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Abstract

The article deals with the problem of analyze of effectiveness of the
heuristic methods with sequential formation of the decision in the test
problem of getting shortest path in graph. The article brief describes
the sequential heuristic methods used to solve the problem. The me-
thodic of experimental comparison for estimation the quality of solu-
tions based on the performing of computational experiments using the
BOINC platform is considered. It also shows description of obtained
experimental results which allows to identify the areas of the preferable
use of selected subset of heuristic methods depending on the size of the
problem and power of constraints.

1 Introduction

There is a wide class of optimizing problems with restrictions on discrete values of solution elements (arguments
of the objective function) [Ros00, VTE16]. These include many problems from combinatorics, graph theory,
operations research. Mathematical apparatus of derivatives and gradients is not applicable for them, but it is
successfully used in solving problems of continuous optimization [Kar14]. To solve some of them, exact methods
with polynomial time asymptotic (for example, methods of Prim and Kruskal [Pri57, Kru56] for getting minimal
spanning tree, Kuhn–Munkres method for assignment problem solving [Kuh56, Mun57], etc.) are well known,
while other problems belonging to the NP class don’t have similar methods. To solve them, in practice, heuristic
methods are used successfully. They provide decisions of good quality for reasonable computing time.

Known methods for solving discrete optimization problems can be divided into the following classes:

• limited-search methods (Brute Force, branch and bound method [LD60], modifications of the Brute Force
with limited number of branches or limited depth of the analyzed subtree within the combinatorial search
tree, SAT-based methods [CD06, ZKS16]);

• methods with sequential formation of the decision (greedy methods, random and weighted random methods,
ant colony optimization method [VDMT14, Dor92, VT14]);

• methods based on the modification of the current decision or set of decisions with using some rules that
are specific to the problem being solved (random walks method, simulated annealing method, evolutionary
(genetic) methods, bee colony method [GK14, KGV83, Kar83, PGKORZ05]);
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• methods based on the movement in arguments space with subsequent mapping of the current agent position
to one of the decisions of discrete optimization problem (particle swarm optimization method, firefly method,
fish school search method, gravitational search method, etc. [Kar14, GK14, KE95]).

Limited Brute Force methods cluster has exponential or factorial asymptotic time complexity in the common
case, while other methods have polynomial asymptotic time complexity. By combining the elementary methods
that are shown above, it is possible to construct hybrid multistep methods [Kar14].

2 Statement of the Problem

Different heuristic methods are characterized in practice both by the different costs of computer time, and
by the different quality of the decisions obtained, in this view it is interesting to compare quality of de-
cisions aimed to select the best of methods. For this purpose a test problem of getting shortest path
P (G) =

[
ai1 = abeg, ai2 , ..., aiQ = aend

]
in graph G = 〈A, V 〉 was selected, where A = {a1, a2, ..., aN} is a

set of vertices, |A| = N is a number of vertices (size of a problem), V = {v1, v2, ..., vM} ⊆ A×A is a set of arcs,

|V | = M is a number of arcs, vi =
(
a
(i)
beg, a

(i)
end

)
, a

(i)
beg ∈ A, a

(i)
end ∈ A, and the arcs are weighted by the length value

L(vi) > 0, i = 1,M . Target function in the specified problem is a length of path L(P ) =
R−1∑
j=1

L(aij , aij+1
)→ min,

density of graph d(G) = M
N(N−1) ∈ [0,0; 1,0] has a role of restriction as in graphs with low density a large num-

ber of decisions are prohibited. Selected problem has exact optimal decision (abbr. O) that can be obtained
polynomially using Dijkstra algorithm [Dij59] for a quadratic time, that allows to use it as test problem for
estimating deviations of decisions quality from optimum for heuristic methods. In a number of combinatorial
optimization problems it was shown [VVT15, VT15] that heuristic methods are characterized by significantly
different behavior during solving problems with different size of a problem and different power of restrictions.
For the purpose of careful analysis of this feature a computer experiment was organized. During this experiment
it was formed a sample Λ = {G1, G2, ..., GK} of K = 1000 graphs with pseudorandom structure, given number of
vertices N , density d and pseudo-random values of arcs lengths 0 < L(vi) ≤ 1. For the obtained decisions (paths
P with length L(P )) the following average parameters was calculated: average length of paths (abbr. AVG)

Q =

K∑
i=1

Q(Gi)φ(Gi)

