
TARS: An Array Model with Rich Semantics for

Multidimensional Data

Hermano Lustosa1, Noel Lemus1, Fabio Porto1, and Patrick Valduriez2

1 National Laboratory for Scientific Computing, DEXL Lab, Petropolis, RJ, Brazil
2 Inria and LIRMM, University of Montpellier, France

Abstract. Relational DBMSs have been shown to be inefficient for sci-

entific data management. One main reason is the difficulty to represent

arrays, which are frequently adopted as a data model for scientific datasets

representation. Array DBMSs, e.g. SciDB, were proposed to bridge this

gap, building on a native array representation. Unfortunately, important

scientific applications, such as numerical simulation, have additional re-

quirements, in particular to deal with mesh topology and geometry. First,

transforming simulation results datasets into DBMS array format incurs

in huge latency due to the fixed format of array DBMSs layouts and data

transformations to adapt to mesh data characteristics. Second, simulation

applications require data visualization or computing uncertainty quantifi-

cation (UQ), both requiring metadata beyond the simulation output array.

To address these problems, we propose a novel data model called TARS

(Typed ARray Schema), which extends the basic array data model with

typed arrays. In TARS, the support of application dependent data char-

acteristics, such as data visualization and UQ computation, is provided

through the definition of TAR objects, ready to be manipulated by TAR

operators. This approach provides much flexibility for capturing internal

data layouts through mapping functions, which makes data ingestion

independent of how simulation data has been produced, thus minimizing

ingestion time. In this paper, we present the TARS data model and

illustrate its use in the context of numerical simulation application.

Keywords: Data Model, Multi-dimensional array, simulation

1 Introduction

The advent of exascale computing creates a major challenge for scientific data
management, i.e. storing, processing and obtaining insights from big datasets.
An important class of scientific applications is large-scale numerical simulation,
which models natural phenomena in different domains such as oil and gas,
medicine, meteorology, etc. These applications produce a high number of output
datasets that are used in scientific visualization and data analysis. However, data
management for simulation applications is difficult. Data produced by simulations
include large datasets with simulation results and space discretization in the form
of a mesh. Simulation applications have stringent requirements for efficient data

SFA
Textbox
Copyright © by the paper’s authors. Copying permitted only for private and academic purposes. In: C. Cabanillas, S. España, S. Farshidi (eds.): Proceedings of the ER Forum 2017 and the ER 2017 Demo track, Valencia, Spain, November 6th-9th, 2017, published at http://ceur-ws.org



2 Hermano Lustosa, Noel Lemus, Fabio Porto, and Patrick Valduriez

ingestion which takes place during real-time visualization and simulation with
interaction with scientists. Furthermore, simulation applications require support
for complex analysis, as in uncertainty quantification (UQ).

As data can be generated faster and faster by large-scale numerical simulation
applications, current data management technologies, e.g. relational DBMSs,
become a bottleneck [1]. Scientific data produced by simulations or captured
in observations naturally exhibit a multidimensional representation, in which
attribute values vary in space-time. Thus, the array data model, as implemented in
SciDB [11], has been proposed to represent scientific datasets [14]. Unfortunately,
simulation application data have additional requirements that are not addressed
by array DBMSs. Although most simulation data can be well represented by
multidimensional arrays, the simulation mesh or grid is hard to represent in a
pure array data model [9]. To address this problem, a few data models have been
proposed to model mesh datasets generated by numerical simulations [7,8, 13].
These data models are rather specific to mesh data, and less efficient for modeling
the geometry aspects of simulation data. So far, none of these data models has
been implemented in a complete system yet.

Besides, loading and indexing simulation data into a DBMS, irrespective of the
data model, incur high overhead, thus preventing scientists from adopting DBMSs
at all. Instead, scientists typically rely on I/O libraries that provide support for
multidimensional arrays, e.g. HDF [6] and netCDF [15]. These libraries give the
users more control over their data without incurring the performance penalties
for data loading in a DBMS [3,5]. They are also flexible, allowing the users to
specify how their data (produced by numerical simulation) is laid out and avoid
the expensive conversions performed by the DBMS during data ingestion.

However, I/O libraries do not necessarily offer all benefits that a full-fledged
DBMS does, which calls for a compromise between approaches. NoDB [2] is a
first attempt to bridge the gap between DBMS high ingestion costs and I/O
libraries access efficiency for relational DBMSs. The approach advocates that the
DBMS should be able to work with data as laid out by the data producer, with
no overhead for data ingestion and indexing. Any subsequent data transformation
or indexing performed by the DBMS in order to improve the performance of
data analyses should be done adaptively as queries are submitted. We believe
that even though NoDB is currently implemented on top of a RDBMS and lacks
support for multidimensional data, its philosophy can be successfully applied for
array databases as well.

