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Abstract. Using play-by-play data from all 2014-15 regular season NBA
games, we build a generative model that accounts for substitutions of
one lineup by another together with the plus/minus rate of each lineup.
The substitution model consists of a continuous-time Markov chain with
transition rates inferred from data. We compare different linear and non-
linear regression techniques for constructing the lineup plus/minus rate
model. We use our model to simulate the NBA playoffs; the test error
rate computed in this way is 20%, meaning that we correctly predict the
winners of 12 of the 15 playoff series. Finally, we outline several ways in
which the model can be improved.
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1 Introduction

If one watches a basketball game played in the NBA, one cannot help but no-
tice that players are substituted in and out with regularity. A large difference
between basketball and other sports such as football/soccer and baseball is that
a player who is substituted out of the game can return to play at a later time.
Substitutions can substantially alter the strategy employed by the 5-man unit
on the court. Many teams field, at different times of the game, different lineups
in order to change the emphasis placed on aspects such as (but not limited to)
rebounding, pace and fast break opportunities, or long-range shooting.

In short, an NBA team is actually a collection of different 5-man units. On
average, in the 2014-15 regular season, teams used 15.1 different 5-man units
per game. In this work, we use play-by-play data to build stochastic models for
the dynamics of these 5-man units. Combining this model of substitutions with
scoring models for each 5-man unit, we obtain generative models that can be used
to simulate games. The ultimate goal of these models is to answer questions such
as: in a 7-game series between two teams, what is the probability each team will
win? Motivated by this goal, in the present work, we seek baseline continuous-
time stochastic models that can be used as a starting point for further modeling
efforts.
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Our work builds on different strands of the literature. Discrete-time Markov
chain models of basketball have been considered in [11], for instance. One partic-
ularly successful model uses a discrete-time Markov chain to rank NCAA basket-
ball teams [5]. Classification methods from machine learning have been applied
to basketball “box score”-type data to make daily predictions of the winners
of college basketball games [10]. Continuous-time stochastic models have been
considered by [9], though in these models the lineup of players on the court
is ignored. Finally, very recent work models the spatial location of all players
on the court during the game [1], with possessions modeled as a semi-Markov
process. Perhaps the work closest to ours is [6], which develops a probabilistic
graphical model to simulate matches, including changes to team lineups. One of
the main conclusions of [6] is that the outcome of individual games and series
are sensitive to changes in the team lineup. Our work uses this as a starting
point for modeling.

2 Data Collection

Although sources such as NBA.com and ESPN provide statistics of teams and
individual players, we found it difficult to obtain statistics on the performance
of 5-man units or lineups. To obtain this information, we mined 2014-15 regular
season NBA play-by-play data from knbr.stats.com, supplemented by data on
substitutions taking place between quarters from Basketball-Reference.com.
For each play-by-play HTML page, we used Beautiful Soup, a Python package,
to scrape the information needed from the text descriptions of particular plays.

To give an example of how the data appears after processing, we present Table
1. Each row of this data set corresponds to a group of 10 players who played on
the court for a positive amount of time before at least one substitution was made
by either team. Columns 1-3 record the date of the game and the identities of the
home and visiting teams. Columns 4-8 record the identities of the five players on
the court for the home team, while columns 9-13 record the same information
for the visiting team. Column 14 contains the number of seconds this group of
10 players (5 from each team) played just before one substitution was made
by either team. Columns 15-17 record the number of play-by-play events that
have occurred for the home, visiting, and both teams since the last substitution.
Columns 18-19 record the home and visiting scores at the time just before the
substitution was made.

