
The DMUN System at the MediaEval 2017 C@merata Task

Andreas Katsiavalos

De Montfort University, Leicester, UK
andreas.katsiavalos@gmail.com

ABSTRACT

This paper presents a system that was developed for the
C@merata task to perform music information retrieval using text-
based queries. The system is built on findings from previous
attempts and achieved best results and functionality so far. The
C@merata task is split in two modules that handle the query-
parsing and music-information retrieval separately. The sub-tasks
are connected with a formal-information-request, a dictionary that
contains the parsing information. The system is not fully extended
but key issues and methods are identified.

1 INTRODUCTION

The C@merata task [1] represents a challenging task that aims to
bind text and music content-based retrieval. The challenges of the
task are important mainly because of the multiplicity of contexts
within which the content that is searched needs to be defined. The
variance in score formats, e.g. orchestral-scores in contrast to
piano or single staff scores, the ambiguity in musical-concept
descriptions and their exact positioning on the score, and, the
technicalities of transferring the results of text-parsing to music-
retrieval are some of the problems that need to be solved.

The C@merata task is important because it is addressing a
fundamental need in music research, that of a simplified content-
based music information retrieval system. Content-based retrieval
systems are implemented in fields such as music informatics, with
highly specialized applications, and, in general text- and
multimedia-based systems in web-search engines. However, there
are no user-friendly applications to perform what the C@merata
task is challenging. Thus, the development of text-based query
systems for music-information retrieval will fill the gap between
specialized and non-content-based retrieval services for music.

A service that will satisfy the needs of the C@merata task
would be helpful to everyone related with music and especially in
higher-level music education where research often requires the
identification of diverse and complex musical elements in large
corpora. The textual-interface that is suggested from the task is
also very practical for novice music enthusiasts that begin to
discover the theoretic establishment of tonal music.

2 RELATED WORK

This paper draws from works in previous C@merata events and
studies in music information retrieval generally. The clear
distinction of query parsing and music-information retrieval

between the C@merata sub-tasks enabled independent
developments for each system. In 2015 [3], the focus was on the
development of highly-parameterized music-information retrieval
functions for high-level musical concepts, such as arpeggios and
scales, while the system’s text parsing was relying on Collins’
Stravinsqi algorithm. The following year [2], the focus shifted to
language processing for the development of an automated query
parser. The results where promising and key tasks where
identified and addressed, however, the connection between the
query-parser and the music-information retrieval functions was
very poor.

3 APPROACH

3.1 Overview

The system presented in this paper is a prototype method to
connect text parsing and music information retrieval. The
C@merata task is handled in two main stages: a) the text parsing,
and, b) the music information retrieval. A shell was developed
that integrates and connects the above elements, also handling I/O
operations. The two stages are operating independently and are
connected by the use of a data structure, named Formal
Information Request (see below).

Each stage uses custom code that is not dependent on any
high-level external libraries for either language processing or
music information processing. Concerning language processing,
the system is not able to handle completely ‘natural’ language but
rather a collection of word constructs where each valid sentence is
viewed as a structure of valid terms, types and type combinations.
In this prototype system, only selected constructs were
implemented for proof of concept; however, the language is easily
extensible. While text parsing is carried out completely from
scratch, the reading of musicXML files and some dictionary-
related operations were facilitated by music21.

Two important notions of the system are the Formal
Information Request (FIR) and the notion of (musical) ‘durational
element’. The FIR is a method to connect the output of the query
parsing with the music-information retrieval functions. It basically
transfers all the parsing data to a music function selector that
further processes the parsing elements to be inputted to the music
information retrieval functions. The notion of the durational
element is very helpful in chaining input and output between
music information retrieval functions.

Overall, as displayed in Figure 1, the system inputs a text
query and initializes a query parser object by loading a .json
language file, a dictionary with single term types for keys and sets
of terms for values. The query-parser converts the text of the
query into a Formal Information Request (FIR), another

Copyright is held by the owner/authors(s).
MediaEval’17, September 2017, Dublin, Ireland

MediaEval’17, 13-15 September 2017, Dublin, Ireland A. Katsiavalos

dictionary, by gradually identifying and replacing the terms, term
types and compound types of the query with their types found in
the language file, until a top-level description of the query is
found. The FIR is then sent to the music information retrieval
(MIR) module which in turn selects the corresponding
information request retrieval function. All the currently possible
information requests are implemented as combinations between
three core types of MIR functions that find, relate and constrain
music-entities such as notes/rests and note-sets (melodies, chords,
etc.). Lastly, the output of the MIR functions, which are music
elements, are converted into passages.

