
EGG: A Framework for Generating Evolving
RDF Graphs

Karim Alami, Radu Ciucanu, and Engelbert Mephu Nguifo

Université Clermont Auvergne & CNRS LIMOS, France
alami.karim7@gmail.com, ciucanu@isima.fr, mephu@isima.fr

Abstract. We demonstrate EGG (Evolving Graph Generator), an open-
source framework for generating evolving RDF graphs based on finely-
tuned temporal constraints given by the user. During the demonstration,
we will showcase the highly-expressive constraints that the user can spec-
ify in EGG to generate evolving graphs over various real-world use cases,
the accuracy and scalability of the generator, and the ease of using EGG
in performance comparisons of evolving graph processing systems.

1 Introduction

Large-scale RDF graphs are used to model a variety of real-world domains. In
practice, both nodes and edges of such graphs have properties that are naturally
evolving over time. For example, in a geographical database storing information
about cities and transportation facilities, the nodes of type city have evolving
properties e.g., weather and air quality, whereas the edges that encode trans-
portation facilities between cities have evolving properties e.g., price.

To be able to realize rigorous empirical evaluations of research ideas, the
graph processing community needs tunable evolving graph generators, which
are particularly useful whenever real-world graphs are unavailable for public use.
The community has well-known synthetic RDF graph generators (e.g., [1,2,3]),
very few evolving RDF generators (e.g., EvoGen [4] that extends LUBM [3]), but
to the best our knowledge, there is no schema-driven evolving graph generator.

We demonstrate EGG (Evolving Graph Generator), an open-source1 frame-
work for generating evolving graphs based on finely-tuned temporal constraints
given by the user. We depict the architecture of EGG in Fig. 1. We built EGG on
top of gMark [2], a state-of-the-art static graph generator. EGG takes as input
(i) an initial graph generated by gMark, and (ii) an evolving graph configuration
that encodes how the evolving properties of the node types and edge predicates
from a gMark configuration should evolve over time. The output of EGG is an
RDF graph annotated with temporal information (in the spirit of [6]) that en-
codes a sequence of graph snapshots satisfying the constraints given by the user.

In Section 2, we present an overview of EGG, whereas in Section 3 we describe
our demonstration scenarios. Due to the lack of space, we omit several details
that can be found on the GitHub page1 of EGG, together with the different use
cases and data that we will use throughout our demonstration scenarios.

1
https://github.com/karimalami7/EGG

https://github.com/karimalami7/EGG


Static graph configuration
• Size
• Node and edge types
• Occurrence constraints
• Degree distributions

Evolving graph configuration
• # of snapshots
• Evolving properties (nodes and edges)
• Evolution constraints

gMark
Static graph generator

EGG
Evolving graph generator

RDF annotated
with temporal

information

Fig. 1. Architecture of EGG. The bottom components are part of the existing gMark [2]
static graph generator. The top components are part of our EGG contribution.

2 System Overview

In this section, we present gMark static graph configurations, EGG evolving graph
configurations, and we briefly discus EGG implementation challenges. Similarly to
gMark, EGG is schema-driven and domain-independent. We use next as running
example a geographical database, but we have been additionally able to easily
encode different domains such as a social network, a DBLP-like bibliographical
network, or an online shop. All these schemas will be part of our demonstration.

Static graph configurations. Assume that a user wants to generate graphs
simulating a geographical database storing data about cities, and different facil-
ities such as transportation and hotels. The user can specify as gMark input the
following types of constraints: (i) graph size, given as # of nodes; (ii) node types
e.g., city and hotel, and edge types e.g., train and contains; (iii) occurrence
constraints e.g., 10% of the graph nodes should be of type city, whereas 90%
of the graph nodes should be of type hotel; (iv) degree distributions e.g.,

source type predicate
−−−−−−→

target type In-distribution Out-distribution

city contains−−−−−−→ hotel Uniform [1,1] Zipfian

meaning that we can have an edge of type contains from a node of type city

to a node of type hotel, with a Zipfian out-distribution (since it is realistic to
assume that the number of hotels in a city follows such a power-law distribution)
and a uniform [1,1] in-distribution (since a hotel is located in precisely one city).

We call such gMark graph configurations as being static since the nodes
of type e.g., city and hotel are rarely created or deleted. Nonetheless, such
nodes (as well as the different edges connecting them) possess properties that
naturally evolve over time, in an interdependent manner. The user can specify
such evolving properties as input of EGG, as we illustrate next.

Evolving graph configurations. Assume that our user generates with gMark
a graph having nodes of type city and hotel, and edges of type train (connect-
ing two cities) and contains (connecting a city to a hotel). Next, the user wants
to add properties that evolve over time for the aforementioned nodes and edges,
assuming that a graph snapshot corresponds to a day. We next give examples of
such properties, together with finely-tuned constraints to evolve among consec-
utive snapshots. A node of type hotel has the following evolving properties:



– availableRooms (quantitative discrete), which can have as values integers
in the interval [1,100], following a binomial distribution. There is a probability
of 80% that it changes from a snapshot to the next one, and it can increment or
decrement by an integer up to 5 between two consecutive snapshots.

– star (ordered qualitative), which can have five possible values, following a
geometric distribution. It can only change every thirty snapshots, with a prob-
ability of 10%, and it can only increment or decrement by 1.