Column 20, the last column, records the change in point differential. Let
the current home and visiting scores (recorded in columns 18-19) be Hi and Vi,
respectively. Then the change in point differential ∆i is

∆i = (Hi − Vi)− (Hi−1 − Vi−1), (1)

with the understanding that the initial scores are H0 = V0 = 0. This quantity
is the “plus/minus” of the two 5-man units on the court. If we start the first
row of Table 1, we see that at the time the first substitution is made, ∆1 = −2,
corresponding to home and visiting scores of 15 and 17, respectively. At the time
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20150127 Mia Mil 478 479 480 487 481 57 426 425 431 427 350 13 21 34 15 17 -2
20150127 Mia Mil 479 480 487 481 484 57 426 425 431 427 149 8 27 14 20 22 0
20150127 Mia Mil 480 487 484 485 478 57 426 425 431 427 124 7 32 12 22 24 0
20150127 Mia Mil 487 484 485 478 185 57 425 427 430 429 97 14 6 13 29 30 1
20150127 Mia Mil 478 484 485 185 483 425 429 430 428 432 73 4 4 8 29 30 0

Table 1. Sample rows of data frame produced by scraping play-by-play data.

the next substitution is made, the score is 20 to 22 in favor of the visiting team.
Because the differential is still −2, the change in differential is zero, i.e., ∆2 = 0.

Viewed from the point of view of the home 5-man unit, this means that
even though the unit scored 5 points on offense, the unit yielded 5 points on
defense. We see that the ∆i value encapsulates both the offensive and defensive
performance of a particular 5-man unit. It is better to score only 3 points on
offense and yield 0 points on defense than it is to score 20 points on offense while
yielding 25.

3 Substitution Models

Our model consists of two parts: (i) a model for substituting one 5-man unit by
another, and (ii) a model for how each 5-man unit contributes to the overall score
of the game. In this section, we begin by describing a continuous-time Markov
chain model for substitutions. We construct one Markov chain for each of the 30
teams in the NBA; let Mi denote the transition rate matrix of the Markov chain
for team i. The Markov chain for team i is completely specified by Mi. Each
state of Mi is a different 5-man unit that appears in the training data for team
i. Let Ni be the number of states for Mi; using the entire 2014-15 regular season
as training data, we obtain the following counts: For each i, we infer the Ni×Ni

transition rate matrix Mi using the MLE (maximum likelihood estimate) [2, 7]:

M̂ j,k
i =

#(j → k)

α(j)
. (2)

Here M̂ j,k
i is the estimate for the (j, k)-th entry of Mi, #(j → k) denotes the

number of observations of a transition from state j to state k, and α(j) denotes
the total time spent in state j. All of these values can be computed using the
play-by-play data.
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Table 2. For each of the 30 NBA teams, we record the total number of 5-man units
used by the team during the 2014-15 regular season. In our Markov chain model, this
is the number of states Ni for each team i ∈ {1, 2, . . . , 30}.

To validate this model’s performance on the training set of all regular season
2014-15 NBA games, we simulate 8200 games for each team. We count the num-
ber of substitutions made by each team and divide by 100 to obtain a Monte
Carlo estimate for the total number of substitutions made by each team in one
full season of play. The simulation follows standard algorithms for sampling from
a continuous-time Markov chain. Assume the system is currently in state j. We
then simulate exponentially distributed random variables with rates given by
row j of the transition rate matrix. The minimum of these samples gives us both
the time spent in state j as well as the identity of the new state k to which
we transition. We initialize the simulation using the most common 5-man unit
for each team, and we terminate the simulation once it reaches 2880 seconds,
corresponding to a regulation-length NBA game.

Using results for 29 of the 30 teams, the correlation between the simulated
and true number of substitutions is 0.8634. For one team, the Boston Celtics,
simulations predict 4627.57 substitutions in one season, while the true number
is 1792. This is one indication that there are surely far better distributions than
the exponential to model the time spent in one state before transitioning. We
discuss ongoing work in this direction in Section 5.

In Fig. 1, we plot the true and simulated times played by each of the 5-man
units across all 30 teams (left panel, Pearson correlation of 0.834), and the true
and simulated times played by each of the 492 NBA players (right panel, Pearson
correlation of 0.915). All times are in minutes. The data from the last panel has
been plotted on log-scaled axes; the reported correlation is for the raw data.

