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Abstract 
Sorting algorithms are common tools for manipulating data 
and used in both standalone circumstances and within larger 
more complex algorithms.  Thus, it is highly desirable for 
sorting algorithms to be efficient in terms of storage and com-
putation.  By applying the concept of fuzzy logic (an abstract 
version of Boolean logic) to any well-known algorithm, it 
generates an abstract version (i.e., fuzzy algorithm) that often 
results in computational improvements.  Although the algo-
rithm may produce a less precise result, this is counteracted 
by gaining computational efficiency with minimal acceptable 
trade-offs (e.g., small increase in space requirements, loss of 
precision).  Using an established three-step framework for 
fuzzification of an algorithm, the resulting new fuzzy algo-
rithm goes beyond a simple conversion of data from raw to 
fuzzy data by converting the operators and concepts within 
the algorithm to their abstract equivalents.  The purpose of 
this paper is to demonstrate, as a proof-of-concept, that sort-
ing algorithms can be converted into their corresponding 
fuzzy sorting algorithms.  This paper discusses the prelimi-
nary results of: (1) how to apply the general framework by 
developing the corresponding fuzzy algorithms for a variety 
of sort algorithms, (2) the success of applying the framework 
through the development of several fuzzy sort algorithms in-
cluding fuzzy shell sort, fuzzy strand sort, and fuzzy bucket 
sort, and (3) the possible applications and benefits of these 
fuzzy sort algorithms. 

 Motivation   
Sorting algorithms are used prolifically and have been thor-
oughly researched.  This resulted in a wealth of algorithm 
options for sorting.  Every sort algorithm produces the same 
result, but many have unique properties or techniques (e.g., 
used for an almost sorted list, reversing a sorted list, or eas-
ily adding an additional value).  Given the frequent use of 
sorting algorithms, being able to sort efficiently (in regards 
to both space and time) is highly desirable.  If precise sorting 
is not necessary, a fuzzy sort algorithm could be advanta-
geous as fuzzy algorithms take advantage of integer calcu-
lations and generally execute fewer steps than the equivalent 
traditional non-fuzzy algorithm [Coffman-Wolph and 
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Kountanis, 2013a].  (In the event that high precision is re-
quired, the results from the fuzzy algorithm could be de-
fuzzified and run through a non-fuzzy algorithm to complete 
the sorting). 

Introduction and Background 
The next five sections provide the necessary background 
materials for this paper.  The first section discusses the 
three-step fuzzy algorithm framework used to convert a tra-
ditional non-fuzzy algorithm into the corresponding equiva-
lent fuzzy algorithm.  The second section briefly discusses 
sorting algorithms and their use within the paper.  In the 
third section the author discusses types of data and the fuzzy 
sorting algorithms.  The fourth section covers the notation 
used within the paper to denote when an element is fuzzy.  
In the final section, the author provides a description of what 
it means to be fuzzily sorted. 

The Fuzzy Algorithm Framework 
The general broad-spectrum framework for the fuzzification 
of any algorithm is a simple three-step conversion process 
that converts any algorithm from a traditional non-fuzzy 
version into a corresponding fuzzy version [Coffman-
Wolph and Kountanis, 2013b].  The three steps of the frame-
work are as follows: 
 

1. Decide what can/should be fuzzified and determine 
the category of each piece to be fuzzified 
2. Fuzzify each piece (identified in step 1) based on the 
category 

a. Scale/normalize the data, then fuzzify the data 
b. Fuzzify the operators 
c. Fuzzify the concepts 

