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ABSTRACT 
Representational Redescription theory as proposed by Karmiloff-
Smith [1992] investigates the changes in behavioral performance 
and “level of representation” as children experience new domains 
of knowledge. In order to introduce the applicability of this theory’s 
propositions to knowledge acquisition in both children and 
Artificial Intelligence systems, we analyzed the experimental 
literature in Representational Redescription, as well as in the 
closely related theory of Neuroconstructivism.  

1 INTRODUCTION  

Investigations into how children process information have typically 
focused on specific factors, including biological and socio-cultural 
constraints, environmental cues, and innate predispositions to 
attend to certain stimuli. All of these factors have demonstrated 
important influences on how children learn and communicate new 
ideas and abilities. However, much of the evidence for these effects 
has come from observations and interpretations of behaviors. While 
behaviors may be readily observed and interpreted, processes taking 
place within the child’s mind that may be influencing behavior may 
be quite difficult to identify. One theoretical perspective that 
attempts to explain these internal processes, named 
“representational redescription theory,” seeks to explain how 
children can acquire representations of their external and internal 
environments that attain increasing levels of complexity and 
flexibility [Karmiloff-Smith, 1992]. Insight into this process may 
also have important applications for machine learning and AI, by 
facilitating the development of progressively more complex skills 
and capacities in intelligent agents. Yet, such applications can only 
exist if the concept of ‘representation’ and its change throughout 
development is coherent. Unfortunately, work that refers to 
representational redescription theory has not been consistent on the 
point of what it means for a representation to change.  
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We will address the confusion over what a representation is and how 
it changes, as predicted by representational redescription theory. 
This will be followed by an account of Karmiloff-Smith’s original 
operationalizations of key concepts of the developmental curve, 
based on her landmark 1992 publication. We will then discuss 
subsequent literature on these predictions, while also clarifying the 
lack of consensus on how to test representational change 
independently from behavioral mastery. Finally, we will present 
alternative methods for measuring this change, in specific 
neuroconstructivist computational modeling, as well as possible 
applications of representational redescription to artificial 
intelligence.  
 

2 OVERVIEW OF REPRESENTATIONAL 
REDESCRIPTION  

Representational redescription theory, originally developed by 
Annette Karmiloff-Smith, attempts to explain how a child 
represents the external environment within their mind, changes 
these representations through continued interaction with the 
environment, and eventually reaches a higher degree of both 
behavioral mastery and metacognition. Karmiloff-Smith [1992] 
divides this process of change into three phases, characterized by 
two factors: the level of performance on a task, and the ‘level of 
representation[al development],’ an abstract measure whose lack of 
a definition is the cause of much confusion. The relation between 
levels of performance and representational development form what 
Karmiloff-Smith calls a “U-shaped curve” (Figure 1). In phase 1, 
performance is high but level of representation is low; the child does 
not possess any metacognition about the performance of that 
specific behavior, but he or she has learned to associate the behavior 
with its context through observation and feedback from the 
environment. As the behavior is repeated, they begin to develop a 
higher level of representation marked by, for instance, theory-
building and generalizations. In phase 2, the level of representation 
within a given micro-domain goes up and is associated with lower 
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Figure 1: The theorized U-shaped curve of behavioral 
performance and level of redescription as a function of time, as 
originally presented in Karmiloff-Smith [1992]. Note the 
somewhat ambiguously labeled axes. 

performance as a result of a higher disregard for external feedback 
and an increased focus on internal processes. 

Finally, as the process of representational redescription continues to 
phase 3, the child demonstrates more representational flexibility by 
not only being able to reflect on and describe the rationales for their 
behavior, but also through accounting for exceptions to the pre-
established representations. Thus, the developmental graph of a 
specific microdomain shows a linear development of level of 
representation, but at the same time a non-linear development of 
performance, reaching its lowest level at phase 2.  A graph of the 
U-Shaped curve, equivalent to the one initially proposed by 
Karmiloff-Smith [1992], can be seen in Figure 1. This U-Shaped 
curve, originally presented in Karmiloff-Smith [1992] as a 
hypothetical model, has room for interpretation. Other authors, such 
as Pinker [1995], have referenced this decrease in behavior 
performance in other terminology. 