– hotelPrice (quantitative continuous), whose values follow a normal distri-
bution in an interval that is dynamically constructed based on the value of the
property star. Moreover, hotelPrice is anti-correlated with availableRooms

i.e., if availableRooms decreases, then hotelPrice increases, and vice-versa.
The user can similarly specify evolving properties and evolution constraints

for the node type city (e.g., properties weather and airQuality) and for the
edge type train (e.g., property trainPrice). It is worth noting that we allow the
EGG user to specify validity properties i.e., Boolean properties encoding whether
a given node or edge exists at a given snapshot e.g., a train connection between
two cities may not be valid during all snapshots.

Implementation challenges. Building a system like EGG is an ambitious goal
since we allow the user to specify very expressive constraints. This leads to some
interesting challenges that we briefly discuss next:

Computational complexity. As illustrated earlier, we allow the user to specify
evolution constraints where the value of a property among consecutive snap-
shots depends on another property. We model the inter-dependencies between
such evolving properties with a dependency graph. It is easy to see that if the
aforementioned dependency graph is cyclic, the generation algorithm may not
halt. Consequently, in our implementation we require that the dependency graph
is acyclic and we sort it topologically to decide in which order we should apply
the evolution constraints. Even for acyclic dependency graphs, we suspect that
it is NP-complete to decide whether there exists a sequence of graph snapshots
satisfying the input constraints. The exact complexity is an open question.

Storage redundancy. A naive solution to store the generated evolving graphs
would be to entirely store each snapshot, which would yield a redundant storage
due to the graph parts that are static throughout the snapshots. To minimize
such redundancy, we rely on a storage format inspired by [6] that uses named
graphs to express temporal information in RDF. Our output format (that we
serialize using the TriG syntax2) allows us to decouple the storage of the static
parts of the graph (i.e., structural information satisfied in all snapshots) and the
evolving parts of the graph (i.e., the property values that change from a snapshot
to the next one). For example, we use named graphs of the form

ns1:G31 {<hotel:27> ns2:hasProperty <Property:availableRooms>.}
encoding that a node of type hotel has a property availableRooms. Moreover,
for each graph snapshot, we have a further named graph where each of the named
graphs of the form above has associated a value e.g., ns1:G31 ns3:value "57".
We provide examples of such TriG output on the GitHub page of EGG.

2
https://www.w3.org/TR/trig/

https://www.w3.org/TR/trig/


3 Demonstration Scenarios
During the demonstration, we will (i) introduce via examples the finely-tuned
temporal constraints that the user can specify in EGG, (ii) emphasize the ac-
curacy and scalability of EGG, and (iii) point out the ease of using EGG in
performance comparisons of evolving graph processing systems.

(i) Finely-tuned constraints by example. We will show to the attendees
how finely-tuned temporal constraints as those exemplified in Section 2 can be
easily encoded in JSON as EGG input. In addition to our running example, we
will also rely on several EGG real-world use cases: a social network in the spirit
of the datasets used in [5], a DBLP-like co-authorship graph, an online shop in
the spirit of WatDiv [1], and a university database in the spirit of LUBM [3]. All
these use cases are also available online on the GitHub page of EGG.

Fig. 2. Plots generated with
EGG visualization module.

(ii) Accuracy and scalability. For showing the
accuracy of EGG and its sensitivity to different con-
straints, we will rely on the EGG visualization mod-
ule to illustrate that the generated graphs match the
input constraints. For example, we observe in Fig. 2
that the evolving properties satisfy the constraints
in Section 2, in particular the anti-correlation be-
tween hotelPrice and availableRooms. As for
the scalability of EGG, the attendees will generate
graphs of increasing size or with an increasing number of snapshots, and observe
that EGG has a linear time behavior. Detailed accuracy and scalability plots are
available in the wikis of our GitHub page of EGG.

(iii) Impact on empirical evaluations. To emphasize the ease of realizing
empirical evaluations on top of EGG, we will present a performance comparison
of approaches for answering historical reachability queries [5], which ask whether
there exists a path between two nodes in a specified interval of time. The atten-
dees will generate evolving graphs with EGG and visualize the trade-offs between
an algorithm found in [5] against a SPARQL implementation of our own on top
of Apache Jena. We provide in a wiki on our GitHub page of EGG more details
e.g., the data and queries to be used, and the types of generated plots.

References

1. G. Aluç and et al. Diversified stress testing of RDF data management systems. In
ISWC, pages 197–212, 2014.

2. G. Bagan and et al. gMark: Schema-driven generation of graphs and queries. IEEE
TKDE, 29(4):856–869, 2017.

3. Y. Guo and et al. LUBM: A benchmark for OWL knowledge base systems. J. Web
Sem., 3(2-3):158–182, 2005.

4. M. Meimaris and G. Papastefanatos. The EvoGen benchmark suite for evolving
RDF data. In MEPDaW/LDQ@ESWC, pages 20–35, 2016.

5. K. Semertzidis and et al. TimeReach: Historical reachability queries on evolving
graphs. In EDBT, pages 121–132, 2015.

6. J. Tappolet and A. Bernstein. Applied temporal RDF: efficient temporal querying
of RDF data with SPARQL. In ESWC, pages 308–322, 2009.


	EGG: A Framework for Generating Evolving RDF Graphs

