and it doesnt present a condition for training acceptance. In
terms of complexity, the Co-training presents the double complexity in required
memory and computing power, when compared to the Self-Learning. In fact, the
Co-training method basically trains two modesl while Self-training just trains
one.

4 The Evaluation Method

The evaluation method and the material used in the experiments are described
in this section. Real-world and artificial datasets were used to evaluate the pro-
posed algorithm through a data stream simulation. A portion of 30% of the first
examples of the stream were used for a initial consistent model training and the
remaining 70% were used in the testing.

In order to produce an unlabeled examples in the test stage, a binary Bernoulli
random process with a probability p was used to assign an example as labeled
or unlabeled. In case of unlabeled assignment, the true output value is hidden
from the algorithm. The p probabilities of unlabeled examples occurrence were
50%, 80%, 90%, 95% and 99%.

For the Co-training method, the score threshold values for algorithm cali-
bration were 1 × 10−4, 5 × 10−4, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 1. These
values of score threshold are justified by the possibility of algorithm behaviour
observation in multiple scales of this parameter. The overlap percentages as-
sume the following values: 0%, 10%, 30%, 50%, 70% and 90%. The evaluation
was performed in Prequential mode where in example arrival, the label predic-
tion is performed first and then the example is used in the training [25]. Each
Random AMRules regressor consists of ten regressors ensemble. This value was
determined in a validation step were no significant improvement was observed
above 10 regressors.

In these experiments, five real world and four artificial datasets were used
to simulate the data stream. The real world datasets were House8L (Housing
Data Set), House16L (Housing Data Set), CASP ( Physicochemical Properties of
Protein Tertiary Structure Data Set), California, blogDataTrain and the artificial
datasets were 2dplanes, fried, elevators and ailerons. These datasets contain a
single-target regression problem and are available at UCI repository [26].

Table 2 an shows the features of the real world and artificial data sets used
in the method evaluation.

The performance measure used in these experiments was the mean relative
error (MRE). The MRE is used as an intermediate measure to quantify the pre-
diction precision of each test scenario for both labeled and unlabeled examples.
The MRE Reduction (MRER) was measured by using the relative difference (in
percentage) between the reference scenario (no unlabeled examples used) MRE0

and the case with the parametrization that lead to the lowest error MRElowest



Table 1. Real world datasets description

Dataset # Examples # Inputs

House8L 22784 8

House16H 22784 16

calHousing 20640 7

CASP 45730 9

blogDataTrain 52472 281

Table 2. Artificial datasets description

Dataset # Examples # Inputs

2dplanes 40768 10

fried 40768 10

ailerons 13750 41

elevators 8752 18

(includes the reference case MRE0). Equation 2 defines the MRER performance
measure.

MRER =
|MRE0 −MRElowest|

MRE0
.100 (%) (2)

If the reference case yields the lowest error, then the MRER is zero, which
means that the algorithm is not useful for that particular scenario.

Massive Online Analysis (MOA) platform was used to accommodate the pro-
posed algorithm [27]. This platform contains Machine Learning and Data Mining
algorithms for data streams processing and was developed in JAVA programming
language.

5 Results

In this section, the evaluation results for Co-training and Self-training are pre-
sented and discussed.

5.1 Co-training results

For each combination of overlap percentage and score threshold, the experiments
were performed in 10 runs due to the fact that the inputs are selected randomly.
This procedure is important to obtain more consistent values. The results also
include the presentation of the MRER for each dataset and the unlabeled ex-
amples percentage simulation.



In the experiments was registered, for the particular case of overlap of 50%
and score threshold of 0.001, the use of 9.1% of the unlabeled examples in the
training lead to reduction of 3.85% of the MRE in average for the House16H
dataset. In general, it was also observed that the overlapping decrease the MRE.

The failure in some scenario is explained by the fact of many unlabeled
examples lead to model degradation and the artificial labels were very inaccurate
(the curves of unlabeled examples scenarios are above the reference curve). This
fact indicates that features of the datasets such as inputs variables distributions
may dictate the performance.

This methods are prone to error propagation through the model. The error
propagation through the model lead to worst predictions in the artificial labeling.
This effect leads to a cycle that reinforce the error on each unlabeled example
processing. In fact, the more unlabeled examples arrive the higher is the error.

Table 3 provides the MRER values of the experiments on real world datasets
for each chosen unlabeled examples probabilities, for Co-training method.

