

Proof-of-Concept: Creating “Fuzzy” Sorting Algorithms

Stephany Coffman-Wolph
West Virginia University Institute of Technology

405 Fayette Pike, Montgomery, West Virginia 25136
sscoffmanwolph@mail.wvu.edu

Abstract
Sorting algorithms are common tools for manipulating data
and used in both standalone circumstances and within larger
more complex algorithms. Thus, it is highly desirable for
sorting algorithms to be efficient in terms of storage and com-
putation. By applying the concept of fuzzy logic (an abstract
version of Boolean logic) to any well-known algorithm, it
generates an abstract version (i.e., fuzzy algorithm) that often
results in computational improvements. Although the algo-
rithm may produce a less precise result, this is counteracted
by gaining computational efficiency with minimal acceptable
trade-offs (e.g., small increase in space requirements, loss of
precision). Using an established three-step framework for
fuzzification of an algorithm, the resulting new fuzzy algo-
rithm goes beyond a simple conversion of data from raw to
fuzzy data by converting the operators and concepts within
the algorithm to their abstract equivalents. The purpose of
this paper is to demonstrate, as a proof-of-concept, that sort-
ing algorithms can be converted into their corresponding
fuzzy sorting algorithms. This paper discusses the prelimi-
nary results of: (1) how to apply the general framework by
developing the corresponding fuzzy algorithms for a variety
of sort algorithms, (2) the success of applying the framework
through the development of several fuzzy sort algorithms in-
cluding fuzzy shell sort, fuzzy strand sort, and fuzzy bucket
sort, and (3) the possible applications and benefits of these
fuzzy sort algorithms.

 Motivation
Sorting algorithms are used prolifically and have been thor-
oughly researched. This resulted in a wealth of algorithm
options for sorting. Every sort algorithm produces the same
result, but many have unique properties or techniques (e.g.,
used for an almost sorted list, reversing a sorted list, or eas-
ily adding an additional value). Given the frequent use of
sorting algorithms, being able to sort efficiently (in regards
to both space and time) is highly desirable. If precise sorting
is not necessary, a fuzzy sort algorithm could be advanta-
geous as fuzzy algorithms take advantage of integer calcu-
lations and generally execute fewer steps than the equivalent
traditional non-fuzzy algorithm [Coffman-Wolph and

Copyright held by the author.

Kountanis, 2013a]. (In the event that high precision is re-
quired, the results from the fuzzy algorithm could be de-
fuzzified and run through a non-fuzzy algorithm to complete
the sorting).

Introduction and Background
The next five sections provide the necessary background
materials for this paper. The first section discusses the
three-step fuzzy algorithm framework used to convert a tra-
ditional non-fuzzy algorithm into the corresponding equiva-
lent fuzzy algorithm. The second section briefly discusses
sorting algorithms and their use within the paper. In the
third section the author discusses types of data and the fuzzy
sorting algorithms. The fourth section covers the notation
used within the paper to denote when an element is fuzzy.
In the final section, the author provides a description of what
it means to be fuzzily sorted.

The Fuzzy Algorithm Framework
The general broad-spectrum framework for the fuzzification
of any algorithm is a simple three-step conversion process
that converts any algorithm from a traditional non-fuzzy
version into a corresponding fuzzy version [Coffman-
Wolph and Kountanis, 2013b]. The three steps of the frame-
work are as follows:

1. Decide what can/should be fuzzified and determine
the category of each piece to be fuzzified
2. Fuzzify each piece (identified in step 1) based on the
category

a. Scale/normalize the data, then fuzzify the data
b. Fuzzify the operators
c. Fuzzify the concepts

3. Defuzzification (if needed/applicable)
 As can be seen in the framework, there are three main cat-
egories of components within an algorithm that can be fuzz-
ified or made more abstract: (1) data, (2) operators, and (3)