Last but not least, scientific application requirements for dataset analysis go
beyond basic array operations, such as slice, subarrays, joins, etc. [10]. Scientific
visualization, for instance, is the standard procedure to assess and analyze simu-
lation results. Currently the interface with a visualization tool is implemented
externally to the DBMSs, requiring an extra and costly data transformation.
Such transformation can be implemented as a DBMS operation provided addi-
tional visualization information is associated to the simulation output. Similarly,
uncertainty quantification analysis relies on the interpretation of probability
distribution functions (PDF) on output variable values to compute simulation



TARS: An Array Model with Rich Semantics for Multidimensional Data 3

result uncertainty. In this scenario, the data model would need to be extended
with : trial -ids, time-steps and PDFs.

Considering these aforementioned problems, a novel data model is needed to
fulfill the requirements of current and future demanding scientific applications.
First, this model should be based on multidimensional arrays, which are the
natural model for scientific data. Second, the model should adhere to the NoDB
philosophy, allowing users to append large datasets regardless of their memory
layout, and adapting itself to encompass these same datasets without costly
data conversions. Finally, the array model must be extended to conform with
particular characteristics of numerical simulation. It should provide a mechanism
for semantic annotations related to data elements. These annotations will help
determining the semantics of every dimension and attribute of an array throughout
array transformations during query execution. These annotations should classify
arrays into types, involving special dimensions and attributes.

In this paper, we propose a novel data model called TARS (Typed ARray
Schema), which extends the basic array data model with typed arrays (TARs).
TARS can be used as the underlying data model for a simulation data management
system, providing a powerful query language with array operators to allow users
to express a variety of analytical queries and determine how results are to be
visualized. To validate our approach, we show how a TARS schema could be used
in the context of a numerical simulation application.

This paper is organized as follows. Section 2 gives a brief overview of the
array data model and discusses its limitations. In Section 3, we provide a general
overview of TARS. In Section 4, we give a formal definition of the data model.
In Section 5, we illustrate TARS by defining a schema for a generic simulation
application use case. Section 6 concludes.

2 Multidimensional Arrays

In our previous work [9], we considered the use of the array data model to manage
simulation data. A simple definition of the array data model is presented by [10].
In short, an array is a regular structure formed by a set of dimensions. A set of
integer indexes for all dimensions identify a cell or tuple containing values for a
set of array attributes.

If carefully designed, arrays offer many advantages when compared to simple
bidimensional tables. Cells in an array have an implicit order defined by how the
array data is laid out in linear storage. We can have row-major, column-major or
any other arbitrary dimension ordering. Array database management systems
can quickly lookup data and carry out range queries by taking advantage of this
implicit ordering. If the data follows a well behaved array-like pattern, using
arrays saves a lot of storage space, since dense arrays indexes do not need to be
explicitly stored. Furthermore, arrays can be split into subarrays, usually called
tiles or chunks. These subarrays are used as processing and storage data units.
They help answering queries rapidly and enforce a coherent multidimensional
data representation in linear storage.



4 Hermano Lustosa, Noel Lemus, Fabio Porto, and Patrick Valduriez

However, current array data model implementations, e.g. [11, 12], have some
limitations, preventing an efficient representation of simulation datasets. For
instance, suppose that an application needs to condense many datasets into a
single array, and that these datasets have different mappings of array cells into
linear storage, i.e., one adopts a row major linearization while another follows a
column major ordering. In this case, current array DBMSs offer a single mapping
for arrays into memory and would need to reorder data as it is loaded, so that
all subarrays obey the same array cell to memory layout, either row o column
major.

In SciDB [11] for instance, it is sometimes necessary to preload multidimen-
sional data into an unidimensional array and then rearrange it before querying.
Rasdaman [12], another array database, requires either the creation of a script or
the generation of compatible file formats for data ingestion. This may also require
costly ASCII to binary conversion (since numerical data is likely to be created
in binary format) for adjusting the data to the final representation on disk. In
both cases, the amount of work for loading the dataset alone is proportional to
its size, making it impractical for the multi-terabyte data output by complex
modern simulation applications.

Furthermore, the array data model does not explicitly incorporate the exis-
tence of dimensions whose indexes are non-integer values. In some applications,
e.g. simulations, the data follows an array-like pattern, but one of the identifiable
dimensions can be actually a non-integer attribute. For instance, in 3D rectilinear
regular meshes, we have points distributed in spatial dimensions whose indexes
or coordinate values are usually floating point numbers. To address this issue,
we need to map non-integer values into integer indexes that specify positions
within the array. Array DBMSs like SciDB or Rasdman do not support this kind
of functionality currently.

Arrays can also be sparse, meaning that there is no data values for every
single array cell. Data may also have some variations in their sparsity from a
portion of the array to another. This is the case for complex unstructured meshes
geometry (with an irregular point distribution in space) when directly mapped to
arrays. SciDB provides support to sparse arrays, but since it splits an array into
chunks (equally sized subarrays), it is very hard to define a balanced partitioning
scheme, because data can be distributed very irregularly. Rasdaman is more
flexible in this regard, and allows arrays to be split into tiles or chunks with
variable sizes.