3. Defuzzification (if needed/applicable) 
 As can be seen in the framework, there are three main cat-
egories of components within an algorithm that can be fuzz-
ified or made more abstract: (1) data, (2) operators, and (3) 
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concepts.  The fuzzification of data is the process of taking 
“raw”/non-fuzzy data and converting it into fuzzy data.  The 
fuzzification of operators is the process of converting a 
mathematical, logical, or comparative operator to its fuzzy 
counterpart, which operates on fuzzy sets instead of pure 
numbers.  The fuzzification of concepts, the most difficult 
of the three, is the conversion of an idea into a similar fuzzy 
idea.  Together these three core techniques create a fuzzy 
algorithm. 
 The first and second steps of the framework are needed to 
apply the fuzzy algorithm to a variety of problems.  The first 
step of the framework is to make an in-depth examination of 
the traditional (non-fuzzy) algorithm and decide which ele-
ments to fuzzify.  It is often helpful to determine what the 
solution will look like in the fuzzy form.  This will lay the 
foundation for the entire fuzzified algorithm.  Therefore, it 
can be helpful to work backwards through the algorithm to 
determine what elements (data, operators, or concepts) need 
to be changed for the solution to be produced.  Defuzzifica-
tion, the opposite of fuzzification, is used to convert the re-
sult back to a non-fuzzy result and can be applied to data or 
concepts.  In some cases, this step might be unnecessary and, 
hence, why the framework denotes this step as optional.  De-
ciding to do defuzzification is both problem and usage de-
pendent.  For example, if the fuzzy algorithm is being used 
to narrow the solution space and the information will be fed 
into a non-fuzzy algorithm, then it is important to develop a 
method of defuzzification. 
 This process has already been successfully applied to the 
following algorithms: (1) a concept-oriented fuzzification 
for finding fuzzy patterns [Coffman-Wolph and Kountanis,  
2013c], (2) a fuzzification of both data and the operators for 
a fuzzy process particle swarm optimization (FP2SO) [Coff-
man-Wolph and Kountanis, 2013a], (3) a fuzzification of 
multiple algorithm components to find strategies for adver-
sarial situations from game theory [Coffman-Wolph, 2013], 
(4) a fuzzification of the simple simplex method for the 
transportation problem [Coffman-Wolph and Coffman, Jr, 
2014], (5) the fuzzification of various linear and nonlinear 
search techniques used in optimization algorithms [Coff-
man-Wolph and Coffman, Jr, 2016], and (6) the fuzzifica-
tion of the Golden Ratio Search [Coffman-Wolph, 2016]. 

The Sorting Algorithm 
Generally, sort algorithms put data “in order”.  This paper 
will explore a variety of sort algorithms ranging from the 
simplistic comparison sorts to slightly more complex distri-
bution sorts. Given the commonality of these sort algo-
rithms, this paper will focus only on the specific algorithmic 
details needed for fuzzification conversion and skip in-depth 
discussions of the algorithms themselves.  To simplify the 
discussion, this paper will primarily consider integer data.  
These concepts are easily extended to other data types as 
discussed in the next section. 

Data 
Sorting algorithms are generally able to handle a wide vari-
ety of data types (e.g., numbers, strings, or combinations).  
The fuzzy sort algorithms will need to have the data “con-
verted” to the fuzzy equivalent.  Fuzzy algorithms generally 
take advantage of integer calculations and, usually, have the 
data in integer format.  In the circumstances that require a 
conversion of non-integer numeric data, it is often accom-
plished using scaling.  A fuzzy number is not a single value, 
but is represented by a set of values.  The size/range of val-
ues is problem/data dependent and can also be affected by 
the level of precision the user desires.  For strings, there are 
several possibilities for fuzzifying the data including: con-
verting to a number or considering only the ASCII value 
equivalent of the first character (or the first few characters).  
If there is a combination of data (i.e., records from a data-
base), then a combination of fuzzy data would be required.  
The greatest performance advantage is obtained using inte-
ger values, so the closer the data is to an integer format the 
better. 

Notation 
Throughout this paper, a subscript f will be used to denote 
when a value, variable, operator, or concept is fuzzy.  Given 
that not everything is required to be fuzzy within a fuzzy 
algorithm, the subscript f will help the reader distinguish be-
tween portions of the algorithm that remain traditional/non-
fuzzy and those that have been converted to a corresponding 
fuzzy version. As mentioned in the previous section, it is 
important to keep in mind that a single fuzzy value is repre-
sented by a set of non-fuzzy traditional values. For example, 
5f is a “fuzzy-five” and contains the value 5 and possibly the 
values 4 and 6 as well (depending on the definition of 5f in 
the context of the problem).  In other circumstances, 5f could 
represent all the real number values in the range of 4.5 to 
6.5. 