Initial support for the change in the level of representation relied 
specifically on grammatical development, with changes in 
representation marked by the ability to analyze grammatical 
elements on a pronoun-noun phrase in French [Karmiloff-Smith, 
1979, 1986] and the ability of separating the grammatical elements 
of American Sign Language (ASL) [Newport 1981]. The inference 
that representational change occurred in these cases stemmed 
primarily from the same evidence that suggests a decrease in 
behavioral performance.1 In those studies, markers of less accurate 
behavior (e.g., breaking down a pronoun into a more complex and 
incorrect phase, breaking down a sign in ASL instead of delivering 
it fluidly) were indications that children were hyper-aware of the 
grammatical elements in their utterances/gestures, to the extent of 
prioritizing the acknowledgment of these internal processes over 

                                                                 
1 Respectively, the breakdown of the correct utterance “mes voitures” [1st 
person + plural possessive “my” + plural “cars”] into incorrect forms in 
which grammatical person and number were separated, “les miennes des 

what was initially correct performance. Late-occurring behavioral 
performance errors in both examples constitute a large part of the 
evidence for representational change, however, Karmiloff-Smith 
further analyzes specific aspects of those mistakes in order to 
support the U-shaped curve and representational redescription. 
These aspects, as presented in Karmiloff-Smith [1992], were 
originally described as accompanying an increase in the level of 
complexity of representations, demonstrated by the presentation 
over time of abilities not previously available. They include the 
abilities to (1) analyze a procedure/representation into its 
meaningful parts, (2) identify and understand relationships between 
elements of a larger whole (e.g., morphemes within words), (3a) 
form general theories about a specific procedure or micro-domain, 
as well as to (3b) later correctly identify and address exceptions to 
such theories, (4) contrast characteristics or functions of similar 
elements (e.g., definite vs. indefinite articles) and (5) elaborate 
verbal explanations of rationales for either correct or incorrect 
behavior.  

These specific markers of representational change, however, were 
not as clearly operationalized as the decrease in behavioral 
performance itself in supporting the U-shaped curve, and may be to 
blame for some inconsistencies in the research following the 
original publication of the theory. The confusion about the meaning 
of the U-shaped curve and the ambiguity of representational 
redescription’s central claims have led to a variety of incompatible 
interpretations. We will now summarize these interpretations.  

3 WORK  ON 
REPRESENTATIONAL REDESCRIPTION  

3.1 Language  
One of the domains explored in Karmiloff-Smith [1992] was 
language, with an emphasis on semantic and morphosyntactic 
development.  Critten, Pine, and Steffler [2007] are early 
proponents of the application of the theory to other language related 
microdomains, such as spelling. In their 2007 study, the lowest level 
of representational redescription in children’s spelling development 
was operationalized as inflexible behavioral mastery without 
conscious access to the knowledge in the microdomain, while the 
second and third phases were characterized, respectively, by 
overgeneralization errors progressing to less performance errors 
without full rule understanding, and finally proficient task 
performance with complete comprehension of applicable spelling 
rules. The researchers were able to demonstrate a behavioral 
developmental curve, in which the decrease in performance was 
associated to an over-reliance in specific phonetic or morphological 
spelling strategies.  

Expanding on this first study, Critten, Pine, and Messer [2013] 
continued to analyze representational and behavioral change within 

voitures” [Karmiloff-Smith 1979, 1986] and the breakdown of initially 
“holistic” ASL signs into “staccato-like” movements, in which the parts of 
the sign were broken down based on its morphological markers.  