Another characteristic of complex multidimensional data representation is
the existence of partial functional dependencies with respect to the set of indexes.
Consider a 3D array 𝐴 with dimensions 𝑥, 𝑦 and 𝑧 and a set of attributes 𝑆.
Consider the attribute 𝑣 ∈ 𝑆. Suppose that logically, every cell in 𝐴 has a well
defined 𝑣 value and that this values is potentially different for every combination
of 𝑥 and 𝑦 index but remains the same with respect to the 𝑧 dimension. This
means that 𝑣 functionally depends on 𝑥 and 𝑦 but not 𝑧, thus characterizing a
partial functional dependency. The solution with the relational data model to
avoid unnecessary data redundancy in this case is normalization, which would



TARS: An Array Model with Rich Semantics for Multidimensional Data 5

require removing 𝑣 from 𝐴, adding it to another array, say 𝐵 with only 𝑥 and 𝑦
and joining 𝐴 and 𝐵 to recreate the full dataset. However, since arrays are well
structured and the repetition of values for different dimension indexes follows a
regular pattern, normalization could be done transparently by the array DBMS.

Partial dependencies occur in constant or varying mesh geometries and
topologies, or any other kind of data that does not necessarily varies along all
array dimensions. For instance, when researchers create models for simulating
transient problems, the time is a relevant dimension to all data. However, the
mesh, which is the representation of the spatial domain, may not change in time,
meaning that the coordinate values and topology incidence remain the same
throughout the entire simulation. Another possibility is the usage of the same
mesh for a range of trials, and another mesh for another range. In both cases,
there is a mesh for every single time step (an index in the array time dimension)
or trial, but actually only one mesh representation needs to stored for an entire
range of indexes.

Finally, the context of numerical simulation and UQ involves very specific
data semantics for various data attributes. In simulation data, we usually have
the repetition of a similar structure of values for many points or mesh elements
in space and time for various simulation trials. The diverse data structure of field
data (actual output values for simulations), geometry (coordinate values) and
topologies (adjacency relationships) should be explicitly represented in the data
model, allowing the definition of special purpose algebraic operators that are
useful for creating complex analysis. Therefore, in TARS, we devise a mechanism
for allowing the creation of types that enable users to qualify their datasets in
accordance to the application semantics.

3 TARS Overview

The TARS (Typed Array Schema) data model extends the basic array data model
to cope with complex multidimensional data. A TARS contains a set of typed
arrays (TAR). A TAR has a set of data elements: dimensions and attributes. A
TAR cell is a tuple of attributes accessed by a set of indexes. These indexes define
the cell location within the TAR. A TAR has a type, formed by a set of roles. A
role in a type defines a special purpose data element with specific semantics. If a
TAR is of a given type 𝑇 , it is guaranteed to have a set of data elements that
fulfill the roles defined in 𝑇 . This facilitates the creation of operations that require
additional semantics about the data. In TARS, we define mapping functions as a
way to provide support for sparse arrays, non-integer dimensions, heterogeneous
memory layouts and functional partial dependencies with respect to dimensions.
Figure 1 gives a general view of the model.

A TAR region is instantiated with data as a subTAR. A subTAR encompasses
an n-dimensional slice of a TAR. Every subTAR is defined by the TAR region
it represents and two mapping functions: position mapping function and data
mapping function. The former reflects the actual data layout in memory, since
it defines where every TAR cell within a given subTAR ended in linear storage.



6 Hermano Lustosa, Noel Lemus, Fabio Porto, and Patrick Valduriez

Fig. 1. Typed Array Schema with its main elements: types, operators, relationships,

TARs and SubTARs

Therefore, the position mapping function should implement the multidimensional
linearization technique used for the data. It can incorporate an n-dimensional to
linear translation based on how dimensions are ordered (the case for a row-major
or column-major scheme) or even consider a space filling curve approach (e.g.
Z-order). The data mapping functions translate a linear address into actual
data values. In a simple scenario, this function does basically a lookup into a
linear array that stores the data. In a more complex scenario, it could compute
a derived value from the actual subTAR data. The actual implementation of
mapping functions is done in various forms. In some cases, it may be necessary
to explicitly store the mapping for every value. In other situations, the mapping
occurs in a regular pattern, so translation is done by a single parametrized
procedure, in which case only the parameters need to be stored.

SubTARs not only define a partitioning scheme for a TAR, but also serve
as a way to allow users to specify the details about how their data is laid out,
avoiding costly data transformations and rearrangements during ingestion into
the DBMS.

4 TARS Formalization

A TARS denoted by 𝛤 is a quintuple (𝛺𝛤 , 𝑅𝛤 , 𝑇𝛤 , 𝐿𝛤 , 𝛩𝛤 ) where 𝛺𝛤 is a set of
typed arrays, 𝑅𝛤 is a set of roles, 𝑇𝛤 is a set of types, 𝐿𝛤 is a set of links or
relationships, and 𝛩𝛤 is a set of operators forming a TAR algebra.