Definition of Fuzzily Sorted 
A traditional sort algorithm stops when the algorithm has 
guaranteed that all data are sorted in the required order (e.g., 
numerical order, alphabetical order, reverse order, or a com-
bination).  To proceed with the fuzzification of the sort al-
gorithm, the key question to answer is: when is the dataf 
from a fuzzy sort algorithm considered sorted sufficiently? 
In general, adding fuzzy logic to an algorithm creates a more 
abstract version of this algorithm.  Therefore, with a fuzzy 
sort, it will be a more abstract version of the sort algorithm 
and, thus, the output is abstractly sorted.  The definition of 
“abstractly sorted” will depend on the circumstances of the 
application and may be problem specific and/or sorting al-
gorithm specific (i.e., dependent on the fuzzification pro-
cess).  These definitions have one thing in common, that the 
data will not always be perfectly sorted.  One could describe 
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the data as “slightly out of order”.  For a fuzzy sort, one 
measure could be an associated percentage which represents 
the required/desired level of sufficient “sorted-ness”.  The 
level or percentage can be adjusted as needed for desired 
precision.  Another measure, for a fuzzy sort, could be that 
the results are sorted within a specific number of significant 
digits or letters/symbols. 

The Fuzzy Sort Algorithm 
The following sections discuss the fuzzification of several 
well-known sort algorithms including:  selection, insertion, 
bubble, shell, strand, and bucket sort.  Each subsection be-
low will focus on how the algorithm is converted from the 
traditional algorithm to a fuzzy algorithm using the three-
step framework for conversion.  A discussion of the likely 
advantages and disadvantages will be included for each of 
the sort algorithms. 

Fuzzy Version of Selection, Insertion, and Bubble 
Sort 
Selection, Insertion, and Bubble sorts are three of the most 
common comparison-based O(n2) sort algorithms [Sedge-
wick, 1998; Weiss, 1999].  Each algorithm can be easily 
converted from the traditional algorithm into a fuzzy equiv-
alent version.  The comparison operators, < and >, would be 
converted to <f and >f to handle the fuzzified data, but the 
algorithms would otherwise remain unchanged and operate 
in the same manner.  The fuzzy selection, fuzzy insertion, 
and fuzzy bubble sorts do not experience any computational 
advantages except the possible use of integer comparisons 
over more complex data types.  Additionally, the output of 
these fuzzy sorts would be dependent on the precision level 
the user wants to achieve when they fuzzify the data and de-
cide the exact functionality of the <f and >f.  Therefore, the 
author concludes that while these algorithms can be con-
verted to their fuzzy equivalents, there is no advantage to do 
this unless they are being applied as part of a more complex 
sort algorithm (e.g., the bubble sort as a last step in a more 
sophisticated sort algorithm).   

Fuzzy Version of the Shell Sort 
The traditional shell sort is an “in-place” sort and considered 
an abstract version of an insertion sort [Sedgewick, 1998; 
Weiss, 1999]. (The comb sort is a very similar “in-place” 
sort but uses the bubble sort as an underlying basis and ba-
sically differs only at the implementation level).  When the 
fuzzified version of the shell sort is implemented, the algo-
rithm will be even further abstracted. Both the fuzzy and tra-
ditional versions of the sort use a single list with portions of 
the list designated as sorted and un-sorted.  (Traditional im-
plementations have the sorted portion at the front of the list 

and the un-sorted portion towards the back of the list).  Dur-
ing the process of converting the algorithm to a fuzzy algo-
rithm, the concept of the xth element will be fuzzified using 
the concept of a fuzzy set [Zadeh, 1965].  For the traditional 
shell sort, the algorithm takes every xth element within the 
un-sorted portion of the list and sorts them into the correct 
sequence before merging them into the sorted portion of the 
list.  In the corresponding fuzzified version of this algorithm, 
the algorithm will take every xf