Overall, the in-sample fit between true and simulated unit and player times
indicate that our model is a reasonable starting point to account for substitutions
and 5-man unit playing team. Clearly, further research is necessary to improve
the fit and develop a more predictive model of 5-man unit time. An obvious area
for improvement is to model the number of fouls committed by each player on
a team. Because a player must leave the game immediately after committing
a sixth foul, a player is more likely to be substituted out of the game as he
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Fig. 1. We plot true and simulated times played by each 5-man unit (left) and each
player (right). For both plots, we have plotted the line y = x in red; deviations from
this line constitute model error. Simulations are carried out using a continuous-time
Markov chain model for substitutions inferred from play-by-play data. Note that the
left plot has log-scaled axes.

accumulates more fouls. Another idea is to allow the Markov transition rates to
depend on how many minutes remain in the game and the game score; towards
the end of blowout games, where one team leads another by a large margin, we
see teams rest their regular players in favor of bench players.

In what follows, we will show that the model developed here, despite its
deficiencies and though it ignores which team actually won each regular-season
game, is capable of prediction.

4 Scoring Models and Results

The second part of our model considers the change in point differential (or
plus/minus) rate for each 5-man unit. We refer to this as our scoring model,
even though the concept of point differential incorporates both offensive and
defensive performance, as described in Section 2.

4.1 Results for the 2014-15 NBA Regular Season

When simulating the continuous-time Markov chain substitution model, if the
system spends τ units of time in state i, we multiply τ by the scoring rate asso-
ciated with this state. This yields a change in point differential for a particular
segment of game time. Summing these point differential changes across a 48-
minute game, we obtain an aggregate point differential. Again, we initialize the
system in the state corresponding to the lineup most often used by the team. To
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simulate a game between two teams, we simulate each team’s aggregate point
differential separately; the team with the larger value is then declared the winner.

In the most basic scoring model, we assign to each 5-man unit an average
scoring rate. That is, across the entire training set, we sum the change in point
differentials for a particular 5-man unit and divide by the total time this 5-
man unit spent on the court. Using this scoring rate, we simulate each of the
1230 regular season games 100 times and average the results for each game. We
produce from this simulation three confusion matrices corresponding to true and
predicted winners (H = home, V = visiting):

H V[ ]
H 506 202
V 200 322

H V[ ]
H 329 94
V 152 280

H V[ ]
H 220 54
V 90 186

Rows correspond to predictions while columns correspond to the truth. From
left to right, we show results on all games (overall accuracy of 0.67), games in
which the predicted margin was ≥ 5 points (overall accuracy of 0.71), and games
in which the predicted margin was ≥ 10 points (overall accuracy of 0.73).

4.2 Results for the 2014-15 NBA Playoffs

Because we used regular-season data to train the model, we must consider the
above results to be training set results. To develop test set results, we consider
the recently concluded NBA playoffs. For each best-of-7 playoff series, we predict
the winner, the expected margin of victory, and the probability of victory. Note
that the margin here is in terms of the game score, i.e., if one team sweeps
another, the margin is 4, whereas if the series goes to a seventh game, the margin
will necessarily be 1. We present our predictions on the left and the truth on
the right: Overall, our model correctly predicts 11 out of the 15 playoff series
winners. Two of the erroneous predictions were made on series that were decided
in a seventh and final game.

Ridge Regression. The next scoring model we present is built using ridge regres-
sion [4]. Each NBA team plays 82 games in a regular season. For team i, consider
the 82×Ni matrix that indicates the number of seconds each 5-man unit played
in each game. Let this matrix be X, and let y be the 82 × 1 vector giving the
margin of victory or defeat for each game. The rough idea is to find β such that
Xβ = y. In this case, β will contain a plus/minus rate for each 5-man unit.