                      Phase 1                      Phase 2                   Phase 3   
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the microdomains of spelling recognition and production. In the 
spelling recognition task, children were asked to choose between 
one correct and two incorrect spellings of a list of words, including 
regular and irregular verbs, as well as non-verbs. Performance and 
ability to justify their choices, as well as why the other alternatives 
were incorrect, were taken into account when assigning phases of 
representational development to children. While children in the 
second-lowest phase had high accuracy in choosing the correctly 
spelled option (following a phase of low accuracy), subsequent 
phases demonstrated lower accuracy due to the emergence of new 
mistakes (e.g., identifying [-ed] as a marker of past-tense in verbs 
and rejecting correct spellings of irregular verbs for lacking the 
suffix). Finally, in the last phase, children not only regained high 
performance, but were also able to explain verbally the rationale for 
their choices. This pattern of development, composed of a decrease 
in behavioral performance (marked by accuracy) due to the over-
regularization of newly identified elements of language (e.g., [-ed] 
suffix marking past tense), is in accordance with the original 
propositions of the U-Shaped curve and the patterns of behavioral 
and representational development proposed by Karmiloff-Smith 
[1992].  

In a similar spelling production task, the researchers presented 
children with a spelled word or pseudoword, and an assortment of 
letter magnets. Children then had to use the letter magnets in order 
to transform the previous word into a new word proposed by the 
researcher. Performance was measured in terms of their ability to 
accurately create the new word and verbally express their 
justification for both how they transformed the word and how the 
words differed. Successful performance of the task involved 
replacing the first letter of the word or pseudoword (always a 
consonant) with a different consonant. In this second task, 
providing an incorrect explanation coupled with lower task 
accuracy was considered by the researchers as a marker of an 
intermediate phase, which would correspond to phase 2 of the U-
shaped curve. This spelling production task, unlike other literature 
on Representational Redescription and spelling development, did 
not directly address morphological development, while the skills 
tested were based purely on phonetic development and letter 
recognition.  

Critten et al. [2007] and Critten et al. [2013] utilized children’s 
verbalizations in order to establish phase distinctions that are not 
present in representational redescription theory, creating what 
would be a new section of phase 2 of   the U-shaped curve, 
separating between phonological and morphological 
overgeneralizations and errors. This distinction appears to be 
specific to the spelling microdomain, and may not necessarily 
extend to other developmental microdomains. In proposing the 
subdivision, however, the researchers still relied heavily on verbal 
explanations, even in the phases in which children are predicted to 
not be able to produce them. Evidence based on children’s 
explanations, although effective in distinguishing between implicit 
(phase 1 in the U-shaped curve, when children are only procedurally 
aware of the task) and explicit representations (phase 3 in the U-
shaped curve, when children have a higher level of representation 

and are able to verbalize rationales for their behavior), is not 
sensitive to the markers of representational change in intermediary 
phases.  

Critten, Sheriston, and Man [2016] further examined the 
applications of representational redescription theory in the 
microdomains of spelling recognition and production. Two groups 
of children from three different UK schools, from year 1 and year 2 
respectively, performed two separate tasks. Much like Critten, Pine, 
and Steffler [2007], children were presented with three words, one 
spelled correctly and two incorrectly, and were prompted to give an 
explanation as to why their choice was correct and why the other 
two choices were not correct. In addition, children were asked to 
spell words that had been previously presented, although in a 
different order than the child’s previous trial. Critten et al. [2016] 
operationalized representations as children’s explicit explanations 
about spelling performance using the same evaluation criteria as 
Critten, Pine, and Steffler [2007]. The participants were then 
grouped together based on an overall level of representational 
development, determined by the type of explanation given for their 
performance on the tasks. Children in the group corresponding to 
phase 2 often made overgeneralization errors and therefore 
demonstrated representational inflexibility. The researchers 
maintained the subdivisions proposed in previous studies [Critten et 
al. 2007; Critten et al. 2013] and provided additional empirical 
support to a division between morphological and phonetic errors in 
phase 2. This categorization of groups supports the notion of the U-
shaped developmental curve in representational redescription as 
children’s explanations became more advanced as well as having 
better performance on spelling recognition tasks once their spelling 
knowledge became more flexible.  