Stephany Coffman-Wolph MAICS 2017 pp. 151–156

151

concepts. The fuzzification of data is the process of taking
“raw”/non-fuzzy data and converting it into fuzzy data. The
fuzzification of operators is the process of converting a
mathematical, logical, or comparative operator to its fuzzy
counterpart, which operates on fuzzy sets instead of pure
numbers. The fuzzification of concepts, the most difficult
of the three, is the conversion of an idea into a similar fuzzy
idea. Together these three core techniques create a fuzzy
algorithm.
 The first and second steps of the framework are needed to
apply the fuzzy algorithm to a variety of problems. The first
step of the framework is to make an in-depth examination of
the traditional (non-fuzzy) algorithm and decide which ele-
ments to fuzzify. It is often helpful to determine what the
solution will look like in the fuzzy form. This will lay the
foundation for the entire fuzzified algorithm. Therefore, it
can be helpful to work backwards through the algorithm to
determine what elements (data, operators, or concepts) need
to be changed for the solution to be produced. Defuzzifica-
tion, the opposite of fuzzification, is used to convert the re-
sult back to a non-fuzzy result and can be applied to data or
concepts. In some cases, this step might be unnecessary and,
hence, why the framework denotes this step as optional. De-
ciding to do defuzzification is both problem and usage de-
pendent. For example, if the fuzzy algorithm is being used
to narrow the solution space and the information will be fed
into a non-fuzzy algorithm, then it is important to develop a
method of defuzzification.
 This process has already been successfully applied to the
following algorithms: (1) a concept-oriented fuzzification
for finding fuzzy patterns [Coffman-Wolph and Kountanis,
2013c], (2) a fuzzification of both data and the operators for
a fuzzy process particle swarm optimization (FP2SO) [Coff-
man-Wolph and Kountanis, 2013a], (3) a fuzzification of
multiple algorithm components to find strategies for adver-
sarial situations from game theory [Coffman-Wolph, 2013],
(4) a fuzzification of the simple simplex method for the
transportation problem [Coffman-Wolph and Coffman, Jr,
2014], (5) the fuzzification of various linear and nonlinear
search techniques used in optimization algorithms [Coff-
man-Wolph and Coffman, Jr, 2016], and (6) the fuzzifica-
tion of the Golden Ratio Search [Coffman-Wolph, 2016].

The Sorting Algorithm
Generally, sort algorithms put data “in order”. This paper
will explore a variety of sort algorithms ranging from the
simplistic comparison sorts to slightly more complex distri-
bution sorts. Given the commonality of these sort algo-
rithms, this paper will focus only on the specific algorithmic
details needed for fuzzification conversion and skip in-depth
discussions of the algorithms themselves. To simplify the
discussion, this paper will primarily consider integer data.
These concepts are easily extended to other data types as
discussed in the next section.

Data
Sorting algorithms are generally able to handle a wide vari-
ety of data types (e.g., numbers, strings, or combinations).
The fuzzy sort algorithms will need to have the data “con-
verted” to the fuzzy equivalent. Fuzzy algorithms generally
take advantage of integer calculations and, usually, have the
data in integer format. In the circumstances that require a
conversion of non-integer numeric data, it is often accom-
plished using scaling. A fuzzy number is not a single value,
but is represented by a set of values. The size/range of val-
ues is problem/data dependent and can also be affected by
the level of precision the user desires. For strings, there are
several possibilities for fuzzifying the data including: con-
verting to a number or considering only the ASCII value
equivalent of the first character (or the first few characters).
If there is a combination of data (i.e., records from a data-
base), then a combination of fuzzy data would be required.
The greatest performance advantage is obtained using inte-
ger values, so the closer the data is to an integer format the
better.