Figure 1: The overall workflow diagram.

Figure 2: The text query parsing steps.

As shown in Figure 2 from top to bottom, the query parsing
process starts with breaking down the query phrase into word
tokens (terms) while commas (‘,’) are removed. Next, the TYPE
of each TERM is identified based on the language TERMS set.
Next, compound types (cTYPE) are identified by searching for the
maximal subset of adjacent parsed TYPES. Next, the query is
parsed again to check if there are any multi-compound-types
(mcTYPE). At this point, the query is viewed as a high-level
pattern of musical-entities, relations and qualifications. These

patterns cannot integrate more and since their content, context,
and requirements are identified, they are viewed as high-level
functions.

3.2 Parsing of text queries

The query parsing module inputs the query phrase and after a
sequence of parsing operations it outputs the FIR . The parsing is
based on a ‘language’ file that holds all the information that is
required to identify the type of the query. Parts of the language
file are generated algorithmically.

Table 1: Example parsing of query number 58

query chord C# E G# in the bass clef

terms
‘chord’, ‘C#’, ‘E’, ‘G#’, ‘in’, ‘the’, ‘bass’,

‘clef’

types
‘primaryType’, ‘pitch’, ‘pitch’, ‘pitch’,

‘contextRel’, ‘contextRel’, ‘partId’,
‘primaryType’

cTypes
[0,3, ‘chord’], [4,5, ‘contextRel’], [6,7,

‘partContext’]
mcTypes [0,3, ‘chord’], [4,7, ‘partQualification]
function getEntityInContext()

Since all the questions where converted into combinations of

Entities(E), Relations(R), and. Qualifications(Q), the set of valid
combinations can be given from the graph shown in Figure 3,
starting with an entity (E). Following this graph in text parsing
was revealing in what kind of patterns are used and what kind of
functions need to be developed.

Figure 3. Starting with an Entity (E), a query can have

any combination of paths in this cyclic graph, however,

not all of them are implemented.

Currently some of the functions that are implemented are
(using the abbreviations from Figure 3): E, E-E, E-En , E-R, E-Q,
E-Q-Q, E-R-E-Q and E-Q-R-E-Q.

3.3 Music information retrieval

The music information retrieval module starts with the formal
information request of the query parser and outputs the music
elements that satisfy the query question. In general the reverse

MediaEval’17, 13-15 September 2017, Dublin, Ireland A. Katsiavalos

 3

process of text parsing is followed: while in query parsing the
language dictionary was used to find integrations of terms in order
to identify the top query description, once the function is
identified, the descriptions are broken down into elements but this
time removing and combining terms to read values and perform
music content searching.

The music information retrieval operations are handled by a
simple script that was developed for this reason. The system
operates with ‘datapoint’ lists, where notes and rests are the
atoms. The music entities that are identified in the text parser as
(E)ntities are shown in Figure 4; the MIR functions can currently
retrieve the elements from the top three rows. Note that all the
combinations between them are possible.

Figure 4: The musical entities.

There are generally two extremes in declaring and identifying
Entities in queries and each one has different approach in
retrieval. An entity may contain the specific constituents of the
element, from highly specific e.g. a query ‘C4 E4 G4 chord’, to
more abstract e.g. ‘major chord’.

Table 2: The MIR functions

getEntity
Note, rest, harmonic/ melodic

interval, chord, melody
getEntityAfterEntity Only the ‘followed by’

getEntityInContext
‘Part’ and ‘measure’

qualification

The Entities in Figure 4 are durational entities, meaning that

they all have similar attributes such as a starting point and an
ending point in time. The system makes use of these generic
properties with robust MIR functions that can handle and mix any
of them. For example a query ‘G4 followed by minor’ is served
by an MIR function that handles ‘Entity-After-Entity’ and not
‘Chord-After-Note’. This is an interesting feature with only partial
exploitation.