K
, (1)

where Q(Gi) = L(P ∈ Gi) is the quality of the best decision (path with minimal length) for selected method,
φ(Gi) ∈ {0, 1} is function that has 1 value if the decision was found with selected method and 0 otherwise;
average deviation of quality of the best decision from optimum (abbr. DIFF)

∆Q =

K∑
i=1

(Q(Gi)−Q∗(Gi))φ(Gi)

K
, (2)

whereQ∗(Gi) is a quality of optimal decision (length of the shortest path) given by Dijkstra algorithm; probability
of finding decision (abbr. PFD)

p =

K∑
i=1

φ(Gi)

K
(3)

and probability of finding optimal decision (abbr. PFOD)

popt =

K∑
i=1

θ(Gi)

K
(4)

where

θ(Gi) =

{
0, Q(Gi) > Q∗(Gi),

1, Q(Gi) = Q∗(Gi).
(5)
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To compare methods for selected values of vertices number N and density of graph d it is required from several
minutes to several hours of computational time. To analyze the behavior of methods under different conditions
of use there was organized a computing experiment based on distributed computing project Gerasim@Home1 on
BOINC platform [And04]. Within this experiment we studied the behavior of methods for 2 ≤ N ≤ 500 and
0 < d ≤ 0,2 with steps ∆N = 1 and ∆d = 0,001, obtained results are presented in this article. For each set
of source data for iteration methods there was organized formation of Cmax = 1000 decisions with selection the
best of them.

3 Brief Classification of Heuristic Methods with Sequential Formation of the De-
cision

We give a brief description of the heuristic methods (a detailed description is given in the works [VTE16,
VDMT14, VT14]). As it has already been shown above, for optimal decisions with quality Q∗(Gi) Dijkstra
algorithm was used. With using a greedy method (abbr. G) from the current vertex acurr as a direction of
movement such a vertex ai is chosen that L(acurr, ai) 6= ∞ and i = arg min

j
L(acurr, aj). With using random

search method (abbr. RS) as a direction of movement random vertex ai is chosen that L(acurr, ai) 6= ∞, and
lengths of arcs L(acurr, ai) do not effect the choice of direction. With using weighted random search method
(abbr. WRS) direction of movement is chosen as i = arg min

j
[L(acurr, ai)(1 + 2D(rk − 0,5))], where rk is a

pseudo-random value with a uniform distribution in the range of rk ∈ [0,0; 1,0], L(acurr, ai) 6=∞. The meaning
of the used heuristic is in combination of greedy and random methods of decisions forming by using variable
parameter D of scatter about the greedy heuristic L(acurr, ai) (with D = 0 method is equal to greedy, and
with D � 1 – to random search). In the ant colony method (abbr. AC) direction of movement is chosen as

i = arg min
j

ηαj τ
β
j rk, where ηj = 1

L(acurr,aj)
, τj is amount of pheromone at arc (acurr, aj). During initializing

of method all arcs have τ0 of pheromone, after moving of Z ants of colony each of them increase pheromone
value to ∆τ = Q

L(Pl)
value in the arcs of path Pl, that was found by l-th ant of colony, after that pheromone

is evaporated from all arcs: τ
(t+1)
ij = τ

(t)
ij (1 − p), where t is a discrete time (iteration number). Schematically

choosing of direction in combinatorial tree is shown in fig. 1.

Figure 1: Schematic representation of the choice of the movement direction from the current vertex acurr for
greedy method (a), weighted random search method (b), random search method (c) and ant colony method (d).

1http://gerasim.boinc.ru
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During solving problems with restrictions using heuristic methods with sequential formation of the decision
the appearance of ”dead ends” is possible where from the current vertex of the combinatorial tree it is impossible
to go to any of the vertices of the underlying tier (in the problem of getting the shortest path in graph it is
impossible to move to one of the vertexes which has not been visited yet). During increasing power of restrictions
(in the problem of getting the shortest path in graph – during decreasing density of graph d) the probability of
this situation in practice increases. For a greedy method this leads to the fact that if you get into the ”dead end”
the decision can’t be found. For random and weighted random methods this leads to the appearance of iterations
of work, where there is no correct decisions and, as a result, improvement of the record. With restriction on
maximal number of iterations Cmax for these methods it is possible that a decision exists, but the algorithm
does not find it because all attempts have been completed in ”dead ends”. For ant colony method presence of
”dead ends” leads to situation when hitting the ”dead ends” the ant does not mark the path by the pheromone
and the algorithm actually stops functioning, because there is no finding new decisions and updating the record.