Notation
Throughout this paper, a subscript f will be used to denote
when a value, variable, operator, or concept is fuzzy. Given
that not everything is required to be fuzzy within a fuzzy
algorithm, the subscript f will help the reader distinguish be-
tween portions of the algorithm that remain traditional/non-
fuzzy and those that have been converted to a corresponding
fuzzy version. As mentioned in the previous section, it is
important to keep in mind that a single fuzzy value is repre-
sented by a set of non-fuzzy traditional values. For example,
5f is a “fuzzy-five” and contains the value 5 and possibly the
values 4 and 6 as well (depending on the definition of 5f in
the context of the problem). In other circumstances, 5f could
represent all the real number values in the range of 4.5 to
6.5.

Definition of Fuzzily Sorted
A traditional sort algorithm stops when the algorithm has
guaranteed that all data are sorted in the required order (e.g.,
numerical order, alphabetical order, reverse order, or a com-
bination). To proceed with the fuzzification of the sort al-
gorithm, the key question to answer is: when is the dataf
from a fuzzy sort algorithm considered sorted sufficiently?
In general, adding fuzzy logic to an algorithm creates a more
abstract version of this algorithm. Therefore, with a fuzzy
sort, it will be a more abstract version of the sort algorithm
and, thus, the output is abstractly sorted. The definition of
“abstractly sorted” will depend on the circumstances of the
application and may be problem specific and/or sorting al-
gorithm specific (i.e., dependent on the fuzzification pro-
cess). These definitions have one thing in common, that the
data will not always be perfectly sorted. One could describe

Proof-of-Concept: Creating “Fuzzy” Sorting Algorithms pp. 151–156

152

the data as “slightly out of order”. For a fuzzy sort, one
measure could be an associated percentage which represents
the required/desired level of sufficient “sorted-ness”. The
level or percentage can be adjusted as needed for desired
precision. Another measure, for a fuzzy sort, could be that
the results are sorted within a specific number of significant
digits or letters/symbols.

The Fuzzy Sort Algorithm
The following sections discuss the fuzzification of several
well-known sort algorithms including: selection, insertion,
bubble, shell, strand, and bucket sort. Each subsection be-
low will focus on how the algorithm is converted from the
traditional algorithm to a fuzzy algorithm using the three-
step framework for conversion. A discussion of the likely
advantages and disadvantages will be included for each of
the sort algorithms.

Fuzzy Version of Selection, Insertion, and Bubble
Sort
Selection, Insertion, and Bubble sorts are three of the most
common comparison-based O(n2) sort algorithms [Sedge-
wick, 1998; Weiss, 1999]. Each algorithm can be easily
converted from the traditional algorithm into a fuzzy equiv-
alent version. The comparison operators, < and >, would be
converted to <f and >f to handle the fuzzified data, but the
algorithms would otherwise remain unchanged and operate
in the same manner. The fuzzy selection, fuzzy insertion,
and fuzzy bubble sorts do not experience any computational
advantages except the possible use of integer comparisons
over more complex data types. Additionally, the output of
these fuzzy sorts would be dependent on the precision level
the user wants to achieve when they fuzzify the data and de-
cide the exact functionality of the <f and >f. Therefore, the
author concludes that while these algorithms can be con-
verted to their fuzzy equivalents, there is no advantage to do
this unless they are being applied as part of a more complex
sort algorithm (e.g., the bubble sort as a last step in a more
sophisticated sort algorithm).

Fuzzy Version of the Shell Sort
The traditional shell sort is an “in-place” sort and considered
an abstract version of an insertion sort [Sedgewick, 1998;
Weiss, 1999]. (The comb sort is a very similar “in-place”
sort but uses the bubble sort as an underlying basis and ba-
sically differs only at the implementation level). When the
fuzzified version of the shell sort is implemented, the algo-
rithm will be even further abstracted. Both the fuzzy and tra-
ditional versions of the sort use a single list with portions of
the list designated as sorted and un-sorted. (Traditional im-
plementations have the sorted portion at the front of the list

and the un-sorted portion towards the back of the list). Dur-
ing the process of converting the algorithm to a fuzzy algo-
rithm, the concept of the xth element will be fuzzified using
the concept of a fuzzy set [Zadeh, 1965]. For the traditional
shell sort, the algorithm takes every xth element within the
un-sorted portion of the list and sorts them into the correct
sequence before merging them into the sorted portion of the
list. In the corresponding fuzzified version of this algorithm,
the algorithm will take every xf

