
End-to-end Learning of Deep Spatio-temporal

Representations for Satellite Image Time Series

Classification

Nicola Di Mauro1, Antonio Vergari1, Teresa M.A. Basile2,3,
Fabrizio G. Ventola1, and Floriana Esposito1

1 Department of Computer Science, University of Bari “Aldo Moro”, Bari, Italy
2 Department of Physics, University of Bari “Aldo Moro”, Bari, Italy

3 National Institute for Nuclear Physics (INFN), Bari Division, Bari, Italy

Abstract. In this paper we describe our first-place solution to the dis-
covery challenge on time series land cover classification (TiSeLaC), or-
ganized in conjunction of ECML PKDD 2017. The challenge consists in
predicting the Land Cover class of a set of pixels given their image time
series data acquired by the satellites. We propose an end-to-end learning
approach employing both temporal and spatial information and requiring
very little data preprocessing and feature engineering. In this report we
detail the architecture that ranked first—out of 21 teams—comprising
modules using dense multi-layer perceptrons and one-dimensional convo-
lutional neural networks. We discuss this architecture properties in detail
as well as several possible enhancements.

Keywords: Satellite image time series classification; deep learning; con-
volutional neural networks.

1 Introduction

The time series land cover classification challenge (TiSeLaC)4 was organized by
the 2017 European Conference on Machine Learning & Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2017). It consists in a multi-
class single label classification problem where the examples to classify are pixels
described by the time series of satellite images and the prediction is related to
the land cover class associated to each pixel. In particular, the goal is to predict
the Land Cover class of a set of pixels given their time series acquired by the
satellite images time series. Both training and test data come from the same
time series of satellite images, i.e., they span over the same time period and are
generated by the same distribution.

We are moved by many recent advancements and successes of deep neural
networks for multivariate time series classification of hyperspectral and mul-
tispectral images, as reported in [2,8,4,11]. Our approach is fully automated,

4
https://sites.google.com/site/dinoienco/tiselc

requires very little feature engineering and integrates into a single deep architec-
ture both Multi Layer Perceptrons (MLPs) and Convolutional Neural Networks
(CNNs) to leverage the spatio-temporal nature of the data. Inspired by [3], we
successfully exploited both landsat and spatial information of each pixel.

2 Data

The data provided for the challenge comprises 23 high resolution5 images gath-
ered from an annual time series by Landsat 8 and depicting the Reunion Island
provided at level 2A in 2014. Both training set (consisting of 81714 instances)
and testing set (consisting of 17973 instances) pixels are sampled from the same
23 Landsat 8 images. Data have been processed to fill cloudy observations via
pixel-wise multi-temporal linear interpolation on each multi-spectral band (OLI)
independently. For each pixel, and at each timestamp, a total of 10 landsat fea-
tures is provided. They include 7 surface reflectances—Ultra Blue, Blue, Green,
Red, NIR, SWIR1 and SWIR2—with 3 additional complementary radiometric
indices—NDVI, NDWI and BI.

Therefore, three kinds of information are provided and are exploitable for
the challenge: i) band information comprising the 10 features describing each
pixel; ii) temporal information as represented by the 23 time points in which
band features have been recorded, and lastly iii) spatial information in the form
of the coordinates associated to each pixel. Our winning solution leveraged all
of three into a single model.

Details about class distribution in the training and test data6 are reported
in Table 1. Note how class proportions are consistent across train and test splits
and are quite imbalanced w.r.t. minority classes like Other crops and Water.
Nevertheless, this has not been an issue for our one-model winning solution,
since no additional care for balancing classes has been taken.

Class ID Class Name Train Test

1 Urban areas 16000 4000
2 Other built-up surfaces 3236 647
3 Forests 16000 4000
4 Sparse vegetation 16000 3398
5 Rocks and bare soil 12942 2588
6 Grassland 5681 1136
7 Sugarcane crops 7656 1531
8 Other crops 1600 154
9 Water 2599 519

Table 1. Training and testing class distribution.

5 2866 X 2633 pixels at ⇠30m spatial resolution.
6 Test class information has been provided at the end of the competition.

Let scalars be denoted by lower-case letters (e.g. x, y) and vectors by bold
lower-case ones (e.g. x,y). We employ upper-case bold letters for matrices, e.g.
X,Y, while tensors are denoted as sans-serif bold upper-case letters, e.g. X,Y.
For a tensor X, Xi·· denote the i-th slice matrix along the first axis. Similar
notation carries over for slicing on other dimensions.