In the article [VMT14] as one of the ways out of this situation, it was suggested to make a combinatorial
return to one tier of a combinatorial search tree upwards and then to visit the next (in lexicographical order)
vertex behind the ”dead end” (fig. 2).

Figure 2: Illustration of the principle of combinatorial returns: a – source graph (the shortest path between
vertexes a3 and a1 is bolded, dashed line corresponds to the greedy decision ended in the ”dead end”); b –
corresponding combinatorial tree; c – the greedy decision with return from disallowed ”dead end” vertex a5; d –
order of movement in combinatorial tree with return from – ”dead end” vertex.

Number R of combinatorial returns must be limited by a reasonable value (in organized experiments value
R = 1000 was used), otherwise when R → ∞ methods with sequential formation of the decision turns into
the Brute Force when it is used in conditions of strong restrictions, that has negative influence on the time
complexity. For selected value of R computing time costs was increased by no more than 1,5x times [VT116].
For all heuristic methods discussed above (G, RS, WRS and AC) the program implementations were developed
both in basic version and with support of combinatorial returns principal (abbr. GR, RSR, WRSR and ACR
correspondently).

Before using weighted random search and ant colony methods in practice it is required to select values of
its tuning parameters (solve the problem of meta-optimization). For this purpose a number of computing
experiments was organized where in correspondence with articles [VDMT14, VT14] the following values are
selected: spread value D = 1,0, greed by path length α = 0,28, greed by pheromone β = 0,82, amount of
pheromone at one act of colony Q = 1, initial pheromone amount τ (0) = 100, pheromone evaporation speed
p = 0,1, colony size Z = 100. In all experiments selected tuning parameters are constant.
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4 Computing Experiments and Analysis of the Experimental Data

The computing experiment took 4 months in the grid with real performance about 2 TFLOP/s. Figure 3 shows
the experimental results for optimal decisions provided by Dijkstra algorithm.

Figure 3: Average path length Q (a) and probability of finding decision p (b) depending on the number of
vertexes N and graph density d (optimal decisions).

First of all it should be noted that the level lines in fig. 3a are very similar to hyperbolas in coordinates
(d;N). Minimal length of paths corresponds to the graphs with high density and big number of vertexes (top
right corner in fig. 3). The greatest length of the paths is observed for graphs with low density with big number
of vertexes (top left corner in fig. 3). Dijkstra’s algorithm guarantees a decision in case of its existence (if the
graph in which the path is found is connected), therefore the dependence in fig. 3b can be treated as probability
of getting connected graph for selected values of N and d. During decreasing of graph d density for each N such
value d′ can be chosen that probability of finding decision is p ≈ 1, but p < 1, and also value d′′, that p ≈ 0, but
p > 0. For example, for N = 100 these values are d′ ≈ 0,063 and d′′ ≈ 0,002. If in the selected range of densities
d′ ≤ d ≤ d′′ one of methods X provides the probability of obtaining a decision lower than the Dijkstra algorithm
(pX < pO), then this indicates that for some test cases decisions exist but have not been found.

Figures 4 and 5 show dependencies for greedy method (G) and for its modification with combinatorial returns
(GR). Their analysis allows us to draw a number of conclusions. First of all, the analysis of deviations of decisions
quality from the optimum (fig. 4a and 5a) shows that greedy decisions are several times worse than optimal
ones, that is a known fact for most problems. Analysis of dependencies of decision finding probabilities for the
considered pair of methods shows that greedy method is a subject to falling into the ”dead ends” and its border
d′ is located more to the right than the border of Dijkstras algorithm. Adding to it the possibility of making
combinatorial returns shifts this boundary to the left (fig. 5b, the boundary shift is indicated by an arrow),
providing a significantly higher probability of finding decisions, although the quality of the decisions themselves
still leaves much to be desired. Probability of finding the optimal decision for both the methods is very small: it
is equal to p = 0,2 for graphs with small amount of vertexes and high density, and significantly decreased with
the growth of the problem size.

Figure 4: Dependencies of average deviation of quality of the best decision from optimum ∆Q (a), probability
of finding decision p (b) and probability of finding optimal decision popt (c) for greedy method.
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Figure 5: Dependencies of average deviation of quality of the best decision from optimum ∆Q (a), probability of
finding decision p (b) and probability of finding optimal decision popt (c) for greedy method with combinatorial
returns.

In order to identify the advantages of the probability to obtain the optimal decision a comparison of values
pG and (pGR for different values of N and d was made. As a result, regions were obtained where one of two
methods has the advantage (fig. 6).