th set of elements from the
un-sorted portion of the list, sortf these elements, and merge
these elements into the sortedf portion of the list. The fuzzy
shell sorting algorithms would likely have an advantage in
situations where data naturally “clusters”.
 Consider the following data points: 88, 92, 98, 100, 7, 5,
3, 13, 17, 15, 24, 36, 42, 57, 55, 73, and 77 to illustration the
fuzzy shell sort (and the traditional shell sort). When using
the fuzzy shell sort, the first step is to determine the defini-
tion of the xf

th element(s). For this small of a list, the fuzzy
algorithm will use a two-element range at each xf

th element.
Thus, the algorithm will consider the xth element and the
(x+1)th element to be the xf

th element. The fuzzy algorithm
begins by selecting the 5f

th elements: (88, 92), (5, 3), (24,
36), and (73, 77). These elements are sorted, removed from
the un-sorted portion of the list, and placed into the sorted
part of the list: 3, 5, 24, 36, 73, 77, 88, and 92 and the un-
sorted portion is: 98, 100, 7, 13, 17, 15, 42, 57, and 55. The
next step is to take the 3f

th elements which are (98, 100), (17,
15), and (57, 55). These elements are sorted into the existing
list and removed from the unsorted list: 3, 5, 15, 17, 24, 36,
55, 57, 73, 77, 88, 92, 98, and 100 and the remaining portion
of the unsorted list is: 7, 13, and 42. These last three ele-
ments can be sorted into the sorted portion of the list: 3, 5,
7, 13, 15, 17, 24, 36, 42, 55, 57, 73, 77, 88, 92, 98, and 100.
For each of the xf

th elements, the only additional processing
required is a simple swap (as there are only two elements)
before sorting and merging. The traditional version of the
shell sort algorithm run on the same data set would require
5 total passes to get the data in numeric order, which is an
additional two passes over this fuzzy algorithm version. The
author projects from preliminary data that this technique
would cut the number of passes in almost half as each pass
pulls twice the amount of data.

Fuzzy Version of the Strand Sort
The strand sort is a fairly straightforward comparison-based
sorting algorithm. The algorithm looks for strands of in-or-
der data and slowly builds the sorted list [Black, 2008]. The
following data points: 55, 57, 89, 92, 98, 95, 100, 3, 5, 7, 13,
15, 17, 24, 36, 42, 73, and 77 will be used to demonstrate
the fuzzy strand sort (and the traditional strand sort). The
traditional algorithm begins by creating a sub-list obtained
by comparing each value to the next value and stopping

Stephany Coffman-Wolph MAICS 2017 pp. 151–156

153

when the next is less than the previous. The traditional al-
gorithm would find the following strand: 55, 57, 89, 92, 98.
The remaining elements are: 95, 100, 3, 5, 7, 13, 15, 17, 24,
36, 42, 73, and 77. However, the fuzzy version of the strand
sort performs fuzzy “less than” comparisons (e.g., <f means
x <f y if x < y + 5) and, thus, could create the following sub-
list: 55, 57, 89, 92, 98, 95, 100 with the remaining elements
being: 3, 5, 7, 13, 15, 17, 24, 36, 42, 73, and 77. The tradi-
tional algorithm would need to take an additional step to get
to the same place (merging the 95, 100 into the sub-list).
From that point onward both the traditional and fuzzy ver-
sions of strand sort would produce the same strands. The
final sorted list for the traditional strand sort is always pre-
cisely in-order. However, the fuzzy strand sort could have
a few data points slightly out of order (as can be seen with
the 98 and 95 above). The fuzzy strand algorithm required
fewer overall steps and could be the better sort algorithm
when the slightly out of order data are within an acceptable
level of precision. Given the nature and organization of the
data that works well for the strand sort, the fuzzy strand al-
gorithm could take the same or fewer steps than the tradi-
tional version of the algorithm. However, the fuzzy strand
algorithm would never take more steps then the traditional
version. The fuzzy strand algorithm output might be slightly
out of order, but the max amount is predictable and con-
trolled by the specific implementation of the fuzzy set size.

