Optimization Task in Equivalent to word2vec
Matrix Factorization

Victor Kantor!-2

! Moscow Institute of Physics and Technologies
2 Yandex
Moscow, Russia
viktor.kantor@phystech.edu

Abstract. Omer Levy and Yoav Goldberg have shown in their paper
at NIPS 2014 that word2vec is equivalent to the factorization of shifted
PMI matrix. The question which was not discussed in this work and
later papers is the right choice of the norm for an approximation of
the matrix. Authors also presented the results of the experiments with
SVD approximating the matrix with respect to Frobenius norm. In this
work we show that weighted Frobenius norm could be the reasonable
choice, but weights shouldn’t be equal to one as in Levy and Goldberg
experiments. We conjecture that the right choice of weights could help
to improve matrix factorization results on analogy questions, where skip-
gram with negative sampling (SGNS) remains superior to SVD.
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1 Introduction

Word2vec is a powerful and popular natural language processing technique pro-
posed by Mikolov et al. in [1]. It allows to get word representations with some
useful properties. Dot product of word2vec vectors is a good similarity mea-
sure and arithmetical operations with vectors help to solve some analogy tasks
(popular example: ”queen — woman + man = king”).

In [3] it was shown that word2vec is similar to matrix factorization technique
well-known in NLP and collaborative filtering. And factorizing matrix is almost
the PMI-matrix which is also common object in NLP and CF.

The main difference between matrix factorization in [3] and common use
of matrix factorization techniques is that Levy et al. result is valid for exact
factorization of the matrix but usually we work with approximate factorization
in NLP and CF applications.

The default choice of norm for approximating the initial matrix in matrix
factorization is Frobenius norm which leads to the quadratic loss:
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Experiments from [3] and [4] were considered with Singular Value Decompo-
sition (SVD) which gives the best approximation according to Frobenius norm
and subsequently quadratic loss. This choice was motivated by popularity of
SVD and Frobenius norm as a default variant. In this work we get the theoreti-
cal motivation for quadratic loss using second order Taylor series approximation
for objective function. An interesting conclusion is that classic SVD optimizing
simple quadratic loss isn’t a good choice in this case. Our future work includes
experiments which could complement this conclusion with practical results.

2 Skip-Gram with Negative Sampling (SGNS)

In this section we provide a brief review of the result from [3].

2.1 Setting and Notation

The skip-gram model assumes a corpus of words w € V,, and their contexts
c € V., where V,, and V, are sets of words and contexts. We denote the collection
of observed words and contexts pair as D. To denote the length of D (the number
of words in collection) we use |D|. Note that |D| differs from |V,|. We also use
#(w, ¢) to denote the number of times the pair (w, c¢) appear in D. Notation
#(w) and #(c) has the similar meaning.

Let d be the embedding dimensionality. Each word w € V,, is associated with
a vector w € R? and each context ¢ € V, is associated with a vector ¢ € R%.

2.2 SGNS as Matrix Factorization

As it was shown in [3], if & is the number of negative samples, SGNS optimization
task is as follows:
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The expectation term:
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Substituting this expression to 5 we get the local objective for a specific (w, ¢)
pair:
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The first term is well-known as pointwise mutual information (PMI) of (w, ¢).
We denote PM I (w,c) = PMI(w,c)—logk, so SGNS is factorizing shifted PMI
matrix MMk MSMI’“ = PMIy(w;,c;)

Comparing the derivative to zero we get:

3 Weighted Frobenius Norm approximation

If we are going to use quadratic loss for this matrix factorization, the reasonable
way to approximate the objective function with such loss is to use the second
order Taylor series expansion. In this case we get the weighted quadratic loss,
so the main question is the values of the weights. If the weights are the same for
every (w,c) pair, we can use standard SVD approximating initial matrix with
respect to Frobenius norm. The following theorem shows that weights could be
different for different pairs (w, c¢):

Theorem 1. Assume < w,c >~ PMIi(w,c). Then:
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Proof. Taylor series expansion for ¢(w, ¢) in point < w, ¢ >= PMI(w,c¢):
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Here the first term is const(< w,c >), the second term is equal to zero
because it’s Taylor series expansion in the extremum point, and the third term
leads to quadratic loss. From this equation we almost get the statement of the
theorem:
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The last step is to get Let < w,c >= =z, then:
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Substituting PM I (w,c) = PMI(w,c) — log k = log (%) —logk =
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= log (M) for z =< w,c > we get:

Qe = #(w,c)% =
L RO

DI #(w, o)|D] - k#(w)#(c)

4 Fitting parameters

The comparison of word2vec and SVD was presented in [4]. However SVD is a
matrix factorization optimizing quadratic loss (with the same weights of terms).
Also these results are based on classic SVD calculation method. In this sec-
tion we propose the iterative matrix factorization techniques frequently used in
recommender systems. This method makes parameters fitting process closer to
original word2vec parameters fitting.

In both suggested methods we consider the following optimization task:
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4.1 Stochastic Gradient Decent (SGD)

The derivatives of objective functions are as follows:
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In stochastic gradient decent we choose random terms from sums over w € V,,
and c € V.:
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Here 7 and ny are step sizes. A simple way ~y, and 7 to define is just to

use small constant values. Another variant is to use popular heuristics for SGD
step size.

4.2 Alternating Least Squares (ALS)

The main problem of matrix factorizations via SGD is a low convergence rate.

Sometimes this problem could be solved with Alternating Least Squares method.

The idea is to get iteratively w as a solution of the equation gf; =0 and c as

a solution of the equation % = 0. From the expression for objective function

gradient one can conclude that to use ALS in our task we just need to solve
following linear systems iteratively up to convergence:
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5 Conclusion and future research

Theorem 1 from section 3 shows that matrix factorization with weighted quadratic
loss is close to initial optimization task. Also we get the weights and see that pre-

vious experiments with quadratic loss without weights are less motivated than

experiments with weighted one.

In [3] authors have also mentioned that skip-gram with negative sampling
(SGNS) remains superior to SVD on analogy questions and this could stem
from the weighted nature of SGNS’s factorization. We suppose that experiments
with weighted quadratic loss could improve matrix factorization results in this
task up to word2vec results. Also the objective function cold be modified with
penalties of baseline predictors as it’s common in collaborative filtering and it
could slightly improve results too. Future work includes such experiments with
analogy questions task and objective function modification.
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