Table 3. MRER (%) for real world datasets

Datasets
Unlabeled examples probabilities
50% 80% 90% 95% 99%

House8L 2,23 3,21 2,77 0,00 0,00
House16H 3,85 1,93 0,32 0,00 0,00
calHousing 2,37 2,02 0,75 0,01 0,00
CASP 0,80 1,65 0,00 0,00 0,00
blogDataTrain 1,17 0,40 0,37 0,00 0,00

Table 3 suggests that the proposed algorithm seems to improve the per-
formance for most part of the scenarios. The Co-training method can produce
error reduction in higher percentage of unlabeled examples than the Self-training
method. Despite this fact, the MRER are in general relatively small but superior
than the Self-training method.

Table 6 provides the MRER value for real artificial datasets in similar way
as the real world datasets presented in Table 5.

Table 4. MRER (%) for artificial datasets

Datasets
Unlabeled examples probabilities
50% 80% 90% 95% 99%

2dplanes 2,39 0,90 0,75 0,00 0,00
fried 3,55 3,35 1,71 0,00 0,00
ailerons 2,67 1,79 0,01 0,95 0,00
elevators 1,35 1,11 0,71 0,00 0,00



The results on artificial datasets reinforce the same conclusions that were
obtained from real world datasets. The MRER is similarly small.

The results show that for 99% of unlabeled examples probability, the method
does not produce beneficial artificial labels. This high level of unlabeled examples
in the stream represents an extreme scenario where the model is training almost
with artificially labeled examples and the high error propagation can frequently
occur.

5.2 Self-training results

Table 5 provides the MRER values of the experiments on real world datasets for
each chosen unlabeled examples probabilities, for the Self-training method.

When MRER assumes the zero value, a combination of overlap percentage
and score threshold values that improves the model was not found and the
reference scenario presents the lower MRE.

Table 5. MRER (%) for real world datasets

Datasets
Unlabeled examples probabilities
50% 80% 90% 95% 99%

House8L 0,57 0,01 0,00 0,00 0,00
House16H 0,23 0,00 0,00 0,00 0,00
calHousing 0,02 0,00 0,00 0,00 0,00
CASP 0,00 0,00 0,00 0,00 0,00
blogDataTrain 0,44 0,00 0,00 0,00 0,00

Table 5 suggests that the proposed algorithm seems to improve the per-
formance for few scenarios. In fact, the algorithm fails in high probabilities of
unlabeled examples. Inclusively, there is one dataset that didnt produce any
favourable result. In successful cases, the MRER are in general relatively small.

Table 6 provides the MRER value for real artificial datasets in similar way
as the real world datasets presented in Table 5.

Table 6. MRER (%) for artificial datasets

Datasets
Unlabeled examples probabilities
50% 80% 90% 95% 99%

2dplanes 1,12 0,00 0,00 0,00 0,00
fried 0,17 0,00 0,00 0,00 0,00
ailerons 0,81 0,00 0,00 0,00 0,00
elevators 0,22 0,00 0,00 0,00 0,00



The results on artificial datasets also support the view that the more elevated
the unlabeled probability is, the less is the benefit of the unlabeled examples.
The MRER is similarly small and there are very few successfull cases.

These results show that Self-training is limited by the percentage of unlabeled
in the stream. For unlabeled examples higher than 50 %, the Self-training does
not produce any error reduction. This limitation is explained by the fact that
the artificially labeled examples produce high errors which does not garantee
compability of the predictions.

6 Conclusion

This paper addresses a comparison of an online Co-training and Self-training
algorithm for single-target regression based on ensembles of rule models. This
work is the base for the development of multi-target regression methodology
capable of using unlabeled examples information for model improving.

The results support that Co-training approach which uses the Random AM-
Rules method reduces the error with the appropriate parameters calibration.
The main contribution was the overlapping and the consensus measure strate-
gies that contribute to increase diversity and model consistency in a online co-
training scenario. The comparison between Co-training and Self-training reveal
that Co-training can in fact lead to higher error reductions that the Self-training.
In addiction, Co-training can produce error reduction in higher level of unlabeled
examples in the stream.

In fact, the MRER is positive when an amount of unlabeled examples are
used in the training in most evaluation combinations. Despite this fact, the
model benefit is still relatively small and the performance is highly dependent
of a good parametrization tuning (score threshold and overlap percentage). In
addition, the amount of unlabeled examples is relatively small to obtain some
model improvement.

Considering future work, this work will be extended to multi-target regres-
sion. The fact that very few unlabeled examples can lead to some improvement
may suggest the study of the conditions that lead to this improvement. To in-
crease the method validity, future works will include a higher number of real
world datasets with higher amount of examples. Datasets with particular fea-
tures such drifts presence are also in view.
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