Fuzzy Version of the Bucket Sort
A fuzzy sort most closely resembles the traditional distribu-
tion based sorts or “bucket” sorts, but differs because of the
underlying definition of a fuzzy value. In a traditional
bucket sort, an item sorts into one category/bucket [Sedge-
wick, 1998; Weiss, 1999]. In a fuzzy sort since each (fuzzy)
value is represented by a set, an item can sort into multiple
categories/buckets. Additionally, each category/bucket is a
(fuzzy) value and it too is represented by a set, thus, the cat-
egories/buckets may overlap and do not have to be distrib-
uted evenly.
 Given the following set of numbers: 24, 36, 50, 42, 57,
0, 88, 73, 92, 46, 7, 81, 15, 21, 100. Both the traditional and
fuzzy bucket sort algorithms begin by sorting each number
into a bucket/bin. For this example, consider that there are
four bucket/bins for the traditional bucket sort: (1) 0-25, (2)
26-50, (3) 51-75, (4) 75-100. The numbers will be sorted as
follows using the traditional algorithm:

1. 24, 0, 7, 15, 21
2. 36, 50, 42, 46
3. 57
4. 88, 73, 92, 81, 100

For the fuzzy algorithm, the four fuzzy buckets/bins are de-
fined as: (1) 25 and below, (2) 20-50, (3) 45-82, and (4) 70

and above. The numbers could be sorted as follows using
the fuzzy algorithm (and fuzzy buckets):

1. 0, 7, 15, 21
2. 24, 36, 50
3. 42, 57, 46, 73
4. 88, 81, 92, 100

Using the same four fuzzy buckets/bins, the fuzzy algorithm
could also have produced the following:

1. 0, 7, 15, 21
2. 24, 36, 42, 46
3. 50, 57, 73, 81
4. 88, 92, 100

Observe that the output for the traditional algorithm would
require further processing on each bin to complete the algo-
rithm. Generally, in these kinds of algorithms, either each
bin/bucket is subdivided into more bin/buckets or the con-
tents of each bucket are sorted using a basic sort algorithm.
In the first output of the fuzzy algorithm, the data in each
bin/bucket except number four is almost in-order (and bin
number four needs the 88 and 81 flipped). (Merging these
bins/buckets into a final sorted list would be an easy process
and eliminate the issue that the 46 is in bin number three
while the 50 is located in bin number two). The second out-
put of the fuzzy algorithm, the fuzzily sorted data is com-
pletely in order and does not require further processing.
Both outputs of the fuzzy algorithm are better in-order than
the output produced by the traditional algorithm
 In this example, it is important to note that that there is
both overlap between the different buckets and different
sizes for each bucket/bin. Changing the overlap amounts
and size of bins could change the outcome of the algorithm
and it would be important to choose these dependent on the
data being sorted. In other words, the bin size and overlap
are both problem and data specific. If the user wants/needs
a high level of precision on the fuzzy sort, then the overlap
and bin size would need to be chosen carefully and the al-
gorithm would probably need to continue by further sorting
each bin. However, if each bucket/bin has a small quantity
of data, in many cases it will not be necessary to continue
sorting.
 The total number of steps taken by the fuzzy bucket/bin
sort is controlled in the same way as the traditional algo-
rithm – basically divide into to bucket/bins until each bin
has a certain amount (and then use another sorting technique
to complete each bin). With the fuzzy bucket sort, it would
be possible to eliminate the final step of using another sort-
ing technique to completely sort each bin especially when
the slightly out of order numbers are within an acceptable
lack of precision. The output of a fuzzy bucket/bin algo-
rithm might be slightly out of order, but can be partial con-
trolled by the specific implementation of the fuzzy
bucket/bin sizes and the overlap allowed among bins. The

Proof-of-Concept: Creating “Fuzzy” Sorting Algorithms pp. 151–156

154

fuzzy bucket/bin algorithm is also more adaptable and, from
the preliminary data, more accurate when sorting data with
fewer bins than needed by the traditional algorithm.

