
Federated SPARQL Query Processing Via CostFed

Alexander Potocki1,2, Muhammad Saleem2, Tommaso Soru2,
Olaf Hartig3, Martin Voigt1, and Axel-Cyrille Ngonga Ngomo2,4

1 Ontos GmbH, {alexander.potocki,martin.voigt}@ontos.com
2 AKSW, Germany, {saleem,tsoru,ngonga}@informatik.uni-leipzig.de

3 IDA, Linköping University, Sweden, olaf.hartig@liu.se
4 University of Paderborn, Germany, axel.ngonga@upb.de

Abstract. Efficient source selection and optimized query plan generation belong
to the most important optimization steps in federated query processing. This paper
presents a demo of CostFed, an index-assisted federation engine for federated
SPARQL query processing. CostFed’s source selection and query planning is
based on the index generated from the SPARQL endpoints. The key innovation
behind CostFed is that it considers the skew distribution of the resources to perform
efficient source selection and cost-based query planning. Our experiments on the
FedBench benchmark that CostFed on average is 3 to 121 times faster than the
state of the art.

1 Introduction

Answering complex queries on the Web of data often requires merging partial results
contained across different data sources. The optimization of engines that support this
type of queries, called federated query engines, is thus of central importance for the
efficient and scalable deployment of Semantic Web technologies. Current cost-based
SPARQL endpoint federation approaches [2,4,9] assume that the resources pertaining
to a predicate are uniformly distributed. Hence, they make use of average selectivities
to estimate the cardinality of triple patterns. However, in reality the resources are not
uniformly distributed in RDF datasets [3]. Our analysis5 of the well-known federation
benchmark named FedBench [7] confirms that the FedBench resources are not uniformly
distributed. The downside of using average selectivities for triple patterns cardinality
estimation is that it can lead to poor cardinality estimation when a high-frequency
resource (i.e., a resource that occurs in a large number of triples) is used in that triple
pattern. Consequently, the query planning can be significantly affected as suggested by
our evaluation (see Section 2).

CostFed is an index-assisted SPARQL endpoint federation engine. CostFed’s query
planning is based on estimating query costs by using selectivity information stored in an
index. In contrast to the state of the art, CostFed takes the skew in distribution of subjects
and objects across predicates into account. In addition, CostFed extends the join-aware
source selection technique introduced in HiBISCuS [6]. Our join implementation is
based on both bound [1] and symmetric hash joins. A comparison of CostFed with state-
of-the-art federation engines (ANAPSID [1], SemaGrow [2], SPLENDID [4], HiBISCuS

5 FedBench analysis: https://github.com/AKSW/CostFed/tree/master/stats

https://github.com/AKSW/CostFed/tree/master/stats


1

10

100

1000

10000

100000

1000000

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7 Avg.

R
u

n
ti

m
e 

in
 m

se
c 

(l
o

g 
sc

al
e)

FedX SPLENDID ANAPSID SemaGrow CostFed

Fig. 1: Comparison of the query execution time on FedBench

[6], and FedX [8]) show that we outperform these engines on the overall query runtime
on the majority of the FedBench [7] queries.

2 Evaluation Results

We used FedBench [7] for evaluation which comprises 25 queries, 14 of which (CD1-
CD7, LS1-LS7) are for SPARQL endpoint federation approaches (the other 11 queries
(LD1-LD11) are for Linked Data federation approaches [5]). As CostFed is a SPARQL
endpoint federation, we used all 14 SPARQL endpoint federation queries in our evalua-
tion.

The query execution time is often used as key metric to compare federation engines.
Herein, we consider the query execution time to be the time necessary to gather all the
results from the result set iterator of each engine. Figure 1 shows the runtime performance
of the state-of-the-art SPARQL endpoint federation engines. Overall, CostFed clearly
outperforms the other selected systems. On FedBench, CostFed is better than FedX on
11/14 queries and outperforms SPLENDID, ANAPSID and SemwGrow on all 14 queries.
CostFed’s average runtime across all 14 FedBench queries is only 440ms while FedX
needs 7,468ms (i.e., 16 times the runtime of CostFed), SPLENDID’s is 5,3404ms (i.e.,
121× slower than CostFed), ANAPSID’s is 12,467ms (i.e., 28× that of CostFed), and
SemaGrow’s is 1,203ms (i.e., 3× slower than CostFed). Since the execution times for
the FedBench queries are very small, i.e., less than 3 seconds on CostFed, the average
runtime performance for a system is greatly affected if a particular query takes too
long. For example, FedX takes 94,519ms to execute LS6, due to which overall runtime
performance is greatly decreased comparing to CostFed. If we remove the LS6 runtime,
then FedX’s average (across the remaining 13 queries) runtime is 771 ms (2× CostFed’s).