Let D = {Xi, yi}Ni=1 be the set of pixels, where each Xi 2 R23⇥10 is a time-
series of 23 feature vectors xi,j 2 R10, 1 j 23: Xi = {xi,1,xi,2, . . . ,xi,23}.
Each xi,j is the 10-dimensional band representation vector. Each i pixel is labeled
with a value yi according to an unknown distribution assigning a class among
the k = 9 available. All the landsat feature information in D can be jointly
represented as a tensor X 2 RN⇥t⇥d, where N is the number of pixels (i.e.
instances), t = 23 the length of the time series (i.e. the number of observations)
and d = 10 is the number of bands—the landsat features associated to a pixel.

3 The Winning Solution

Two of the three modules of the proposed deep architecture work directly on
raw pixel time series data, i.e., X and y, while the third one is fed a preprocessed
version of X and y accounting for spatial autocorrelation [3]. We now describe
how to reproduce it.

We exploit the spatial information related to each pixel i by looking at its
spatial neighborhood Ni(r)—the set of pixels surrounding it with a radius r in
the grid [7,3]. Once the spatial neighborhood has been located, we model it by
aggregating some features of the pixels in it, e.g., the mean or standard deviation
per band [7]. In particular, for each pixel i we compute a d-dimensional spatial
feature descriptor xs

i 2 Rd as follows. Fixed a radius r, we can e�ciently compute
the pixel spatial neighborhood Ni(r) by employing a nearest neighbor balltree
based algorithm7. Then, we first employ a frequency based operator [3,1] to
compute a set of spatial features cri 2 R9 in which each feature ck 2 c

r
i computes

1
|Ni(r)|

P|Ni(r)|
j=1 1{yj = k} for one class label k, i.e., the k-th class label relative

frequency in Ni(r). A second set of spatial features b

r
i 2 R6 is obtained by

considering the moments of a subset of the bands. Specifically, we compute the
mean and standard deviation of the three radiometric indexes—the last three
bands NDVI, NDWI and BI—for each pixel in the spatial neighborhood Ni(r),
since we discovered the time progression of these three indexes to be somehow
correlated to the class labels.

To build the complete spatial feature descriptor xs
i , we repeat the aforemen-

tioned construction process by letting the neighborhood radius r vary in R =
{1, 3, 5, 7, 9, 11, 13, 15, 17}. We determined R by validating it on our held-out set.
In the end, we obtain the spatial description x

s
i = [c1i b

1
i c

3
i b

3
i · · · c17i b

17
i ,pi] 2

RN=137 by concatenating both sets of spatial features for each radius and the
pixel coordinates pi. Xs 2 RN⇥137 indicates the spatial data matrix of all pixels.

All the feature values in both X and X

s are standardized by removing the
mean and scaling to unit variance—for X this has been made per band.

7 We used the BallTree implementation in the Python scikit-learn library.

3.1 Model architecture

Our architecture comprises three main components, whose parameters are trained
jointly. The basic blocks along all three components are dense layers a-là Multi-
Layer Perceptron (MLP) layers and 1-dimensional convolutional layers as in
Convolutional Neural Networks (CNNs). The former is a layer in which each
hidden neuron is connected to all neurons from the previous layer. The latter,
on the other hand, is well suited for sequential data as it exploits local and
sparse connections with weight sharing, convolving a vector mask—a kernel—
along one input dimension. Additionally, we employ parameter-free layers like
max pooling, i.e. subsampling activations; dropout, to regularize training, and
layers flattening or concatenating representations.

The first component in our model takes care of learning representations lever-
aging independencies and dependencies among single bands. The second com-
ponent, models time series data by jointly learning representations for all bands
with fully-convolutional layers. Lastly, the third one, applies a MLP to learn
spatial representations over the neighborhood extracted features (see Section 3).

The complete deep model we used is reported in Figure 2. In the following,
we describe each component topology in detail.