Possible Applications for Fuzzy Sort Algo-
rithms

As mentioned earlier, sorting is most commonly used to ma-
nipulate data especially for display to a user or within a
search algorithm, but sorting algorithms are found within a
diverse range of interesting and complex algorithms. There
are several operation research examples that implement a
sort algorithm as an essential element of a larger algorithm
including shortest processing time rule, load-balancing
problem, and event-driven simulation [Hillier and Lieber-
man, 1990; Lasden, 1970; Luenberger, 1973]. In discrete
event simulation, a sorting algorithm is used to order events
but a fuzzy sort algorithm would be an unworkable solution
because the events are required to be in exactly time order
(and, as seen earlier, a fuzzy sort could have a few items out
of order). However, there are circumstances where that
functionality of the fuzzy sort algorithm would not have det-
rimental or negative effects on operation research algo-
rithms. For example, in queuing problems, sorting is used
to determine the ordering of operations and the operations
list is constantly being re-ordered. Given that a precise or-
dering is not necessary and the nearly continuously resorting
of the data, a faster fuzzy sort algorithm would be helpful to
the overall runtime of the algorithm. Another example is
bin packing, if objects are sorted from largest to smallest,
then greedy algorithms can find optimal results. Using a
fuzzy sort algorithm to produce a “good enough” or “close
enough” list from largest to smallest will produce close to
optimal results but spend less precious processing time. For
queues, sequence rules, and other similar algorithms, a
fuzzy sort can provide an approximate order which would
be sufficient for most heuristic algorithms.

Discussion and Concluding Remarks
After preliminary analysis, further study is needed to inves-
tigate the promising implications seen in the aforementioned
sample fuzzy sort algorithms. This paper has demonstrated
that it is possible to convert a sort algorithm into a more ab-
stract fuzzy version using the established three-step frame-
work. However, it is important to note that often the success
of the conversion process is dependent on the techniques and
underlying design of the algorithm itself. Likewise, the
measure of usefulness of the fuzzy sort algorithm is depend-
ent on the precision required in the resulting sorted output.
The “in-place” sort algorithms demonstrated some reduction
in number of iterations needed by moving to a fuzzy sort
algorithms. However, the bucket-based sort algorithm be-
havior corresponded the best to the natural habits of a fuzzy

sort algorithm and, thus, showed the best promise of the al-
gorithms presented in this paper.

Future Work
Using the knowledge gained in this proof-of-concept paper,
the author plans to further investigate the fuzzification of
sort algorithms by focusing attention on the bucket-like sorts
and the “in-place” sorts. One next step would be to com-
plete an implementation of these algorithms (both fuzzy and
non-fuzzy) and run benchmark data on these algorithms to
determine if the promise shown above holds for various
cases. Additionally, the author needs to: (1) verify that fuzz-
ifying the sort algorithm does not have adverse effects to
sorting the data and (2) determine the best and worst cases
for the fuzzy sorts. For adverse effects, the author will thor-
oughly investigate the negative or dangerous effects fuzzifi-
cation could have on an algorithm and determine if there ex-
ist any countermeasures. The author also plans to use the
knowledge gleamed from this experience to further refine
details of the three-step framework. This research encom-
passes the need to determine which algorithm characteristics
imply that there is a smooth transition from non-fuzzy to
fuzzy using the framework and which algorithm character-
istics imply that a transition is infeasible or impractical.