A Typed Array (TAR) 𝐴 ∈ 𝛺𝛤 is a septuple (𝑁𝐴, 𝐷𝐴, 𝑆𝐴, 𝐶𝐴, 𝑅𝐴, 𝛷𝐴, 𝛶𝐴),
where 𝑁𝐴 is a string containing the TAR name, 𝐷𝐴 is a set of data elements, 𝑆𝐴

is a set of subTARs, 𝐶𝐴 is a set of locations forming the TAR location space, 𝑅𝐴

is the subTARs location function, 𝛷𝐴 is the dimension data mapping function,
and 𝛶𝐴 is the role mapping function.



TARS: An Array Model with Rich Semantics for Multidimensional Data 7

A data element 𝑒 ∈ 𝐷𝐴 is a triple (𝑁𝑒, 𝑉𝑒, 𝐷𝑒), where 𝑁𝑒 is a string value
defining the data element name, 𝑉𝑒 and 𝐷𝑒 are sets of atomic values such that
𝑉𝑒 ⊂ 𝐷𝑒. 𝐷𝑒 is the domain of the data element, representing the set of all possible
values a TAR can hold in that data element, and 𝑉𝑒 is the data element image,
containing the actual set of values for a data element at any given time.

𝐷𝐴 can be divided into two subsets, 𝐷𝑖𝑚𝐴 ⊂ 𝐷𝐴 containing data elements
that are dimensions and 𝐴𝑡𝑡𝐴 ⊂ 𝐷𝐴 containing data elements that are tuple
attributes. We also have that 𝐷𝑖𝑚𝐴 ∩ 𝐴𝑡𝑡𝐴 = ∅, meaning that a data element is
either a dimension or an attribute and never both.

A subTAR 𝑠 ∈ 𝑆𝐴 is a triple (𝜂𝑠, 𝐹 𝑖𝑠, 𝐹𝑑𝑠) where 𝜂𝑠 is the set of TAR
locations that represents the extent of the subTAR, 𝐹𝑖𝑠 is the subTAR position
mapping function, and 𝐹𝑑𝑠 is the subTAR data mapping function. The function
𝛷𝐴 in the TAR definitions maps a set of dimension values 𝑉𝑑𝑖 for every dimension
𝑑𝑖 ∈ 𝐷𝑖𝑚𝐴 to a set of 𝑥𝑖 ∈ Z:

𝛷𝐴 : (𝑉𝑑1 × 𝑉𝑑2 × ... × 𝑉𝑑𝑛) → Z𝑛 (1)

A location 𝐿𝐴 is a position in the 𝐴 TAR defined as a set of integers coordinate
values obtained through the application of 𝛷𝐴 in a set of dimension values. An
array location is nothing more than a multidimensional address formed by a set
integer indexes that identifies a tuple or cell within the TAR. The definition of
𝛷𝐴 is trivial when 𝑑𝑖𝐷𝑖

= Z ∀ 𝑑𝑖 ∈ 𝐷𝑖𝑚𝐴. Every value held in a TAR 𝐴 can be
specified by a location in 𝐴 and the specification of the data element (either a
dimension or attribute). The location space 𝐶𝐴 is a set formed by all possible
locations in an array given by the image of the function 𝛷𝐴.

A subTAR 𝑠 ∈ 𝑆𝐴 holds the functions to translate a location in a TAR into
an address in a linear storage scheme, and then to translate the linear address
into a data value valid for an extent of the TAR. Different TAR locations may be
encompassed by different subTARs, in which case the functions to carry out this
translation will be different. The extent of a subTAR is the region of the TAR
for which its translation functions are valid. The definition of which subTAR is
responsible for which TAR locations is given by the function 𝑅𝐴.

𝑅𝐴 : 𝐶𝐴 → 𝑆𝐴 (2)

𝑅𝐴 for a TAR 𝐴 maps every single TAR location to a subTAR in 𝑆𝐴 that
encompasses it.

Moreover, the following relation holds true:

∀𝑠 ∈ 𝑆𝐴 ∀ 𝑙𝑖 ∈ 𝜂𝑠(𝑅𝐴(𝑙𝑖) = 𝑠) (3)

Every location in an subTAR 𝑠 extent is a location that maps to 𝑠 itself when
applied to the subTARs location function 𝑅𝐴. As a consequence of this functional
definition, we have the impossibility of a intersection of two subTARs extents for
the same TAR. Any location in a TAR is associated to at most one subTAR.