Lorandi and Karmiloff-Smith [2012], on the other hand, analyzed 
children’s morphological knowledge in Brazilian Portuguese. They 
did so through recording the spontaneous occurrence of variant 
forms of verbs (e.g., overgeneralizations and neologisms 
inconsistent with the standard norm of the language), as well as 
through a morphological test in which children were given a 
nonsense grammatical base (created in accordance with common 
word structures in the language) and a semantic context, and were 
prompted to produce inflected forms of such words. While 
measuring the incidence of errors in these tasks, the researchers 
found support for an increase in performance and for children’s 
awareness of morphological markers of location, agency, and tense, 
among others. Although the results in this study do not make 
evident a U-shaped curve of behavioral performance, they support 
an increase in level of representation in accordance with the claims 
of representational redescription theory (e.g., in children’s ability to 
identify and utilize morphological markers in novel productions).  

Evidence from microdomains within language, as a whole, indicate 
the existence of a U-shaped curve very similar (if not equivalent) to 
the one proposed in representational redescription theory. Still, the 
simultaneous development of some of these microdomains (such as 
phonetics, morphology, and letter recognition in the spelling tasks 
described) and the reliance on verbal explanations provide 
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confounding factors. Thus, these methodologies, although shedding 
some light into the relationship between representational 
redescription and language development, do not offer generalizable, 
agreed-upon insights into this process.  

3.2 Mathematics  
While representational redescription is argued to be domain-
specific — that is, representations in each micro-domain undergo 
the developmental process independently — the investigations 
seeking to support or refute the theory’s claims vary greatly in 
terms of domains of knowledge analyzed. One of the fields of 
experimental research mentioned by Karmiloff-Smith [1992] was 
arithmetic. Voutsina [2012] examined the presence of markers of 
representational redescription through testing children’s ability to 
identify number pairs, i.e. what numbers can be added together to 
obtain a specified number. A qualitative analysis of ten 5-6 year 
old children’s strategies in finding all pairs of numbers revealed 
that children’s explanations of behavioral strategies changed over 
the course of the study, based on a set number of phases 
determined by the researchers. Children in the first phase were able 
to distinctly view the procedures for solving each step; this first 
step involved children only trying to solve what number pairs 
made up the number bond without regard to linking the different 
number pairs together. Later, in the second and third phases, 
children were able to manipulate and link different aspects of 
knowledge. After observing how they solved the problem, children 
developed a strategy for organizing number pairs for number 
bonds. For example, for the number bond “9”, children would 
replace [0+9]  for [9+0], in a strategy called swapping, rather than 
randomly organizing number bonds, such as [2+7] and then [4+5].  

Thus, Voutsina [2012] provides evidence for a constant increase 
in level of redescription, marked by the emergence of new abilities 
and strategies from phase to phase. Furthermore, throughout the 
study, strategies used by the children (such as the ordering 
strategy) resulted in constant behavioral performance. Considering 
also that even in the first level of representation, described by the 
researchers, there were already signs of a higher level of 
redescription; Voutsina [2012] provides evidence for what appears 
to be the upwards slope of both behavioral performance and level 
of redescription. It does not, however, provide evidence 
supporting or refuting the decrease in performance characteristic 
of the U-shaped curve, as there was no operationalization for 
verifying the process of spontaneous redescription of knowledge.   