4 RESULTS AND ANALYSIS

The system found great difficulties with text parsing and for that
reason two groups of answers were made:

1. ‘auto’, where the queries were inputted ‘as is’ from the
C@merata questions file without any alterations.

2. ‘altered’, where some parts of the query had to be altered
to match the parsing capabilities.

Table 3: The ‘auto’ and ‘altered’ query groups

Type Question numbers

Auto (7) 4, 58, 60, 63, 64, 92, 132

Altered (23)
1, 2, 3, 7, 11, 12, 18, 19, 23, 27,

33, 36, 39, 40, 42, 43, 52, 53,
61, 62, 70, 103,189

The main reasons to alter the original queries were:

• The ‘bar’ qualification is not implemented yet and the
results had to be manually checked for that range. (e.g.
1, 11, 12, 13, 18, 19, 23, 42).

• The ‘left’ and ‘right’ ‘hand’ qualifications are also not
implemented and these queries are altered to use part
names instead (e.g. 11, 12, 13, 18, 19, 23, 36, 40, 43,
52)

• All the terms where altered to match a single language
(e.g. 2, 7, 11, 18, 27, 33, 36, 39. 40, 62). For example
query 27 ‘D D D C# C# C# B E E D D D in crotchets’
is altered to ‘D D D C# C# C# B E E D D D in
quarters’.

• When not all the information given is used (e.g. 3, 39,
42, 53, 61, 70). For example in query 70 ‘theme’ is
considered a ‘melody’.

Due to the small number of ‘auto’ answers and also to the fact

that the alterations that had to be made are considered trivial, the
results for the two groups were summed. The alterations are
considered trivial because the methods to parse the original
queries is known but not implemented. Also, all the answered
questions were manually selected so that the MIR functions would
be able to run them. This explains the overall low recall and high
precision of the results shown in Figure 5 meaning that when the
FIR was produced then the MIR was usually successful.

In general, as shown in Figure 5, the overall Beat Recall and
Measure Recall did not exceed 0.2 percent (0.155 and 0.172
respectively), and from the total of 200 questions only 30 were
answered. The generally high precision (0.833 for beat and 0.924
for measure) is, as stated earlier, due to the manual selection of
queries into feasible and not feasible, and to minor alterations to
their text. More specifically, the ‘synch’ category was completely
excluded and very few ‘follow’ and ‘texture’ queries where tested.
Most of the emphasis was given to the ‘melodic’ and ‘harmonic’
queries trying to answer as many as possible, but still with low
recall in both.

MediaEval’17, 13-15 September 2017, Dublin, Ireland A. Katsiavalos

Figure 5: The results of the system.

5 CONCLUSIONS

The current system presents a working paradigm for the complete
C@merata task, however as a prototype, it doesn’t reach its
potential. Although multi language support was not tested, this
can be easily achieved by using a different language file. This
way, apart from the differences in terms, different grammar
constructs can also be used as the language file is fully
customizable allowing the user to add their own grammatical
constructs.

MediaEval’17, 13-15 September 2017, Dublin, Ireland A. Katsiavalos

 5

REFERENCES

[1] Sutcliffe, R. F. E., Ó Maidín, D. S., Hovy, E. (2017). The
C@merata task at MediaEval 2017: Natural Language
Queries about Music, their JSON Representations, and
Matching Passages in MusicXML Scores. Proceedings of the
MediaEval 2017 Workshop, Trinity College Dublin, Ireland,
September 13-15, 2017.

[2] Katsiavalos, A. (2016). DMUN: A Textual Interface for
Content-Based Music Information Retrieval in the C@
merata task for MediaEval 2016. Proceedings of the
MediaEval 2016 Workshop, Hilversum, The Netherlands,
October 20-21, 2016.

[3] Katsiavalos, A., & Collins, T. (2015). DMUN at the
MediaEval 2015 C@merata Task: The Stravinsqi Algorithm.
Proceedings of the MediaEval 2015 Workshop, Dresden,
Germany, September 14-15 2015.