SubTARs have an associated position mapping function:



8 Hermano Lustosa, Noel Lemus, Fabio Porto, and Patrick Valduriez

𝐹𝑖𝑠 : Z𝑛 → Z (4)

The function 𝐹𝑖𝑠 for a subTAR 𝑠 maps a n-dimensional TAR location to
a single integer representing an index or offset for a data value into the linear
storage scheme. This linear address is then used to access the actual data values in
the TAR. The subTAR data mapping function is responsible for this translation:

𝐹𝑑𝑠 : Z × 𝐷𝐴 → 𝐷 (5)

Where 𝐷 is the domain of a data element 𝑒 ∈ 𝐷𝐴. The data mapping function
maps a linear address along with a TAR data element to an atomic value in the
domain of the respective data element given as the input for the function. Users
may need to define data elements related to an entire TAR, or, more precisely,
a data element that do not depend functionally to any dimension. This special
type of data element is called a TAR property and 𝐹𝑑𝑠 becomes a constant.

A TARS 𝛤 also has the sets of roles 𝑅𝛤 and types 𝑇𝛤 . A role is a string value
that represents a special purpose data element with an important meaning in
the application context. The set 𝑅𝛤 contains all defined roles within a TARS.
Roles are part of a type. A type 𝑇 is a triple (𝑁𝑇 , 𝑀, 𝑂) where 𝑁𝑇 is a string
containing the type’s name, 𝑀 is a set of mandatory roles, and 𝑂 is a set of
optional roles. Types allow users to give special meaning to every data element
in a TAR. Special purpose operators in a TARS may take the TAR type into
consideration. Some operators may only make sense for a TAR of a given type,
since they depend on the existence of special purpose dimensions and attributes
with well defined meaning in the application domain.

A TAR 𝐴 ∈ 𝛺𝛤 has an injective role mapping function defined as:

𝛶𝐴 : 𝐷𝐴 → 𝑅𝛤 (6)

The function 𝛶𝐴 maps a data element to a role in the TARS, which indicates
the role within the application context that the given data element fulfills. The
notation 𝑇𝑦𝑝𝑒(𝐴) refers to the type of the TAR 𝐴. A TAR 𝐴 is said to be of
type 𝑇 if all data elements in 𝐷𝐴 are mapped to a role in 𝑇𝑀 or 𝑇𝑂, meaning
that all roles are defined in the same type. There must exist one element in 𝐷𝐴

that fulfills every mandatory role in 𝑇𝑀 . Thus, we say:

𝑇𝑦𝑝𝑒(𝐴) = 𝑇 → ∀ 𝑑𝑒 ∈ 𝐷𝐴 (𝛶𝐴(𝑑𝑒) ∈ 𝑇𝑀 ) ∨ (𝛶𝐴(𝑑𝑒) ∈ 𝑇𝑂)
∧ ∀ 𝑟 ∈ 𝑇𝑀 ∃ 𝑑𝑒 ∈ 𝐷𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛶𝐴(𝑑𝑒) = 𝑟

(7)

Two different data elements in 𝐷𝐴 cannot be mapped to the same role. This
is guaranteed because 𝛶𝐴 is an injective function.

Relationships or links indicate that different data elements in the array schema
correspond to the same entity. In a TARS, the 𝐿𝛤 is a set of relationships present
in the schema. A relationship 𝑅 between TAR 𝐴 and TAR 𝐵 is a pair (𝑑𝑎, 𝑑𝑏)
where 𝑑𝑎 ∈ 𝐴𝐷𝐴

is a data element of 𝐴 and 𝑑𝑏 ∈ 𝐵𝐷𝐵
is data element of 𝐵.

Relationships are constraints that limit the domain of values that are valid in a



TARS: An Array Model with Rich Semantics for Multidimensional Data 9

data element given the current set of values held in another data element. This
constraint can be expressed as:

𝑑𝑎𝑉𝑒
⊆ 𝑑𝑏𝑉𝑒

(8)

The set of every value held in the data element 𝑑𝑎 of 𝐴 is a subset of the data
values held in the data element 𝑑𝑏 of 𝐵.

Figure 2 depicts an example for TARS, illustrating all the definitions given
so far. In the example, we have a TARS with a single TAR named 𝑆𝑎𝑚𝑝𝑙𝑒 of
the type 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑃 𝑙𝑜𝑡 plot. It represents a bi-dimensional scatter plot dataset
with two real dimensions (𝐴 and 𝐵) that fulfill the roles 𝑥_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 and
𝑦_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 respectively. The real attribute 𝐶 fulfills the role 𝑝𝑙𝑜𝑡𝑣𝑎𝑡.

The TAR 𝑆𝑎𝑚𝑝𝑙𝑒 has 4 subTARs (𝑠𝑢𝑏1, 𝑠𝑢𝑏2, 𝑠𝑢𝑏3, 𝑠𝑢𝑏4), the TAR regions
they encompass being given by 𝑅𝑆𝑎𝑚𝑝𝑙𝑒. Every subTAR has its own mapping
functions. The position mapping function is either a row major or column major
conversion to a linear address space. The data mapping function is implemented
as a simple access to a position (specified between squared brackets) in a linear
storage working as a large linear unidimensional array for data.

Fig. 2. TARS with a single Type and a single TAR composed of 4 subTARs.