Likewise, Simpson and Stehlikova [2006] examined 
representational redescription in the domain of Algebra. Rather 
than with children, this study observed a college student’s 
development across a span of three-years in a case study. Initially, 
the participant followed strict procedures in order to solve the 
problems, such as solely adding up the numbers in the problems.  
The “second shift of attention,” or the first explicit level, was 
operationalized as using the knowledge gained from the familiar 
procedure towards similar problems that would also use a similar 
procedure. During the study, as the participant gained a more in-

depth understanding of the representation, she made errors; 
eventually the participant realized the errors and corrected them. As 
time went on, she verbalized the relationships between some of the 
numbers before moving to the last phase of representational 
redescription where she utilized her knowledge about the problems 
and procedures the professor gave to similar, extra problems and the 
operations needed to solve them. This participant's performance 
during the study supports the existence of the U-shaped 
developmental curve in representational redescription theory. 
Despite this support, there was no operationalization for verifying 
the process of spontaneous redescription of knowledge; Simpson 
and Stehlikova [2006] acknowledged that there was no spontaneous 
redescription of knowledge, as the participant did not suddenly gain 
an insight to utilize a specific abstract algebra strategy (z-
subtraction) even though she realized and corrected her errors. Even 
though there was no spontaneous redescription of knowledge, 
support for the U-shaped developmental curve in Simpson and 
Stehlikova [2006] was found as the participant’s performance at 
first decreased before increasing.  

3.3 Drawing  
The domain of drawing involves representations; these 
representations can be modified and applied to various drawing 
microdomains. In Picard and Vinter [2006], it was hypothesized 
that exposure to a model would increase performance in an 
associated task. Children were tasked with drawing pictures with 
components that either had no separation or separation by two parts 
or multiple separations. It was discovered that breaking down 
knowledge helped change the representation from implicit to 
explicit; through this decomposition process redescription could 
occur. During decomposition, children made new knowledge 
connections such as being able to identity and draw the different 
parts of the drawing, indicative of knowledge being redescribed.   

Similarly to Picard and Vinter [2006], Hollis and Low [2005] 
investigated representational redescription in the drawing 
microdomain.  The purpose was to investigate environmental 
constraints that impacted the flexibility of representational 
redescription in the drawing domain. The study had 315 children, 
whose ages ranged from 6 to 9 years old. The participants were 
tasked with drawing pictures of a typical house and person before 
being tasked with drawing a picture of a “pretend person.”  
Afterwards, researchers asked the participants to talk about their 
“pretend person” and later put the children into either the distraction 
condition, draw alone condition, or the explanation about why this 
is a “pretend person” condition.   

The participants were tested a total of four times. The results from 
Hollis and Low [2005] support representational redescription. It 
was observed that children aged 6-7 were at the beginning phase of 
redescription; their procedures were inflexible. This changed over 
time, however, when their knowledge became more flexible after 
exposure to the explanation condition; this condition was associated 
with a greater rate drawing modification during the middle of the 
drawing process. This change in knowledge, from inflexible 
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performance with few mistakes, to flexible performance with many 
errors, is in support of the U-shaped developmental curve.   

3.4 Block Balancing Tasks  
Similar to the language domain, representational redescription has 
been widely studied in the block balancing microdomain, where 
children are tasked with balancing blocks on a beam. Messer, Pine, 
and Butler [2008] hypothesized that representations are similar in a 
domain, even if the tasks vary. Children in an equivalent of phase 
two of representational development tended to have lower 
performance than children at later representational levels, even 
though they used consistent strategies to try to solve the block 
balancing task. Although the children utilized the same strategies in 
order to solve the block balancing task, the children who had not yet 
redescribed their knowledge had more errors while solving the task, 
in comparison to children who redescribed some of the knowledge. 
This is in contrast to children at the first phase who could not 
explain why their behavior on a task but still had high behavioral 
performance. This change in knowledge, from inflexible 
performance with few mistakes, to flexible performance with many 
errors, along with the decrease in performance for children at the 
abstraction level, supports the U-shaped developmental curve.   