There are two caveats. First, because Ni > 82 for all i, the linear system
is underdetermined. We choose ridge regression over LASSO for this problem
because we would like to determine a nonzero plus/minus rate for as many 5-man
units as possible. If this rate happens to be close to zero, then that is acceptable,
but we see no reason to promote sparsity as in LASSO. The second caveat is
that while the usual ridge regression penalty is ‖β‖2

2
, in our case, following this

procedure yields worse results than the average scoring rate model described



Learning Stochastic Models for NBA Substitutions 7

Series Winner Margin Probability Winner Margin

NO at GS GS 1.43 0.75 GS 4
Dal at Hou Hou 0.08 0.50 Hou 3
SA at LAC SA 0.24 0.51 LAC 1
Mem at Por Por 0.39 0.58 Mem 3
Mem at GS GS 1.07 0.64 GS 2
LAC at Hou LAC 0.72 0.64 Hou 1
Hou at GS GS 1.63 0.77 GS 3
Bkn at Atl Atl 2.05 0.82 Atl 2
Bos at Cle Cle 2.38 0.86 Cle 4
Mil at Chi Chi 0.92 0.66 Chi 2
Was at Tor Tor 1.04 0.68 Was 4
Was at Atl Atl 1.75 0.81 Atl 2
Chi at Cle Cle 0.91 0.67 Cle 2
Cle at Atl Cle 0.32 0.55 Cle 4
Cle at GS GS 0.32 0.58 GS 2

Table 3. Predictions (left, with non-integer values of margin) and ground truth (right)
for 15 NBA playoff series. The above results are test set results using the continuous-
time Markov chain substitution model and the simple average scoring rate model. The
model correctly predicts 11/15 of the winners.

above. Therefore, we change the penalty to ‖β−β0‖
2

2
, where β0 is the vector of

average scoring rates used in the earlier scoring model. We can implement this
easily by considering β = β0 + β1. Then the ridge objective function is:

Jλ(β1) = ‖ (y −Xβ0)︸ ︷︷ ︸
y′

−Xβ1‖
2

2
+

λ

2
‖β1‖

2

2
.

Passing y′ and X to a ridge regression solver then yields, for a fixed value of λ,
a minimizer β1. We use 10-fold cross-validation on the training set to determine
an optimal value of λ; we then rerun the ridge regression on the entire training
set using this optimal λ. This yields β1, which we add to β0 to obtain the scoring
rate model. Of course, this procedure is repeated for each team.

Using ridge regression, we improve our training set performance, as displayed

in the following confusion matrix:

[
509 194
197 330

]
. The overall accuracy is now 0.682.

We also see a slight improvement in test set performance as display in the left-
most table in Table 4, as we are now correctly predicting 12/15 or 80% of the
playoff winners. Among the models developed in this paper, the ridge regression
model is the best. Again, two of the incorrect predictions are for series that were
decided in seven games.

Support Vector Regression. The next scoring model we consider is support vector
regression (SVR) with a radial basis function kernel. For team i, we extract from
the training data all rows and columns corresponding to 5-man units from team
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Winner Margin Prob.

GS 1.74 0.78
Hou 0.44 0.57
SA 0.42 0.54
Por 0.29 0.56
GS 0.32 0.53
Hou 0.01 0.53
GS 0.88 0.63
Atl 2.15 0.82
Cle 2.07 0.88
Chi 1.11 0.71
Tor 0.88 0.64
Atl 1.36 0.72
Cle 1.04 0.70
Cle 0.31 0.54
GS 0.16 0.51

Winner Margin Prob.

GS 2.50 0.90
Hou 3.20 0.90
LAC 0.80 0.90
Por 1.70 0.90
Mem 0.30 0.90
Hou 2.10 0.90
Hou 0.30 0.90
Bkn 2.50 0.90
Cle 0.80 0.90
Mil 0.80 0.90
Was 1.80 0.90
Was 3.20 0.90
Chi 2.90 0.90
Atl 1.90 0.90
GS 2.70 0.90

Winner Margin Prob.

GS 3.40 1.00
Hou 2.60 0.90
LAC 1.40 0.90
Por 1.00 0.70
GS 0.80 0.50
Hou 1.50 0.70
Hou 0.20 0.60
Bkn 2.40 1.00
Cle 2.50 0.80
Mil 1.50 0.70
Was 0.30 0.50
Was 0.30 0.60
Cle 2.00 0.80
Cle 0.10 0.50
GS 0.10 0.50

Table 4. Test set results for ridge regression (left, 80% accuracy), support vector
regression (center, 46% accuracy), and k-nearest neighbor regression (right, 66% accu-
racy). Note that the ridge regression scoring rate model results in a correct prediction
for 12 out of the 15 playoff series; this is the best model considered in this paper. For
the order of the playoff series and true winners, please see Table 3.

i. This yields, for each team, a training matrix with approximately 1500-2500
rows and exactly Ni columns. We fit one SVR model to each training matrix.
Then, when simulating a game, we use this SVR model to predict the change in
point differential generated by a particular 5-man unit over a particular stretch
of time.