th set of elements from the 
un-sorted portion of the list, sortf these elements, and merge 
these elements into the sortedf portion of the list.  The fuzzy 
shell sorting algorithms would likely have an advantage in 
situations where data naturally “clusters”. 
 Consider the following data points:  88, 92, 98, 100, 7, 5, 
3, 13, 17, 15, 24, 36, 42, 57, 55, 73, and 77 to illustration the 
fuzzy shell sort (and the traditional shell sort).  When using 
the fuzzy shell sort, the first step is to determine the defini-
tion of the xf

th element(s).  For this small of a list, the fuzzy 
algorithm will use a two-element range at each xf

th element.  
Thus, the algorithm will consider the xth element and the 
(x+1)th element to be the xf

th element.  The fuzzy algorithm 
begins by selecting the 5f

th elements: (88, 92), (5, 3), (24, 
36), and (73, 77).  These elements are sorted, removed from 
the un-sorted portion of the list, and placed into the sorted 
part of the list: 3, 5, 24, 36, 73, 77, 88, and 92 and the un-
sorted portion is: 98, 100, 7, 13, 17, 15, 42, 57, and 55. The 
next step is to take the 3f

th elements which are (98, 100), (17, 
15), and (57, 55). These  elements are sorted into the existing 
list and removed from the unsorted list: 3, 5, 15, 17, 24, 36, 
55, 57, 73, 77, 88, 92, 98, and 100 and the remaining portion 
of the unsorted list is: 7, 13, and 42.  These last three ele-
ments can be sorted into the sorted portion of the list: 3, 5, 
7, 13, 15, 17, 24, 36, 42, 55, 57, 73, 77, 88, 92, 98, and 100.  
For each of the xf

th elements, the only additional processing 
required is a simple swap (as there are only two elements) 
before sorting and merging.  The traditional version of the 
shell sort algorithm run on the same data set would require 
5 total passes to get the data in numeric order, which is an 
additional two passes over this fuzzy algorithm version.  The 
author projects from preliminary data that this technique 
would cut the number of passes in almost half as each pass 
pulls twice the amount of data. 

Fuzzy Version of the Strand Sort 
The strand sort is a fairly straightforward comparison-based 
sorting algorithm.  The algorithm looks for strands of in-or-
der data and slowly builds the sorted list [Black, 2008]. The 
following data points: 55, 57, 89, 92, 98, 95, 100, 3, 5, 7, 13, 
15, 17, 24, 36, 42, 73, and 77 will be used to demonstrate 
the fuzzy strand sort (and the traditional strand sort).  The 
traditional algorithm begins by creating a sub-list obtained 
by comparing each value to the next value and stopping 
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when the next is less than the previous.  The traditional al-
gorithm would find the following strand: 55, 57, 89, 92, 98.  
The remaining elements are: 95, 100, 3, 5, 7, 13, 15, 17, 24, 
36, 42, 73, and 77.  However, the fuzzy version of the strand 
sort performs fuzzy “less than” comparisons (e.g., <f means 
x <f y if x < y + 5 ) and, thus, could create the following sub-
list: 55, 57, 89, 92, 98, 95, 100 with the remaining elements 
being: 3, 5, 7, 13, 15, 17, 24, 36, 42, 73, and 77.  The tradi-
tional algorithm would need to take an additional step to get 
to the same place (merging the 95, 100 into the sub-list).  
From that point onward both the traditional and fuzzy ver-
sions of strand sort would produce the same strands.  The 
final sorted list for the traditional strand sort is always pre-
cisely in-order.  However, the fuzzy strand sort could have 
a few data points slightly out of order (as can be seen with 
the 98 and 95 above).  The fuzzy strand algorithm required 
fewer overall steps and could be the better sort algorithm 
when the slightly out of order data are within an acceptable 
level of precision.  Given the nature and organization of the 
data that works well for the strand sort, the fuzzy strand al-
gorithm could take the same or fewer steps than the tradi-
tional version of the algorithm.  However, the fuzzy strand 
algorithm would never take more steps then the traditional 
version.  The fuzzy strand algorithm output might be slightly 
out of order, but the max amount is predictable and con-
trolled by the specific implementation of the fuzzy set size. 