Representational change was operationalized as a difference in 
performance in tasks. Cheung and Wong [2011] hypothesized that 
participants would be unaware that they transferred the strategy of 
a geometric-center theory for balancing the blocks to different tasks. 
Behavioral performance was operationalized by how many times 
children successfully placed blocks in the middle of the beam, in 
the middle before moving them, and only in the center area of the 
beam for each block trial. Eight of the twelve participants utilized 
geometric-center theory across the task; this theory states that 
children believe that all objects can be balanced at the center. 
Despite utilizing this strategy, children were unaware of this 
knowledge, supporting the hypothesis; they tried to complete the 
task but were unable to explain what their strategy utilized. 
Although the U-shaped pattern did not appear in the study, Cheung 
and Wong [2011] argued that the absence of the U-shaped curve 
does not discredit the representational redescription model, as it is 
not the main premise behind representational redescription. Other 
researchers, however, have utilized this absence of a U-Shaped 
curve in their data as a basis for refuting Representational 
Redescription theory [Krist, Horz, and Schonfeld, 2005]. 

Krist, Horz, and Schonfeld [2005] disputed representational 
redescription in the block balancing task due to the absence of the 
U-shaped developmental curve. The U-shaped curve was 
operationally defined as children utilizing the geometric-centric 
theory during the block balancing task. The study tasked sixty five 
children, between 4 and 8 years old, with balancing wooden blocks, 
evenly and unevenly weighted, on a beam. In order to not influence 
the theories that the children made while completing the task, 
researchers did not prompt children with questions such as if some 
blocks are “unbalanceable.” Rather, the researchers asked the 
children why/how blocks can be balanced. It was predicted that 

success with the task would follow the U-shaped curve with the 
unevenly weighted blocks: a decrease in performance subsequently 
followed by an increase due to the redescription of block knowledge 
from correct block readjustments. This change in performance 
would be indicative of the children’s representational change from 
the first explicit level (E1) to the later levels (E2 and E3). Success 
with evenly weighted blocks, however, was predicted to either stay 
the same or increase with children’s age.  

Results in Krist et al. [2005], however, showed no support for the 
U-shaped curve. While performance success improved with evenly 
weighted blocks, in unevenly weighted blocks performance success 
decreased along with children’s correct block rearrangements. Kris 
et al. [2005] explained this lack of evidence due to differences in 
the methodology utilized in Karmiloff-Smith’s On Modularity; 
Krist et al. [2005] had more participants, a standardized system to 
measure children’s performance, and did not prompt the 
participants to make predictions but rather why/how blocks can be 
balanced in contrast to the original study. Additionally, these results 
differed due to the fact that the theory of representational 
redescription has not made clear an operationalization for verifying 
the process of spontaneous redescription of knowledge, which 
resulted in these studies using diverging, and often conflicting, 
methodologies. Despite criticisms and lacking evidence for the U-
shaped curve, Krist et al. [2005] advocated for finding domains 
representational redescription can occur in, rather than throwing out 
representational redescription theory. Although skeptical, Krist et 
al. [2005] acknowledged a possible connection between 
representational redescription and “modern connectionism with 
developmental neuropsychology,” or neuroconstructivism.  

3.5 Neuroconstructivism  
Achieving a consensus regarding what constitutes a 
“representation,” along with how such a representation might adapt 
or change, appears to be a critical problem when testing 
representational redescription. In the studies previously described, 
behavior has been linked with encoded information states, i.e. 
representations, effectively associating changes in behavior with 
changes of these representations. In addition, verbal reports of one’s 
understanding can lead to alterations of this understanding, and only 
the representations that can be verbalized may be accounted for with 
this methodology. So far there has been no direct way to measure 
representational change within human participants. However, 
Karmiloff-Smith [1992] mentions that computational modeling 
may provide important insights into specific brain processes that 
cannot be measured through other experimental means.  