Test set results for the SVR model are given in the central table in Table 4.
Because this model is more computationally intensive than the prior models, we
simulated each NBA playoff series 10 times rather than 100 times. Overall, we
see that only 7/15 or 46% of series winners have been predicted correctly.

Nearest Neighbor Regression. The final scoring model we consider is a k-nearest
neighbor regression model with k = 3. We train this model on the same set of
matrices used to train the SVR model. Playoff predictions are given in the right-
most table in Table 4. In situations where both teams won 5 of the 10 simulated
series, we chose the team whose expected margin was positive. Overall, we see
that 10/15 or 66% of series winners have been predicted correctly.

4.3 Additional Model Evaluation and Usage

To assess whether our test set prediction accuracy is meaningful, we have built
three “box score” models. These models select—as a playoff series winner—the
team that has (i) scored the most points in the regular season, (ii) achieved the
best regular season winning percentage, and (iii) achieved the highest playoff
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seeding. Respectively, these models correctly predict 8/15, 11/15, and 12/15 of
the playoff series’ winners. Of course, our model is more complex than these box
score models; naturally, we should expect our model to be capable of answering
more complex questions than a box score model is capable of answering.

Our model is particularly well suited to answer “What if?” questions in-
volving player/lineup usage. For example, the model can be used to assess the
impact of a player being injured. Atlanta’s Kyle Korver, one of the best three-
point shooters in the NBA, was injured and did not play after the first two
games of the playoff series against the Cleveland Cavaliers. From the next to the
last row of Table 4, we see that the continuous-time Markov chain with ridge
regression scoring rate predicts that Cleveland should win the series against At-
lanta with a probability of 0.54 and a margin of less than one game (specifically,
0.31 games). These results assume that the usage of players mirrors that of the
regular season, i.e., that Korver is healthy and able to play. As a test, we have
removed from the Atlanta Hawks’ transition matrix any 5-man lineup that in-
volves Korver. Rerunning the simulation, we now find that Cleveland should win
the series with a probability of 0.79 and a margin of almost 2 games (specifically,
1.72 games). This is closer to the real result, a 4-game series sweep by Cleveland.

While we have simulated the effect of a player not being to play at all, we
note that we can also simulate more subtle scenarios such as (i) a player only
being able to play a limited number of minutes per game, or (ii) a coach making a
conscious decision to use particular lineups more often against a given opponent.

We view our model as a modular component to be incorporated into (rather
than to replace) models that involve traditional predictors such as those used in
the box score models above. Our best model uses ridge regression to infer the
scoring rate for each 5-man unit, but completely ignores informative data such
as who actually won each regular season game. In future work, we seek to use
this information to generate improved predictions for the outcomes of games.

5 Conclusion

Given the simplicity of the model employed, our results are encouraging. There
are several clear directions in which the model can be generalized and improved.
First, at the moment, we are using a basic frequentist procedure to infer the tran-
sition rates of the continuous-time Markov chain. In ongoing work, we seek to
compare this procedure against more sophisticated techniques such as variational
Bayes and particle-based Monte Carlo inference [8, 3]. Second, the continuous-
time Markov chain assumes that the holding time in each state has an exponen-
tial distribution. We seek to generalize this to a distribution that more accurately
models the data; this will yield a semi-Markov process as in [1]. While we have
tested nonlinear regression models such as SVR, we have not conducted exten-
sive cross-validation studies to find more optimal values of parameters for these
models. For these nonlinear models, it may be beneficial to consider several
years worth of training data. Finally, we expect that our scoring model can be
improved by incorporating the effect of the opposing 5-man unit on the court.
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