Fuzzy Version of the Bucket Sort 
A fuzzy sort most closely resembles the traditional distribu-
tion based sorts or “bucket” sorts, but differs because of the 
underlying definition of a fuzzy value.  In a traditional 
bucket sort, an item sorts into one category/bucket [Sedge-
wick, 1998; Weiss, 1999].  In a fuzzy sort since each (fuzzy) 
value is represented by a set, an item can sort into multiple 
categories/buckets.  Additionally, each category/bucket is a 
(fuzzy) value and it too is represented by a set, thus, the cat-
egories/buckets may overlap and do not have to be distrib-
uted evenly. 
 Given the following set of numbers:  24, 36, 50, 42, 57, 
0, 88, 73, 92, 46, 7, 81, 15, 21, 100.  Both the traditional and 
fuzzy bucket sort algorithms begin by sorting each number 
into a bucket/bin.  For this example, consider that there are 
four bucket/bins for the traditional bucket sort: (1) 0-25, (2) 
26-50, (3) 51-75, (4) 75-100.  The numbers will be sorted as 
follows using the traditional algorithm: 

1. 24, 0, 7, 15, 21 
2. 36, 50, 42, 46 
3. 57  
4. 88, 73, 92, 81, 100 

 
For the fuzzy algorithm, the four fuzzy buckets/bins are de-
fined as: (1) 25 and below, (2) 20-50, (3) 45-82, and (4) 70 

and above.  The numbers could be sorted as follows using 
the fuzzy algorithm (and fuzzy buckets): 

1. 0, 7, 15, 21 
2. 24, 36, 50 
3. 42, 57, 46, 73 
4. 88, 81, 92, 100 

 
Using the same four fuzzy buckets/bins, the fuzzy algorithm 
could also have produced the following: 

1. 0, 7, 15, 21 
2. 24, 36, 42, 46 
3. 50, 57, 73, 81 
4. 88, 92, 100 

 
Observe that the output for the traditional algorithm would 
require further processing on each bin to complete the algo-
rithm.  Generally, in these kinds of algorithms, either each 
bin/bucket is subdivided into more bin/buckets or the con-
tents of each bucket are sorted using a basic sort algorithm.  
In the first output of the fuzzy algorithm, the data in each 
bin/bucket except number four is almost in-order (and bin 
number four needs the 88 and 81 flipped).  (Merging these 
bins/buckets into a final sorted list would be an easy process 
and eliminate the issue that the 46 is in bin number three 
while the 50 is located in bin number two).  The second out-
put of the fuzzy algorithm, the fuzzily sorted data is com-
pletely in order and does not require further processing.  
Both outputs of the fuzzy algorithm are better in-order than 
the output produced by the traditional algorithm 
 In this example, it is important to note that that there is 
both overlap between the different buckets and different 
sizes for each bucket/bin.  Changing the overlap amounts 
and size of bins could change the outcome of the algorithm 
and it would be important to choose these dependent on the 
data being sorted.  In other words, the bin size and overlap 
are both problem and data specific.  If the user wants/needs 
a high level of precision on the fuzzy sort, then the overlap 
and bin size would need to be chosen carefully and the al-
gorithm would probably need to continue by further sorting 
each bin.  However, if each bucket/bin has a small quantity 
of data, in many cases it will not be necessary to continue 
sorting. 
 The total number of steps taken by the fuzzy bucket/bin 
sort is controlled in the same way as the traditional algo-
rithm – basically divide into to bucket/bins until each bin 
has a certain amount (and then use another sorting technique 
to complete each bin).  With the fuzzy bucket sort, it would 
be possible to eliminate the final step of using another sort-
ing technique to completely sort each bin especially when 
the slightly out of order numbers are within an acceptable 
lack of precision.  The output of a fuzzy bucket/bin algo-
rithm might be slightly out of order, but can be partial con-
trolled by the specific implementation of the fuzzy 
bucket/bin sizes and the overlap allowed among bins.  The 
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fuzzy bucket/bin algorithm is also more adaptable and, from 
the preliminary data, more accurate when sorting data with 
fewer bins than needed by the traditional algorithm. 