Finally, a TARS has a set 𝛩𝛤 of TAR operators that forms a TARS algebra.
This algebra contains functions that allow users to create new TARs derived
from the ones already defined. By combining the algebraic operators, users can



10 Hermano Lustosa, Noel Lemus, Fabio Porto, and Patrick Valduriez

express the most varied queries and analyses over data held in a one or more
TARs. These operators can be type dependent, meaning that they work only
with TARs of a given type. As stated before, a TAR of type T is guaranteed to
have all mandatory roles of T, therefore an operators that relies on a TAR A
with type T assumes the values in A to be compliant with type T.

An operator 𝑂𝑝 is defined as a triple (𝑁𝑂, 𝑇𝑂, 𝑃𝑂) where 𝑁𝑂 is a string
containing the operator name, 𝑇𝑂 is a list of types < 𝑡1, 𝑡2, ...𝑡𝑛 > ∈ 𝑇𝛤 defining
the expected types for input TARS, and 𝑃𝑂 is a list < 𝑝1, 𝑝2, ..., 𝑝𝑚 > of atomic
values forming the operator parameters set identifiers. New derived TARs can
be expressed by using operators in a database query. A TAR 𝑇𝑟 resulting from
the application of an operator 𝑂1 on another TAR 𝑇𝑜 can be input into another
operator 𝑂2. Therefore, complex derived TARs can be create as the result of
nested operator calls. For instance, a derived TAR 𝐴 can be produced by the
query (where base_tar is a TAR, and 𝑣𝑎, 𝑣𝑏, 𝑣𝑐 are parameters):

𝐴 = 𝑂1(𝑂2(𝑂3(𝑏𝑎𝑠𝑒_𝑡𝑎𝑟, 𝑣𝑐), 𝑣𝑏), 𝑣𝑎) (9)

This definition is the base for a functional query language, in which the
functions are operations defined in TARS for a set of given types.

5 Scientific Application Use Case

In this section, we validate our approach, showing how a TARS schema is used
in the context of a numerical simulation application. First, we introduce the
characteristics of a simulation datasets. Then, we show how to support these
data using TARS.

5.1 Simulation Datasets Overview

Numerical simulation is the process of designing a computational model of a
system to understand and predict its behavior [4]. Simulations are particularly
useful in situations where it is hard or even impossible to execute real tests to
acquire data. They depend on the creation of mathematical models describing
the relation between physical quantities. A mathematical model captures the
behavior of a phenomenon, with equations, usually solved by numerical methods.
Some methods require the discretization of the domain in a form of a grid or
mesh. Depending on the domain, modelers can adopt either a structured or
unstructured meshes, divided into cells or elements. Meshes have topological
and geometrical representations. Geometrical aspects are related to shapes, sizes
and absolute positions of their elements, such as points. Topology representation
captures the relations between elements, like their neighborhoods or adjacency,
without considering their position in time and space.



TARS: An Array Model with Rich Semantics for Multidimensional Data 11

5.2 TARS Implementation

A TARS for a simulation dataset has a set of type roles that define special
attribute types, such as id, depicted in Figure 3. Simulation data comprises
a series of fields of physical quantities defined for positions in time and space.
Different values exist for every point or mesh element (lines, polygons, solid,
etc...). Therefore, we define the Field type to represent the core of numerical
simulation data. The Field type has some mandatory roles such as the 𝑖𝑑, i.e. a
data element that associates a physical quantity with a mesh element at which
it has been computed. There is a set of roles for 𝑓𝑖𝑒𝑙𝑑_𝑣𝑎𝑙𝑢𝑒𝑠 to represent
the actual physical quantities. The 𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑡𝑦𝑝𝑒 is a string indicating if the
element is a point, a line, a triangle, a tetrahedron, etc. The 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦_𝑡𝑎𝑟 string
property contains the name of another TAR in the TARS defining the mesh
geometry. Optionally, a TAR could have a dimension or attribute to specify
different time steps (for transient problems) and trials, for cases when data for
various simulation runs are stored in the same structure.

The mesh modelling for the discretization of the domain is represented by
its geometry and topology. We have a series of types for capturing variations
in representation for these two aspects. We have Cartesian geometries, with a
mandatory role 𝑖𝑑 for identifying points, and other roles for 𝑥, 𝑦 and 𝑧 coordinates.
There is also the same optional roles 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 and 𝑡𝑟𝑖𝑎𝑙. A mesh geometry can
change or evolve during the same trial, in a scenario in which the application
domain is deformable, or a different mesh can be used for every simulation run.
In Figure 3 we show the definition of other types of geometries, with spherical or
cylindrical coordinate systems, each one with their specific roles.