3.2 Independent band modeling

The first model we employ is inspired by the work in [13]. There, the authors
proposed a multi-channel CNN (MC-DCNN) model in which filters are applied
on each single channel—here band—and then flattened across channels to be the
input of a dense layer. The component we propose is named IBM—standing for
Interdependent Band Modeling—and leverages both representations learned on
each band independently as in [13] as well as correlations among bands at two
di↵erent levels of abstraction. Each band X··i is fed into a CNN architecture with
three layers as reported in Figure 1. We firstly apply 1d convolutions of eight
filters8 to X··i capturing time interactions per band at a first level of abstraction.
Higher level time correlations are captured by other four 1d convolutional filters
of the same size. After each convolution block, a max pooling layer [9], with
a window size equal to 2, reduces their dimensionality. Finally, the features
outputting from the last pooling layer are flattened into vectors.

Di↵erently from [13], we also model time cross-correlations by learning in-

ter -bands representations. The features computed at the first level by the first
ten convolution layers are then concatenated and fed into eight 1d filters with
size equal to 10, providing an additional flattened representation. The same pro-
cess applies to the features computed by the other ten convolution layers at
the higher abstraction level, but using four filters only instead. Again, in this
way we are modeling time cross-correlation among higher level representations.
The non-linearities in all convolution layers are fulfilled by rectified linear units
(ReLUs) [6], simply computing max(0, x).

8 With the length of all convolutional kernels being equal to 3.

3.3 Fully-convolutional band modeling

We found beneficial to model band interactions considering all time points
jointly. The idea behind this is to di↵erentiate learned representations from the
one extracted by our IBM component: while IBM features are constrained to
learn per band interactions at first, now we are able to capture interactions
among time and bands from the start. Therefore, as a second component along
IBM we learn additional representations by feeding the whole tensor X to a
fully-convolutional CNN architecture as classical image segmentation architec-
tures [10]. For this role we also experimented with deep recurrent neural networks
in the form of deep LSTM, however with no great success in training them on
the “few” pixels present in X. Figure 2 depicts this additional component–named
FCA as for Fully-Convolutional Architecture–in the combined architecture. For
FCA, we employ two sets of 32 1d convolutional filters with size 3 each. We ex-
perimented with deeper CNNs for this component, however with very marginal
F1 score gains on a validation set, compared to the longer learning times. The
output of the last convolution of FCA, flattened into a vector, concurs into the
whole representation learned by our architecture.

3.4 Dense spatial representation modeling

Lastly, we model spatial information with our last component, named SDA—
standing for Spatial Dense Architecture. Since much information is already con-
tained in the pre-processed X

s spatial feature representation, we limit our com-
ponent topology to an MLP model comprising two dense layers. As reported in
Figure 2, a first dense layer comprises 128 hidden units and is followed by another
one with 64 hidden units. The simple addition of these two layers enhanced the
capacity of the model to memorize the training set. To contrast overfitting, after
each dense layer a dropout layer [12] has been applied, setting the probability
of zeroing a neuron output to 0.3. Finally, as shown in Figure 2, the representa-
tions outputted by the three components are concatenated into a single flattened
array, then fed to a softmax layer with 9 output units.

4 Learning and Results

We implemented our complete model in Python by employing the Keras9 li-
brary10. We trained our model variants by optimizing the categorical cross-
entropy as the surrogated loss of the metric employed to rank submissions in
TiSeLaC, the weighted F1 score. We initialized all our model weight parame-
ters using the standard “Glorot uniform” scheme. During our experiments we
reserved a stratified (according to the class distribution showed in Table 1) por-
tion of the training set, consisting in 10% of the instances, as an held-out split
for validation. We tuned our model hyperparameters on this validation set by

9
https://keras.io/.

10 Code available at https://github.com/nicoladimauro/TiSeLaC-ECMLPKDD17.

X··1, 23x1

8 conv1d3

pool, 2

4 conv1d3

pool, 2

flatten

• • •

• • •

• • •

X··10, 23x1

8 conv1d3

pool, 2

4 conv1d3

pool, 2

flatten

concatenate

concatenate

concatenate

8 conv1d10

flatten

4 conv1d10

flatten

Fig. 1. The IBM independent band modeling module representation. The j-th band
time series is fed into a series of two 1-d convolutions followed by max pooling. Inter-
band correlations are modeled by concatenating the learned representations at the two
di↵erent levels (after each single-band convolution) and fed into another convolution
each. All learned representations are merged in a single embedding.

X, 10x23

32 conv1d3

32 conv1d3

flatten

X

s, 137x1

dense128

dropout

dense64

dropoutIBM

X··1 · · ·X··10

concatenate

dense9

Fig. 2. The complete model representation featuring the independent band modeling
module (IBM) on the left (see Figure 1), the fully-convolutional module (FCA) in the
center and the dense spatial module (SDA) on the right.