References
[Black, 2008] Black, P. E. 2008. Strand Sort. In Dictionary of Al-
gorithms and Data Structures.
https://www.nist.gov/dads/HTML/strandSort.html [online].
[Coffman-Wolph, 2016] Coffman-Wolph, S. 2016. Fuzzy Algo-
rithms: Applying Fuzzy Logic to the Golden Ratio Search to Find
Solutions Faster. In the Proceedings of the 27th Modern Artificial
Intelligence and Cognitive Science Conference (MAICS 2016).
[Coffman-Wolph and Coffman Jr, 2016] Coffman-Wolph, S and
Coffman, Jr, P. 2016. Fuzzification Of Search Techniques for Lin-
ear and Nonlinear Optimization. Conference Presentation. In the
Proceedings of the INFORMS Annual Meeting, Nashville, Ten-
nessee.
[Coffman-Wolph, 2015] Coffman-Wolph, S. 2015. The Hunch
Factor: Exploration into Using Fuzzy Logic to Model Intuition in
Particle Swarm Optimization. In the Proceedings of the 26th Mod-
ern AI and Cognitive Science Conference (MAICS 2015).
[Coffman-Wolph and Coffman Jr, 2014] Coffman-Wolph, S and
Coffman, Jr, P. 2014. Fuzzification of the Special Simplex Method
for the Transportation Problem. Conference Presentation. In the
Proceedings of the INFORMS Annual Meeting, San Francisco,
California.
[Coffman-Wolph, 2013] Coffman-Wolph, S. 2013. Fuzzy Search
Strategy Generation for Adversarial Systems using Fuzzy Process
Particle Swarm Optimization, Fuzzy Patterns, and a Hunch Factor.
Ph.D. diss., Department of Computer Science, Western Michigan
University, Kalamazoo, MI.
[Coffman-Wolph and Kountanis, 2013a] Coffman-Wolph, S. and
Kountanis, D. 2013a. Fuzzy Process Particle Swarm Optimization.

Stephany Coffman-Wolph MAICS 2017 pp. 151–156

155

In the Proceedings of the 43rd Southeastern Conference on Com-
binatorics, Graph Theory, & Computing. Winnipeg: Utilitas Math-
ematica Pub. Inc.
[Coffman-Wolph and Kountanis, 2013b] Coffman-Wolph, S. and
Kountanis, D. 2013b. A General Framework for the Fuzzification
of Algorithms. In the Proceedings of the 4th Biennial Michigan
Celebration of Women in Computing (MICWIC 2013).
[Coffman-Wolph and Kountanis, 2013c] Coffman-Wolph, S. and
Kountanis, D. 2013c. Finding Strategies in Adversarial Situations.
In the Proceedings of the 24th Modern AI and Cognitive Science
Conference (MAICS 2013).
[Hillier and Lieberman, 1990] Hillier, F. S., and Lieberman, G. J.
1990. Introduction to Operations Research. McGraw-Hill.
[Lasden, 1970] Lasden, L. (1970) Optimization Theory for Large
Systems. New York, NY: Macmillan Publishing Co, Inc.
[Luenberger, 1973] Luenberger, D. 1973. Introduction to Linear
and Nonlinear Programming. Reading, MA: Addison-Wesley
Publishing Company.
[Sedgewick, 1998] Sedgewick, R. 1998. Algorithms in C++ Third
Edition, Parts 1-4. Boston: Addison-Wesley Publishing Company,
Inc.
[Weiss, 1999] Weiss, M. A. 1999. Data Structures & Algorith-
mAnalysis in C++. Reading, MA: Addison Wesley Longman, Inc.
[Wismer and Chattergy, 1978] Wismer, D. and Chattergy, R. 1978.
Introduction to Nonlinear Optimization. New York, NY: Elsevier
North-Holland, Inc.
[Zadeh, 1965] Zadeh, L.A. 1965. Fuzzy Sets. Information and
Control 8: 338-353.

Proof-of-Concept: Creating “Fuzzy” Sorting Algorithms pp. 151–156

156