Possible Applications for Fuzzy Sort Algo-
rithms 

As mentioned earlier, sorting is most commonly used to ma-
nipulate data especially for display to a user or within a 
search algorithm, but sorting algorithms are found within a 
diverse range of interesting and complex algorithms.  There 
are several operation research examples that implement a 
sort algorithm as an essential element of a larger algorithm 
including shortest processing time rule, load-balancing 
problem, and event-driven simulation [Hillier and Lieber-
man, 1990; Lasden, 1970; Luenberger, 1973].  In discrete 
event simulation, a sorting algorithm is used to order events 
but a fuzzy sort algorithm would be an unworkable solution 
because the events are required to be in exactly time order 
(and, as seen earlier, a fuzzy sort could have a few items out 
of order).  However, there are circumstances where that 
functionality of the fuzzy sort algorithm would not have det-
rimental or negative effects on operation research algo-
rithms.  For example, in queuing problems, sorting is used 
to determine the ordering of operations and the operations 
list is constantly being re-ordered.  Given that a precise or-
dering is not necessary and the nearly continuously resorting 
of the data, a faster fuzzy sort algorithm would be helpful to 
the overall runtime of the algorithm.  Another example is 
bin packing, if objects are sorted from largest to smallest, 
then greedy algorithms can find optimal results.  Using a 
fuzzy sort algorithm to produce a “good enough” or “close 
enough” list from largest to smallest will produce close to 
optimal results but spend less precious processing time.  For 
queues, sequence rules, and other similar algorithms, a 
fuzzy sort can provide an approximate order which would 
be sufficient for most heuristic algorithms. 

Discussion and Concluding Remarks 
After preliminary analysis, further study is needed to inves-
tigate the promising implications seen in the aforementioned 
sample fuzzy sort algorithms.  This paper has demonstrated 
that it is possible to convert a sort algorithm into a more ab-
stract fuzzy version using the established three-step frame-
work.  However, it is important to note that often the success 
of the conversion process is dependent on the techniques and 
underlying design of the algorithm itself.  Likewise, the 
measure of usefulness of the fuzzy sort algorithm is depend-
ent on the precision required in the resulting sorted output.  
The “in-place” sort algorithms demonstrated some reduction 
in number of iterations needed by moving to a fuzzy sort 
algorithms.  However, the bucket-based sort algorithm be-
havior corresponded the best to the natural habits of a fuzzy 

sort algorithm and, thus, showed the best promise of the al-
gorithms presented in this paper. 

Future Work 
Using the knowledge gained in this proof-of-concept paper, 
the author plans to further investigate the fuzzification of 
sort algorithms by focusing attention on the bucket-like sorts 
and the “in-place” sorts.  One next step would be to com-
plete an implementation of these algorithms (both fuzzy and 
non-fuzzy) and run benchmark data on these algorithms to 
determine if the promise shown above holds for various 
cases.  Additionally, the author needs to: (1) verify that fuzz-
ifying the sort algorithm does not have adverse effects to 
sorting the data and (2) determine the best and worst cases 
for the fuzzy sorts.  For adverse effects, the author will thor-
oughly investigate the negative or dangerous effects fuzzifi-
cation could have on an algorithm and determine if there ex-
ist any countermeasures. The author also plans to use the 
knowledge gleamed from this experience to further refine 
details of the three-step framework.  This research encom-
passes the need to determine which algorithm characteristics 
imply that there is a smooth transition from non-fuzzy to 
fuzzy using the framework and which algorithm character-
istics imply that a transition is infeasible or impractical. 
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