Figure 6: Comparison of methods G and GR decisions quality by the criterion of the probability of obtaining a
better decision popt.

Analysis of given areas shows that for graphs of high density d > d′ combinatorial returns are not required,
but during density decreasing (or increasing power of restriction) they start to have a positive impact. Border
between the areas of preferred usage of the considered pair of methods can be empirically approximated by a
hyperbola N = A

d , where A is some constant, from where it is possible to obtain the following expression:

N = A
N(N − 1)

M
⇒ 1 = A

N − 1

M
⇒M = A(N − 1). (6)

For the given pair of methods A ≈ 8. Using this expression, it can be concluded that in case of M > A(N −1)
a classical greedy method is efficient, but in case of M < A(N − 1) its efficiency can be statistically significantly
increased by implementing support for combinatorial returns.

Similar dependencies were obtained for methods RS, RSR, WRS, WRSR, AC and ACR (fig. 7 – 9). These
methods demonstrate a substantially smaller deterioration in the quality of the decisions found with respect to
the optimum, which particularly applies to weighted random search and ant colony methods as they have higher
convergence rate [VT216]. Dependencies of the probability of finding decisions for basic implementations and
implementations with support of combinatorial returns are qualitatively similar to the dependencies considered
above for the pair of greedy methods: support of the combinatorial returns increases probability of finding
decisions in the area d′ ≤ d ≤ d′′. The area of finding optimal decisions popt → 1 is located mainly in the lower
right corner of the diagrams, that corresponds to graphs with small number of vertexes. Adding support of the
combinatorial returns expands the indicated area both in the direction of graphs with a large number of vertices
(to the top) and toward graphs with a lower density (to the left).

Results of pair wise comparison of methods with and without combinatorial returns by criterion of the maxi-
mum probability to find optimal decision are shown in fig. 10.
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Figure 7: Dependencies of average deviation of the best decision quality from optimum ∆Q (a, d), probability
of finding decision p (b, e) and probability of finding optimal decision popt (c, f) for random search method and
its modification with combinatorial returns support.

Figure 8: Dependencies of average deviation of the best decision quality from optimum ∆Q (a, d), probability
of finding decision p (b, e) and probability of finding optimal decision popt (c, f) for random search method and
its modification with combinatorial returns support.

They are qualitatively similar to the results obtained above for a pair of algorithms G and GR and differ
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Figure 9: Dependencies of average deviation of the best decision quality from optimum ∆Q (a, d), probability
of finding decision p (b, e) and probability of finding optimal decision popt (c, f) for ant colony method and its
modification with combinatorial returns support.

Figure 10: Pair wise comparison of methods RS and RSR (a), WRS and WRSR (b), and AC and ACR (c);
ARS ≈ 22, AWRS ≈ 26, AAC ≈ 4,5.

from them by the location of the boundary between the areas of preferential use of methods (by values of
constants AX , X ∈ {RS,WRS,AC}). It should be noted that among the three algorithms without the support
of combinatorial returns the ant colony method feels relatively comfortable in a larger range of graph densities
(for them AAC � ARS and AAC � AWRS). However, there is also an area of low-density graphs where support
of combinatorial returns provides an advantage.

Fig. 11 shows comparison results of all above-mentioned heuristic methods by the criterion of the maximum
probability of finding optimal decision popt.

Their analysis allows us to conclude that for dense graphs the ant colony method is the best among considered
ones. During density decreasing from value d < d′ ≈ 4,5

N the modified method of an ant colony with support of
combinatorial returns turns out to be more effective. In a narrow area of very small graph density the algorithms
AC, ACR and RSR demonstrate approximately equal efficiency.
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Figure 11: Comparison of decision quality of all above-mentioned heuristic methods by the criterion of the
maximum probability of finding optimal decision popt.

5 Prospects for the Future Investigations

The current series of experiments performed within Gerasim@Home project has several objectives and aimed to
subset of heuristic methods with sequential formation of the decision only. In addition, it would be interesting to
study the quality of solutions obtained using different iterative methods such as modifications of limited depth
first search, group intelligence approaches [Kar83, PGKORZ05], modifications of simulated annealing [KGV83],
random walks, particle swarm optimization [KE95] and so on. Also all of heuristic methods requires testing
in different combinatorial optimization problems (logic multicontrollers design [Ros00], different graph theory
problems, etc.). Fine tuning of variable parameters of methods during meta-optimization or adaptation is another
one important problem that needs to be investigated.
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