Fig. 3. The box and whiskers plots, on 100 di↵erent runs, showing the performance of
the architecture on the training (red) and test (blue) set along the 20 epochs employed.
Left: the cross-entropy loss; right: the F1 score.

looking at the categorical cross-entropy loss values scored by our model. Among
all the hyperparameters considered for tuning there are the spatial neighbor-
hood radius r, as well as the number of filters and the kernel size chosen for each
convolutional layer. We choose Adam as the SGD optimizer [5] and we set the
learning rate to 0.002, the �1 and �2 coe�cients to 0.9 and 0.999 respectively
and no learning rate decay. We employed mini batches of size 32. We empirically
found out that 20 epochs were enough to achieve a low cross-entropy score on
the validation set before overfitting.

4.1 Submission

Once the test data has been released, we retrained our model on the whole train-
ing set employing the same hyperparameter choices listed above and presented
throughout the previous Sections. The single model test set prediction submit-
ted to the competition scored 99.29 F1 score, and this was enough to rank first
(2nd placed team scored 99.03). Once the test label have been released after the
competition ended we got back to our proposed solution. We noted that both
the cross-entropy loss and the F1 score were quite influenced by the initialized
model weights. This lead to a range of achievable scores after 20 epochs that
is reported in Figure 3 where we measure both metrics on the whole training
and test set over 100 di↵erent random initializations. The mean test F1 score is
reported to be 99.31, confirming the validity of the model e↵ectiveness. As a side
note, monitoring the true e↵ect of both metrics on the labeled test data reveals
that we should have stopped our training way earlier—even just after 7 epochs.

5 Discussion and conclusions

In contrast to many popular first place solution recipes for nowadays data science
challanges—like boosting and stacking—our architecture is a parsimonious single
model network. The simplicity of our model only apparently contrasts with its
incredible e↵ectiveness. We argue its ultimate success lies into the independent

exploitation of the three di↵erent kinds of information available, leading to a
joint spatio-temporal landsat representation for each pixel in the last layer.

A very quick extension to an ensemble committee can be implemented by
leveraging the high variability of results due to di↵erent initializations (see pre-
vious Section). By averaging the softmax predictions of the 100 models trained
for Figure 3, we are able to obtain a more stable and stronger classifier that
outputs 99.44 F1 score on the test data (and 99.87 on the training set). This
suggests that this single architecture can be plugged into more sophisticated
ensembling schemes, likely leading to even larger improvements.

References

1. Appice, A., Guccione, P., Malerba, D.: Transductive hyperspectral image classifi-
cation: toward integrating spectral and relational features via an iterative ensemble
system. Machine Learning 103(3), 343–375 (2016)

2. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and clas-
sification of hyperspectral images based on convolutional neural networks. IEEE
Trans. Geoscience and Remote Sensing 54(10), 6232–6251 (2016)

3. Guccione, P., Mascolo, L., Appice, A.: Iterative hyperspectral image classifica-
tion using spectral-spatial relational features. IEEE Trans. Geoscience and Remote
Sensing 53(7), 3615–3627 (2015)

4. Ienco, D., Gaetano, R., Dupaquier, C., Maurel, P.: Land cover classification via
multi-temporal spatial data by recurrent neural networks. CoRR abs/1704.04055
(2017)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

6. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML. pp. 807–814 (2010)

7. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-
Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M.,
Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image
processing. Remote Sensing of Environment 113, S110 – S122 (2009)

8. Romero, A., Gatta, C., Camps-Valls, G.: Unsupervised deep feature extraction for
remote sensing image classification. IEEE Trans. Geoscience and Remote Sensing
54(3), 1349–1362 (2016)

9. Schmidhuber, J.: Multi-column deep neural networks for image classification. In:
CVPR. pp. 3642–3649 (2012)

10. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

11. Slavkovikj, V., Verstockt, S., Neve, W.D., Hoecke, S.V., de Walle, R.V.: Hyper-
spectral image classification with convolutional neural networks. In: Proceedings
of the 23rd Annual ACM Conference on Multimedia Conference. pp. 1159–1162
(2015)

12. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

13. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using
multi-channels deep convolutional neural networks. In: 15th International Confer-
ence on Web-Age Information Management. pp. 298–310 (2014)