Fig. 3. Types for a Numerical Simulation TARS

Data related to the mesh topology requires special types, such as the Incident
Topology and Adjacency Topology. The Incident Topology type captures the
semantics of topologies specified as a series of incident relationships. In a mesh,
we have lower order elements that are incident in higher order elements. For
instance, a point is a zero-order element and a line is a first-order element. Two
points are incident in a line, and this information are captured in an incidence



12 Hermano Lustosa, Noel Lemus, Fabio Porto, and Patrick Valduriez

matrix where each row represents a line and every column contains an id of a
point that is incident in the line. We can have a different layout with points being
incident in even higher order elements, like triangles and tetrahedra. Therefore,
an incident Topology type captures the relationships between a series of incident
elements into an incidentee element with their respective roles. There are two
special roles for properties 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑒𝑒_𝑓𝑖𝑒𝑙𝑑_𝑡𝑎𝑟 and 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡_𝑓𝑖𝑒𝑙𝑑_𝑡𝑎𝑟 that
point to field TARS containing data associated with both the incidentee and
the incident elements. Since the mesh can be different in every time step for the
same run, or for different runs of the same model, the optional roles 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝
and 𝑡𝑟𝑖𝑎𝑙 are also present.

Alternatively, a topology can be specified through an adjacency or neigh-
borhood relationship between mesh elements of the same order. We can use an
adjacency matrix where every line and column represents a mesh element, for
instance, a point. The existence of a connection between two points is given by a
value in the array cell. In a TAR type, we have roles to identify both adjacency
matrix dimensions along with a role for pointing to the field data TAR containing
values for the points 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦_𝑓𝑖𝑒𝑙𝑑_𝑡𝑎𝑟. We keep roles for 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 and 𝑡𝑟𝑖𝑎𝑙
as well for this representation.

A TARS implementation in this context contains a TAR definition for each
type (Field, Geometry and Topology). Some relationships between TARs are
expected to exist also. For instance, if the field TAR contains data for points, and
there is a Geometry TAR holding coordinate values, the data element fulfilling
the role of 𝑖𝑑 in the file TAR must have a relationship with the data element
fulfilling the 𝑝𝑜𝑖𝑛𝑡𝑖𝑑 role in the geometry TAR, since logically they represent the
same entity. Another example occurs between a Topology TARs and Field TARs,
incidentee and incident data elements in Topology contains identifiers for mesh
elements in Field TARs, and thus a relationship must exists between them and
the respective data elements fulfilling the id roles in the Field TARs.

Along with the types, we added a series of special purpose array operators in
the TARS. Many operations are common array operations that can be executed
upon any TAR. They are: 𝑓𝑖𝑙𝑡𝑒𝑟, 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛, 𝑗𝑜𝑖𝑛, 𝑎𝑝𝑝𝑙𝑦, 𝑢𝑛𝑖𝑜𝑛, 𝑠𝑙𝑖𝑐𝑒, 𝑔𝑟𝑜𝑢𝑝
and 𝑤𝑖𝑛𝑑𝑜𝑤_𝑔𝑟𝑜𝑢𝑝 as defined in [10]. Beyond that, we also might think of an
extended set of operations, taking the semantics given by the types and roles
into consideration. For instance, we can define a set of operators for the following
tasks: spatial range query, comparison between trials, uncertainty quantification,
finding closest elements to a point or that bound another elements. These tasks
are implemented by operators depending on Geometry and Field TARs.

Additionally, some tasks require Topology TARs, in combination with field
typed TARs, and give origin to operators depending on these types. For instance:
conversion from incidence to adjacency topologies, definition of the amount
of neighbors a mesh element has, obtaining a set of incident elements for an
incidentee element or vice-versa, getting a path between points in a mesh, following
a path from an initial mesh element following other mesh elements whose data
values satisfy a predicate, calculate aggregate values (average, min, max, etc) of
mesh elements considering their neighborhoods or adjacency.



TARS: An Array Model with Rich Semantics for Multidimensional Data 13

Finally, an important family of special operators are responsible for creating
data visualizations. These operators rely on the semantics given by the types
and roles to create complete visualizations. They take into consideration not
only field data, but also its geometry and topology. Instead of outputting a TAR,
visualization operators implemented in a TARS DBMS are placed at the top of a
query plan, and produce a graphical representation for the output of an analysis.

5.3 Concluding Remarks

The TAR implementation we proposed above fulfills the requirements of simu-
lation applications. First, it enables the representation of the main simulation
data structures, including data fields, mesh geometry and topology. Thus, appli-
cations can query any of these structures individually or in composition, with
specific algebraic operators. Second, it provides support for online management
of simulation data, as the outcome of the simulation does not need to go through
costly data transformation to be used as a TAR by a analytical application.

Third, the model provides support for extended application semantics. UQ and
data visualization applications can be supported by operators that take advantage
of the simulation data structures provided by the model offering analysis and
queries beyond the basic array operations. Furthermore, by integrating application
operations to the system as algebraic operators, a costly file transformation from
DBMS output to visualization file format is saved, leading to faster data to
visualization procedure.