The theory of neuroconstructivism may provide some assistance 
with quantifying representations. A central assertion of this theory 
is that cognition affects the development of the brain, and the 
current state of the brain constrains cognitive development 
[Mareschal, et al. 2007; Polk & Farah 1998; Sirois, et al. 2008; 
Westermann, et al. 2007]. It is because of this interdependent 
relationship that any theory regarding cognitive function should be 
informed by underlying biological activity without reducing all 
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Figure 2: Conceptual comparison of a Neuroconstructivist 
model from Westermann and Ruh (2012) and the U-shaped 
curve, as originally presented by Karmiloff-Smith. Hidden 
layer development (HL) is comparable to representational 
development.  

cognition to simply biological function. By investigating neural 
function, through the use of computational modeling, and the 
relationships between levels of description, such as behavior in 
relation to the state of a neural model, it might be possible to 
observe representational change in a more direct manner.  

Various computational models have been developed with the intent 
to simulate neural function in a way that mimics observed human 
behavior, and these models might then provide insights into human 
neural functioning. One such model is used in Westermann [1998] 
to simulate brain activity in a way that closely approximates human 
learning of English past tense verbs. The model consists of a large 
number of nodes acting as an idealized version of a neural network. 
Nodes are assembled into an input layer, responding to a specific 
stimulus, a hidden layer that modifies the outputs of the model, and 
an output layer. In the neuroconstructivist model, the number of 
nodes present in the model is modified, in addition to the weights of 
the connections between nodes. In this way, the model modifies its 
structure by constantly evaluating each node in the hidden layer, and 
each of these nodes are replaced if they are found to be contributing 
to a large amount of errors according to certain algorithms operating 
within the system. Because each node in the hidden layer only 
responds to certain inputs, each node has a certain “receptive” field 
for which the node will activate, and modification of the hidden 
layer alters these fields. In this way, the model learns how to 
reproduce a large amount of past tense verbs when provided with 
the present tense version, and this is accomplished by changing the 
structure of the network in order to more effectively represent 
information.   

After exposing the model to many different verbs, both regular and 
irregular, different trends about the model and its performance can 
be observed. In Westermann [1998], it was discovered that the 
model, which starts with only two nodes in the hidden layer, 
develops receptive fields that may overlap, implying that some 
nodes may respond to the same input as other nodes; however, there 

may be many inputs that are exclusive to either node. The hidden 
layer is described as a type of “memory” by the author, which 
responds to the identity of certain verbs rather than just the 
structural qualities of the word.   

Additionally, Westermann and Ruh [2012] continued 
experimentation with this model and past tense acquisition, 
discovering that as the model was exposed to more verbs, the nodes 
in the hidden layer became more specialized to either regular or 
irregular verb forms. In addition, this model demonstrated U-shaped 
performance, i.e. failing to reproduce verbs that had been produced 
accurately at an earlier time. Model performance was then 
compared to results of previous studies involving human 
participants completing similar tasks, and a significant correlation 
was reported [Westermann & Ruh 2012].   

The specific properties of this model seem to have implications for 
understanding cognitive development within humans. First, the 
late-occurring errors observed in both the model and human 
participants seem to indicate that there are similar processes taking 
place in both contexts. The hidden layer is also of interest in that the 
structural change to the model may indicate a change in how the 
model represents the information presented to it. In this way, the 
number of hidden units, the degree of specialization among these 
units, and the receptive field that each node possesses all seem to be 
direct indications of representational change and development at the 
level of a neural network. If this is the case, then there appears to be 
evidence for an increase in the complexity of representations across 
developmental time in the form of increased nodes in the hidden 
layer of the model (see Figure 2 for a visual depiction of this 
concept, as originally presented by Karmiloff-Smith which allows 
room for interpretation). The hidden layer also starts with very 
broad receptive fields (two nodes accounting for all inputs) that 
become increasingly complex in order to compensate for ineffective 
performance of the current network. This seems to mirror 
representational redescription on the cognitive level in response to 
exceptions to current theories.  