3 CostFed Online

The CostFed online demo along with the source code is available from the CostFed
homepage https://github.com/AKSW/costfed.

https://github.com/AKSW/costfed


Fig. 2: The CostFed Online Interface

3.1 Interface

Figure 2 shows the online interface6 of the CostFed which comprise of four main steps:

1. Create CostFed repository: The first step is to create CostFed repository. The user
has to select ‘CostFed’ from the drop down menu. The rest of the process is exactly
the same as creating a new RDF4J repository.

2. Endpoint manager: The second step is to register the set of SPARQL endpoints
over which the given SPARQL query will be executed. Beside registering new
SPARQL endpoints, the manager allows to enable/disable the given endpoint and
generate CostFed index for the given endpoint. Please note that as mentioned before
CostFed is index-assisted approach. Therefore, all indexes should be created first
before running the SPARQL queries. The generated indexes can be downloaded as a
Turtle file.

3. Running queries: The third step is to write SPARQL query and run it over given
set of enabled SPARQL endpoints. Note that CostFed allows running both federated
and non-federated SPARQL queries.

4. Results: The results of the query executed in step (3) will be shown in windows 4.
Exactly same like RDF4J the results can be downloaded in different formats, e.g.,
CSV, TSV, etc. Also the number of results per page can be set.

3.2 Implementation

The CostFed demo comprises two main web applications: 1) the endpoint manager which
manages the SPARQL endpoints and 2) the query executor which enables user to write

6 Online at http://costfed.aksw.org.

http://costfed.aksw.org


and execute SPARQL queries. The front end of the endpoint manager was developed
using the VueJs7 framework while the backend is implemented as a Java servlet. The
application uses a file system as a storage for SPARQL endpoints descriptors, errors, and
indexes. Each descriptor is represented as a standard Java property file. The files contain
all current endpoint parameters, including the state of the summary generation procedure.
The SPARQL query executor application is developed on top of the well-known RDF4J8

Workbench. Basically, it is an extension to the RDF4J workbench where we embedded
CostFed in the form of an RDF4J repository.

4 Conclusion

We presented CostFed, a federated engine for SPARQL endpoint federation. CostFed
implements innovative solutions for the selection of sources, the estimation of cardi-
nalities and the planning of queries. We evaluated our approach against state-of-the-art
federation systems.

Acknowledgements

This work was supported by the H2020 project HOBBIT (no. 688227), the BmBF project
DIESEL (no. 01QE1512C), the BMWi project GEISER (no. 01MD16014), and by the
BMWi project SAKE (no. 01MD15006E). Olaf Hartig’s work was funded by the CENIIT
program at Linköping University (project no. 17.05).

References

1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: an adaptive query
processing engine for SPARQL endpoints. In ISWC, 2011.

2. A. Charalambidis, A. Troumpoukis, and S. Konstantopoulos. Semagrow: Optimizing federated
sparql queries. In SEMANTICS, 2015.

3. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and oranges: a comparison of
rdf benchmarks and real rdf datasets. In ACM SIGMOD, 2011.

4. O. Görlitz and S. Staab. Splendid: Sparql endpoint federation exploiting void descriptions. In
COLD at ISWC, 2011.

5. M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, and A.-C. N. Ngomo. A fine-grained evaluation
of sparql endpoint federation systems. SWJ, 2015.

6. M. Saleem and A.-C. Ngonga Ngomo. HiBISCuS: Hypergraph-based source selection for
sparql endpoint federation. In ESWC, 2014.

7. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. Fedbench: a benchmark
suite for federated semantic data query processing. In ISWC, 2011.

8. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization techniques
for federated query processing on linked data. In ISWC, 2011.

9. X. Wang, T. Tiropanis, and H. C. Davis. Lhd: Optimising linked data query processing using
parallelisation. In LDOW at WWW, 2013.

7 VueJs: https://vuejs.org/v2/guide/
8 RDF4J formally known as Sesame: http://RDF4J.org/

https://vuejs.org/v2/guide/
http://RDF4J.org/

	Federated SPARQL Query Processing Via CostFed
	Introduction
	Evaluation Results
	CostFed Online
	Interface
	Implementation

	Conclusion