6 Conclusion

Important scientific applications, such as numerical simulation, have requirements
that are not supported by array DBMSs, in particular, to deal with mesh topology
and geometry. In this paper, we propose a novel data model called TARS (Typed
ARray Schema), which extends the basic array data model with typed arrays
(TARs). In TARS, the support of application dependent data characteristics, such
as data visualization and UQ computation, is provided through the definition
of TAR objects, ready to be manipulated by TAR operators. This approach
provides much flexibility for capturing internal data layouts through mapping
functions, which makes data ingestion independent of how simulation data has
been produced, thus minimizing ingestion time. A TAR has a type that defines
the semantics of its dimensions and attributes, and eases the creation of complex
algebraic operators that depend on the application semantics.

TARS can be used as the underlying data model for a simulation data
management system, providing a powerful query language with array operators
to allow users to express a variety of analytical queries and determine how results
are to be visualized.

To validate our approach, we showed how a TARS schema can be used in the
context of a numerical simulation application. First, it enables the representation
of the main simulation data structures, including data fields, mesh geometry
and topology, and their querying with specific algebraic operators. Second, it



14 Hermano Lustosa, Noel Lemus, Fabio Porto, and Patrick Valduriez

provides support for online management of simulation data, thus reducing the
time required to deal with data layout transformations. Third, the model provides
support for extended application semantics.

Acknowledgments This work has been funded by CNPq, CAPES, FAPERJ,
Inria (SciDISC project) and the European Commission (HPC4E H2020 project)
and performed (for P. Valduriez) in the context of the Computational Biology
Institute (www.ibc-montpellier.fr) and for (F. Porto, H. Lustosa and N. Lemus)
in the context of the DEXL Laboratory (dexl.lncc.br) at LNCC.
References

1. Ahrens, J.: Increasing scientific data insights about exascale class simulations under

power and storage constraints. IEEE Computer Graphics and Applications 35(2),

8–11 (Mar 2015)
2. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.: Nodb: Efficient

query execution on raw data files. In: Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data. pp. 241–252. SIGMOD ’12,

ACM, New York, NY, USA (2012)
3. Blanas, S., Wu, K., Byna, S., Dong, B., Shoshani, A.: Parallel data analysis directly

on scientific file formats. In: Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data. pp. 385–396. SIGMOD ’14, ACM, New York,

NY, USA (2014), http://doi.acm.org/10.1145/2588555.2612185

4. Dym, C.: Principles of Mathematical Modeling. Elsevier Science (2004)
5. Gosink, L., Shalf, J., Stockinger, K., Wu, K., Bethel, W.: Hdf5-fastquery: Ac-

celerating complex queries on hdf datasets using fast bitmap indices. pp. 149–

158. SSDBM ’06, IEEE Computer Society, Washington, DC, USA (2006), http:

//dx.doi.org/10.1109/SSDBM.2006.27

6. Group, T.H.: Hdf5 - the hdf group (2017), https://www.hdfgroup.org/HDF5,

[Online; accessed 19-Mar-2017]
7. Howe, B.: Gridfields: Model-driven Data Transformation in the Physical Sciences.

Ph.D. thesis, Portland, OR, USA (2007), aAI3255425
8. Lee, B.S., Chen, L., yeol Song, I.: I.l.: Modeling and querying scientific simulation

mesh data. Tech. rep., International Electrotechnical Commision (1999)
9. Lustosa, H., Porto, F., Valduriez, P., Blanco, P.: Database system support of

simulation data. Proc. VLDB Endow. 9(13), 1329–1340 (Sep 2016)
10. Marathe, A.P., Salem, K.: Query processing techniques for arrays. In: ACM SIG-

MOD Record. vol. 28, pp. 323–334. ACM (1999)
11. Paradigm4: Scidb (2017), http://www.paradigm4.com/, [Online; accessed 19-Mar-

2017]
12. Rasdaman: Rasdaman - raster data manager (2017), http://www.rasdaman.org/,

[Online; accessed 19-Mar-2017]
13. Rezaei Mahdiraji, A., Baumann, P., Berti, G.: Img-complex: graph data model for

topology of unstructured meshes. In: Proceedings of the 22nd ACM international

conference on Conference on information &#38; knowledge management. pp. 1619–

1624. CIKM ’13 (2013)
14. Stonebraker, M., Becla, J., Dewitt, D., Lim, K.T., Maier, D., Ratzesberger, O.,

Zdonik, S.: Requirements for science data bases and scidb. In: Conference on

Innovative Data Systems Research (CIDR). Asilomar, USA (january 2009)
15. Unidata: netcdf (2017), https://www.unidata.ucar.edu/software/netcdf/, [Online;

accessed 19-Mar-2017]

http://doi.acm.org/10.1145/2588555.2612185
http://dx.doi.org/10.1109/SSDBM.2006.27
http://dx.doi.org/10.1109/SSDBM.2006.27
https://www.hdfgroup.org/HDF5
http://www.paradigm4.com/
http://www.rasdaman.org/
https://www.unidata.ucar.edu/software/netcdf/

	TARS: An Array Model with Rich Semantics for Multidimensional Data