By developing a computational model with similar behavioral 
qualities as human participants, inferences into how the brain and 
mind might be developing may be formed. However, this specific 
neuroconstructivist model only operates within the domain of 
English past-tense verb acquisition. In order to provide further 
insights into the other domains previously mentioned in this paper, 
it would be necessary to construct models that can operate within 
these domains. It may also be the case that such modeling can be 
applied to other fields of study, particularly those that utilize more 
advanced neural network models, such as artificial intelligence.    

4 APPLICATIONS TO ARTIFICIAL 
INTELLIGENCE  
Given the current popularity of brain-inspired computational 
representations (e.g., deep neural networks and deep reinforcement 
learners), knowledge about how representations develop and 
change in human brains is more relevant than ever. Taken together, 
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the neuroconstructivist model and representational redescription 
theory offer a unique approach for the design and study of artificial 
intelligence. As demonstrated in Westermann and Ruh’s [2012] 
model, representational change may provide a way for a machine to 
develop effective representations when presented with novel 
stimuli. This may provide a significant advantage over fixed 
programming, in that adaptation to open environments would 
become possible. By changing how information is stored, 
artificially intelligent agents may become better able to adapt to 
their environment, leading to more efficient automation with 
broader, more human-like capabilities.    

Conversely, artificial intelligence research might also provide 
insights into the representational redescription theory that the 
current data with human participants has not yet been able to 
address. In the U-shaped curve, for instance, one of the main 
markers of the increase in the level of representation in phase 2 is a 
decrease in developmental performance. While this decrease in 
performance is adequate behavioral evidence for the curve, it does 
not sufficiently support the claim of representational change. 
Utilizing AI models in testing the existence of the U-shaped curve 
would allow for a clear, measurable, and observable separation 
between performance and the representations that facilitate 
behavior.   

Other critical aspects must be considered when using artificially 
intelligent agents to observe representational change within 
different domains. As mentioned above, the neuroconstructivist 
model is only designed for learning past-tense forms of English 
verbs. Using neural models that can alter connection weights in 
addition to the structure of the network itself in the context of agents 
that can manipulate physical objects may assist in explaining the 
differences observed between studies investigating children’s 
performance on the block balancing task. In fact, many other 
domains and tasks may be investigated in this manner.   

  
5 CONCLUSIONS  
The confusion on the meaning of the three phases and the ambiguity 
of representational redescription’s central claims have led to a 
variety of incompatible interpretations, particularly with respect to 
the correct meaning and use of the U-shaped curve. There is a lack 
of generalized consensus among previous studies about what 
constitutes representational change in the context of this theory and 
finding means to test for this change that do not rely on the 
behavioral component of the U-shaped curve. The majority of prior 
studies did not operationalize representational change effectively as 
they based representational change solely off of observable 
behaviors. In this paper, we hoped to decrease the confusion about 
representation in Representational Redescription Theory. By 
examining neuroconstructivism in relation to representational 
redescription, representational change can be quantified without 
dependence on behavior as this theory states that cognition affects 
brain development; as knowledge becomes redescribed, the number 
of nodes increase, the nodes in the hidden layer become more 

specialized, and each node gains a receptive field, indicative of 
representational change. Thus, the theory of neuroconstructivism 
fills in the gaps in the central claims of representational 
redescription, as well as decreasing the confusion over what a 
representation is.  

In this paper, we have surveyed the literature on representational 
redescription theory and the closely related neuroconstructivist 
theory, finding that they both (when properly interpreted) predict 
the existence of a U-shaped curve in the development of mental 
representations. We claim that this striking fact has implications for 
AI research, especially as the field continues to be dominated by 
increasingly massive neural-like networks. Namely, computational 
representations that claim to be realistic models of the mind must, 
at a minimum, be able to show how representations and 
performance match the predictions set out by representational 
redescription theory. In future work, we hope to expand on these 
implications for AI research.  
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